51
|
Nociceptive chemical hypersensitivity in the spinal cord of a rat reserpine-induced fibromyalgia model. Neurosci Res 2022; 181:87-94. [PMID: 35304863 DOI: 10.1016/j.neures.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/07/2023]
Abstract
The pathological mechanisms of fibromyalgia (FM) are largely unknown. Recently, a rat reserpine-induced pain model showing exaggerated pain-related behaviors to mechanical and thermal stimuli has been used in FM research. However, the model has not been fully characterized. Here, we investigated nociceptive hypersensitivity to chemical stimuli and its spinal mechanisms to further characterize the model. The rat model was induced by administering reserpine to the nervous system. Nociceptive behaviors to chemical stimuli were quantified using the formalin pain test, and neuronal activation of the stimuli was examined using spinal c-Fos immunohistochemistry and electrophysiological recordings of superficial dorsal horn (SDH) neurons. The duration of pain-related behaviors was prolonged in both phases I (0-5min) and II (10-60min) and the interphase; and the number of c-Fos-immunoreactive nuclei increased in laminae I-II, III-IV, and V-VI at the spinal segments L3-L5 on the side ipsilateral to the formalin injection, and these factors were significantly and positively correlated. The action potentials of SDH neurons induced by formalin injection were markedly increased in rats treated with reserpine. These results demonstrate that pain-related behaviors are facilitated by noxious chemical stimuli in a rat reserpine-induced FM model, and that the behavioral hypersensitivity is associated with hyperactivation of SDH neurons.
Collapse
|
52
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
53
|
Pramipexole treatment attenuates mechanical hypersensitivity in male rats experiencing chronic inflammatory pain. Neuropharmacology 2022; 208:108976. [PMID: 35085583 PMCID: PMC10171400 DOI: 10.1016/j.neuropharm.2022.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
Abstract
Opioids are commonly prescribed for pain despite growing evidence of their low efficacy in the treatment of chronic inflammatory pain and the high potential for misuse. There is a clear need to investigate non-opioid alternatives for the treatment of pain. In the present study, we tested the hypothesis that acute and repeated dopamine agonist treatment would attenuate mechanical hypersensitivity in male Long-Evans rats experiencing chronic inflammatory pain. We used two clinically available therapeutics, l-DOPA (precursor of dopamine biosynthesis) and pramipexole (dopamine D2/3 receptor agonist), to examine the functional role of dopamine signaling on mechanical hypersensitivity using an animal model of chronic inflammatory pain (complete Freund's adjuvant, CFA). We found that both acute and repeated pramipexole treatment attenuated hyperalgesia-like behavior in CFA-treated animals but exhibited no analgesic effects in control animals. In contrast, there was no effect of acute or repeated l-DOPA treatment on mechanical hypersensitivity in either CFA- or saline-treated animals. Notably, we discovered some extended effects of l-DOPA and pramipexole on decreasing pain-like behavior at three days and one week post-drug treatment. We also examined the effects of pramipexole treatment on glutamatergic and presynaptic signaling in pain- and reward-related brain regions including the nucleus accumbens (NAc), dorsal striatum (DS), ventral tegmental area (VTA), cingulate cortex (CC), central amygdala (CeA), and periaqueductal gray (PAG). We found that pramipexole treatment decreased AMPA receptor phosphorylation (pGluR1845) in the NAc and DS but increased pGluR1845 in the CC and CeA. A marker of presynaptic vesicle release, pSynapsin, was also increased in the DS, VTA, CC, CeA, and PAG following pramipexole treatment. Interestingly, pramipexole increased pSynapsin in the NAc of saline-treated animals, but not CFA-treated animals, suggesting blunted presynaptic vesicle release in the NAc of CFA-treated animals following pramipexole treatment. To examine the functional implications of impaired presynaptic signaling in the NAc of CFA animals, we used ex vivo electrophysiology to examine the effects of pramipexole treatment on the intrinsic excitability of NAc neurons in CFA- and saline-treated animals. We found that pramipexole treatment reduced NAc intrinsic excitability in saline-treated animals but produced no change in NAc intrinsic excitability in CFA-treated animals. These findings indicate alterations in dopamine D2/3 receptor signaling in the NAc of animals with a history of chronic pain in association with the anti-hyperalgesic effects of pramipexole treatment.
Collapse
|
54
|
Kuzay D, Dileköz E, Özer Ç. Effects of thymoquinone in a rat model of reserpine-induced depression. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
55
|
Martins CP, Paes RS, Baldasso GM, Ferrarini EG, Scussel R, Zaccaron RP, Machado-de-Ávila RA, Lock Silveira PC, Dutra RC. Pramipexole, a dopamine D3/D2 receptor-preferring agonist, attenuates reserpine-induced fibromyalgia-like model in mice. Neural Regen Res 2022; 17:450-458. [PMID: 34269222 PMCID: PMC8463993 DOI: 10.4103/1673-5374.317984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.
Collapse
Affiliation(s)
- Carlos Pereira Martins
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Sebben Paes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela Mantovani Baldasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
56
|
Ghoneim FM, Abo-Elkhair SM, Elsamanoudy AZ, Shabaan DA. Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin. Cells 2021; 11:48. [PMID: 35011610 PMCID: PMC8750434 DOI: 10.3390/cells11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia.
Collapse
Affiliation(s)
- Fatma Mohamed Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ayman Zaky Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| |
Collapse
|
57
|
Hassan FE, Sakr HI, Mohie PM, Suliman HS, Mohamed AS, Attia MH, Eid DM. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model. Ann Med 2021; 53:1032-1040. [PMID: 34233552 PMCID: PMC8274527 DOI: 10.1080/07853890.2021.1916069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 04/03/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) is characterized by musculoskeletal pain, fatigue, sleep and memory disturbance. There is no definitive cure yet for FM-related health problems. Peroxisome proliferator-activated receptor's (PPAR's) activation is associated with insulin sensitisation and improved glucose metabolism. PPAR-γ was reported to alleviate FM allodynia. Limited data are discussing its effect on motor disorders. OBJECTIVE To investigate the potential effect of PPAR-γ agonists (pioglitazone, as one member of thiazolidinediones (TZD)) on motor dysfunction in reserpine-induced FM in a rat model. MATERIALS AND METHODS Thirty-six male Wistar rats were divided into negative control (n = 9) and reserpine-induced FM (n = 27) groups. The latter was subdivided into three equal subgroups (n = 9), positive control (untreated FM model), pioglitazone-treated and GW9662-treated. We evaluated muscle functions and activity of chloramphenicol acetyltransferase, superoxide dismutase, malondialdehyde, and serum levels of interleukin-8 and monocyte chemoattractant protein-1. RESULTS Pioglitazone significantly relieved fatigue, improved muscle performance, reduced inflammatory cytokines and enhanced antioxidant's activity, while GW9662, a known PPAR-γ antagonist, aggravated the FM manifestations in the rat model. CONCLUSION PPAR-γ agonists show a promising role against FM-associated motor dysfunctions.
Collapse
Affiliation(s)
- Fatma E. Hassan
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
- Department of Medical Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Passant M. Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Howayda Saeed Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Egypt
| | | | - Mohamed H. Attia
- Internal Medicine Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Dalia M. Eid
- Department of Biochemistry, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
58
|
Uta D, Tsuboshima K, Nishijo H, Mizumura K, Taguchi T. Neuronal Sensitization and Synaptic Facilitation in the Superficial Dorsal Horn of a Rat Reserpine-induced Pain Model. Neuroscience 2021; 479:125-139. [PMID: 34673142 DOI: 10.1016/j.neuroscience.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Chronic widespread pain is one of the important issues to be solved in medical practice. Impaired spinal descending pain inhibitory system due to decreased monoamine neurotransmitters is assumed to cause nociceptive hypersensitivities in chronic painful conditions like that described in patients with fibromyalgia (FM). However, response behaviors and synaptic transmission of the spinal dorsal horn neurons in response to reserpine remain to be clarified. Here we examined the activities of superficial dorsal horn (SDH) neurons, as well as excitatory and inhibitory postsynaptic inputs to SDH neurons, using a putative rat model of FM that was established by injecting reserpine. Extracellular recordings in vivo revealed that SDH neurons were sensitized to mechanical stimulation applied to the neurons' receptive fields, and the mechanically sensitized neurons were spontaneously more active. The sensitizing effect was evident 1 day and 3 days after the reserpine treatment, but subsided 5 days after the treatment or later. Using patch-clamp recordings in vivo, spontaneous excitatory postsynaptic currents (sEPSCs) to SDH neurons were found to increase in the pain model, while spontaneous inhibitory postsynaptic currents (sIPSCs) to SDH neurons decreased. These results demonstrate that the SDH neurons were strongly sensitized in response to the reserpine treatment, and that increased excitatory and decreased inhibitory postsynaptic inputs could be responsible for the spinal nociceptive hypersensitivity in the putative FM model.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Katsuyuki Tsuboshima
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata 950-3198, Japan; Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, Niigata 950-3198, Japan.
| |
Collapse
|
59
|
Khadrawy YA, Hosny EN, Magdy M, Mohammed HS. Antidepressant effects of curcumin-coated iron oxide nanoparticles in a rat model of depression. Eur J Pharmacol 2021; 908:174384. [PMID: 34324858 DOI: 10.1016/j.ejphar.2021.174384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
The antidepressant effect of curcumin-coated iron oxide nanoparticles (Cur-IONPs) was investigated in the current study using depression rat model induced by reserpine. IONPs were synthesized by curcumin as a reducing agent producing Cur-IONPs. Rats were divided into control, depression rat model, and depressed rats treated with Cur-IONPs. After treatment rat behavior was evaluated using forced swimming test (FST). Serotonin (5-HT), norepinephrine (NE), dopamine (DA), monoamine oxidase (MAO), acetylcholinesterase (AchE), Na+, K+, ATPase, lipid peroxidation (MDA), reduced glutathione (GSH), glutathione-s-transferase (GST) and nitric oxide (NO) were measured in the cortex and hippocampus. In depressed rats, FST showed increased immobilization time and reduced swimming time. This was associated with a significant decrease in 5-HT, NE, DA and GSH and a significant increase in MDA and NO levels and GST, MAO, AchE and Na+, K+, ATPase activities in the cortex and hippocampus. Treatment with Cur-NONPs for two weeks increased the swimming time reduced the immobility time, and elevated 5-HT, NE and DA levels. Cur-IONPs attenuated the oxidative stress induced by reserpine and restored the MAO, AchE and Na+, K+, ATPase. The present green method used curcumin in the IONPs synthesis and has several merits; obtaining nanoform of iron oxide, increasing the bioavailability of curcumin and reducing the oxidative stress induced by iron. The present antidepressant effect of Cur-IONPs could be attributed to the ability of Cur-IONPs to restore monoamine neurotransmitter levels by increasing their synthesis and reducing their metabolism. In addition, the antioxidant activity of curcumin prevented oxidative stress in the depressed rats.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, Giza, Egypt.
| | - Eman N Hosny
- Medical Physiology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Merna Magdy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
60
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
61
|
Goebel A, Krock E, Gentry C, Israel MR, Jurczak A, Urbina CM, Sandor K, Vastani N, Maurer M, Cuhadar U, Sensi S, Nomura Y, Menezes J, Baharpoor A, Brieskorn L, Sandström A, Tour J, Kadetoff D, Haglund L, Kosek E, Bevan S, Svensson CI, Andersson DA. Passive transfer of fibromyalgia symptoms from patients to mice. J Clin Invest 2021; 131:e144201. [PMID: 34196305 DOI: 10.1172/jci144201] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.
Collapse
Affiliation(s)
- Andreas Goebel
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.,Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Emerson Krock
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Clive Gentry
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Mathilde R Israel
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nisha Vastani
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Margot Maurer
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Ulku Cuhadar
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Serena Sensi
- Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yuki Nomura
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joana Menezes
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Azar Baharpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Louisa Brieskorn
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stockholm Spine Center, Upplands Väsby, Sweden
| | - Lisbet Haglund
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Stuart Bevan
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David A Andersson
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, London, United Kingdom
| |
Collapse
|
62
|
Souza-Silva E, Ascenso R, Tonussi CR, da Silva-Santos JE. Detection of blood flow perfusion and post - occlusive reactive hyperemia in the skeletal muscle of rats. Life Sci 2021; 278:119571. [PMID: 33961851 DOI: 10.1016/j.lfs.2021.119571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS Post-occlusive reactive hyperemia (PORH) remains poorly understood in the skeletal muscle system. This study was designed to validate an alternative strategy of PORH detection in rodents. Additionally, we explored the hypothesis that PORH is influenced by experimental models associated with impaired function of the skeletal muscle. MATERIALS AND METHODS Wistar rats were anesthetized, and blood flow was assessed by laser Doppler in the anterior tibialis muscle, before and immediately after 5 s, 30 s, 3 min, or 5 min of flow occlusion, obtained through a cuff inflated to 300 mmHg around the thigh of the animals. KEY FINDINGS In healthy animals, deflating the cuff resulted in a fast increment of local blood flow, characterizing the PORH after 5 s to 5 min of cuff occlusion and its dependence on flow occlusion duration. Importantly, we found different profiles of PORH in animals pretreated with reserpine (accelerated peak and reduced half recovery time), streptozotocin (increased peak), or subjected to muscle contraction in stretching (delayed peak), approaches used as experimental models to study fibromyalgia, type II diabetes mellitus, and soreness induced by unaccustomed eccentric exercise, respectively. SIGNIFICANCE We demonstrated that the profile of PORH in the anterior tibialis muscle of rats is sensitive to a variety of experimental models often associated with the skeletal muscle functionality, providing a useful strategy to explore how and whether changes in local regulation of blood flow can contribute to the development of skeletal muscle associated symptoms in clinically relevant conditions.
Collapse
Affiliation(s)
- Eduardo Souza-Silva
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil; Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| | - Ruy Ascenso
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - Carlos Rogério Tonussi
- Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
63
|
Ferrarini EG, Gonçalves ECD, Ferrareis Menegasso J, Rabelo BD, Felipetti FA, Dutra RC. Exercise Reduces Pain and Deleterious Histological Effects in Fibromyalgia-like Model. Neuroscience 2021; 465:46-59. [PMID: 33945796 DOI: 10.1016/j.neuroscience.2021.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Fibromyalgia (FM) is characterized by chronic pain and associated comorbidities such as fatigue, anxiety, depression, and sleep disorders. There is a large amount of evidence regarding the benefits of physical exercise in controlling chronic pain. However, there is no consensus on which exercise modality is most suitable and the real benefits of this intervention to treat FM symptoms. The present study investigated the analgesic and antidepressant effects and morphophysiological responses induced by different physical exercise (aerobic and strength protocols) during the experimental model of FM. Spontaneous pain, mechanical hyperalgesia, thermal allodynia, depression-related behavior, and locomotor activity were evaluated weekly, as well as the morphological evaluation of the spinal cord and dorsal root ganglion. Aerobic and strength training protocols consistently abolished nociceptive behaviors, reducing spontaneous pain scores, cold allodynia, and frequency of response to mechanical hyperalgesia. The strength exercise modulated the depressive-like behavior. Finally, our data demonstrated that physical exercise performed for two weeks increased the number of glial cells in the dorsal root horn. However, it was not sufficient to control the other deleterious effects of the reserpine model on the spinal cord and the dorsal root. Together, these results demonstrated that different physical exercise modalities, when performed regularly in mice, proved to be effective and safe non-pharmacological alternatives for the treatment of FM. However, some gaps have yet to be studied regarding the neuroadaptive effects of physical exercise.
Collapse
Affiliation(s)
- Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Bruna Daniel Rabelo
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
64
|
Sałat K, Furgała-Wojas A. Serotonergic Neurotransmission System Modulator, Vortioxetine, and Dopaminergic D 2/D 3 Receptor Agonist, Ropinirole, Attenuate Fibromyalgia-Like Symptoms in Mice. Molecules 2021; 26:molecules26082398. [PMID: 33924258 PMCID: PMC8074757 DOI: 10.3390/molecules26082398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Fibromyalgia is a disease characterized by lowered pain threshold, mood disorders, and decreased muscular strength. It results from a complex dysfunction of the nervous system and due to unknown etiology, its diagnosis, treatment, and prevention are a serious challenge for contemporary medicine. Impaired serotonergic and dopaminergic neurotransmission are regarded as key factors contributing to fibromyalgia. The present research assessed the effect of serotonergic and dopaminergic system modulators (vortioxetine and ropinirole, respectively) on the pain threshold, depressive-like behavior, anxiety, and motor functions of mice with fibromyalgia-like symptoms induced by subcutaneous reserpine (0.25 mg/kg). By depleting serotonin and dopamine in the mouse brain, reserpine induced symptoms of human fibromyalgia. Intraperitoneal administration of vortioxetine and ropinirole at the dose of 10 mg/kg alleviated tactile allodynia. At 5 and 10 mg/kg ropinirole showed antidepressant-like properties, while vortioxetine had anxiolytic-like properties. None of these drugs influenced muscle strength but reserpine reduced locomotor activity of mice. Concluding, in the mouse model of fibromyalgia vortioxetine and ropinirole markedly reduced pain. These drugs affected emotional processes of mice in a distinct manner. Hence, these two repurposed drugs should be considered as potential drug candidates for fibromyalgia. The selection of a specific drug should depend on patient’s key symptoms.
Collapse
|
65
|
Elkholy NS, Shafaa MW, Mohammed HS. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166150. [PMID: 33892079 DOI: 10.1016/j.bbadis.2021.166150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022]
Abstract
The present study investigated the efficacy of cationic liposome-encapsulated carotenoids (lutein or beta-carotene) as a treatment in an animal model of fibromyalgia (FM). Preparation and characterization of the nano-sized cationic liposomal carotenoids have been carried out. FM has been induced in the experimental animals via successive subcutaneous reserpine injection (1 mg/kg). Animals were divided into four groups; control, reserpinized (Res), reserpinized and cationic liposomal lutein-treated (Res + CL-Lut), and reserpinized and liposomal beta-carotene-treated (Res + CL-Bc). Levels of norepinephrine (NE), dopamine (DA), and serotonin (5-HT), and oxidative stress markers (MDA, H2O2, NO, and GSH) were determined in the brain's cortical tissue of the different groups of animals. Furthermore, the spectral analysis of the electrocorticogram (ECoG) was carried out. Animal behavior was tested for different animal groups. Results showed a significant reduction in monoamines, an elevation of oxidative stress markers, a shift in the ECoG frequency band power, and a change in pain threshold of the reserpinized animals. A return to a non-significant difference from the control values of all the measured parameters has been obtained after two weeks of cationic liposomal carotenoid preparations treatment. The present findings shed more light on the validity of the reserpine model of FM and provide evidence for the antidepressant, antioxidant, and anti-nociceptive potential of the cationic liposomal carotenoids. The present results proofed that the natural product preparations on a nano-sized scale could be a good alternative to the pharmacological interventions for FM treatment.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
66
|
Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia. Toxicon 2021; 195:104-110. [PMID: 33753115 DOI: 10.1016/j.toxicon.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023]
Abstract
This study investigated the effects of intravenous (iv) administration of recombinant Phα1β toxin, pregabalin, and diclofenac by the intrathecal route using an animal model fibromyalgia (FM). The reserpine administration (0.25 mg/kg s. c) once daily for three consecutive days significantly induced hyperalgesia, immobility time, and sucrose consumption in mice on the 4th day. Reserpine caused hyperalgesia on the mechanical and thermal hyperalgesia on the 4th day was reverted by recombinant Phα1β (0.2 mg/kg iv) and pregabalin (1.25 μmol/site i. t) treatments. In contrast, diclofenac (215 nmol/site i. t) was ineffective. Recombinant Phα1β toxin, pregabalin, and diclofenac did not affect the depressive-like behavioural effect induced by reserpine on mice during the forced swim and sucrose consumption tests. The data confirmed the analgesic effect of the recombinant Phα1β toxin administered intravenously in a fibromyalgia mouse model.
Collapse
|
67
|
Singh L, Kaur A, Singh AP, Bhatti R. Daphnetin, a natural coumarin averts reserpine-induced fibromyalgia in mice: modulation of MAO-A. Exp Brain Res 2021; 239:1451-1463. [PMID: 33677656 DOI: 10.1007/s00221-021-06064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia is a common, chronic, and generalized pain syndrome that is often associated with comorbid depression. The etiology of fibromyalgia is complex; most researchers have documented that the hallmark symptoms are due to the central nervous system's abnormal functioning. Neurotransmitters such as serotonin, norepinephrine, and glutamate, have been reported to be key regulators of fibromyalgia syndrome. Daphnetin is a 7, 8 dihydroxy coumarin widely distributed in Thymelaeaceae family plants, possessing various activities such as anti-arthritic, anti-tumor, anti-malarial, and anti-parasitic. The present study was designed to explore the potential of daphnetin against reserpine-induced fibromyalgia in mice. In mice, a fibromyalgia-like state was achieved by injecting reserpine (0.5 mg/kg, s.c) continuously for 3 days. All behavioral tests were conducted on the 4th and 6th day of experimentation. Reserpine administration significantly increased the mechanical hypersensitivity in electronic von Frey (eVF) and pressure application measurement (PAM) tests. It also increased the immobility period and time to reach the platform in force swim test (FST) and Morris water maze (MWM) test, respectively. In the biochemical analysis, reserpine treatment upregulated the monoamine oxidase-A (MAO-A) activity and level of glutamate, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and thiobarbituric acid reactive substances (TBARS). Whereas, it decreased the level of glutathione (GSH), dopamine, serotonin, and norepinephrine. Daphnetin pretreatment attenuated the behavioral and biochemical changes induced by reserpine. Thus, the current investigation results delineate that daphnetin might exert its protective effect by inhibiting inflammatory stress and MAO-A-mediated neurotransmitter depletion and oxidative stress.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
68
|
Prevalence and characteristics of cutaneous allodynia in probable migraine. Sci Rep 2021; 11:2467. [PMID: 33510340 PMCID: PMC7844001 DOI: 10.1038/s41598-021-82080-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cutaneous allodynia (CA) is a pain in response to non-nociceptive stimulation and a marker of central sensitisation. Probable migraine (PM) is a migraine subtype that fulfils all but one criterion of migraine. Headache intensity and the disability of individuals with PM are similar or lower than individuals with migraine. This study compared CA prevalence and characteristics of PM and migraine using a nationally representative sample in Korea. The Allodynia Symptom Checklist-12 (ASC-12) was used to assess CA (ASC-12 score ≥ 3). PM and migraine prevalence were 11.6% and 5.0%, respectively. CA prevalence did not significantly differ between PM and migraine (14.5% vs. 16.0%, p = 0.701). Participants with PM with CA reported a higher monthly headache frequency (3.3 ± 4.3 vs. 1.8 ± 3.6, p = 0.044), more severe headache intensity (Visuals Analogue Scale, 6.0 [4.0–7.0] vs. 5.0 [3.0–6.0], p = 0.002), and higher impact of headache (Headache Impact Test-6, 56.3 ± 7.2 vs. 48.3 ± 8.0, p < 0.001) than those without CA. Multiple regression analyses revealed that headache frequency and intensity, anxiety, and depression were significant factors for CA in participants with PM. In conclusion, CA prevalence among participants with PM and migraine were comparable. Anxiety, depression, and headache frequency and intensity were significant factors for CA in participants with PM.
Collapse
|
69
|
Takeshita N, Oe T, Kiso T, Kakimoto S. A K Ca3.1 Channel Opener, ASP0819, Modulates Nociceptive Signal Processing from Peripheral Nerves in Fibromyalgia-Like Pain in Rats. J Pain Res 2021; 14:23-34. [PMID: 33469353 PMCID: PMC7811477 DOI: 10.2147/jpr.s274563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Although abnormal peripheral and central pain processing has been observed in fibromyalgia (FM) patients, the biomechanics and pathophysiology, surrounding the peripheral mechanism are not well understood. An intermediate conductance channel, KCa3.1, is expressed in peripheral sensory nerve fibers where it maintains the resting membrane potential and controls nerve firing, making it a plausible target for peripheral therapeutic interventions. ASP0819, a KCa3.1 channel opener, is an orally available molecular entity and is used in this investigation to elucidate the role of KCa3.1 in signal processing of pain in FM. Methods Human or rat KCa3.1 channel-expressing cells were used for evaluating the main action of the compound. Effects of the compound on withdrawal behavior by mechanical stimulation were examined in reserpine-induced myalgia (RIM) and vagotomy-induced myalgia (VIM) models of rats. In addition, in vivo electrophysiological analysis was performed to examine the peripheral mechanisms of action of the compound. Other pain models were also examined. Results ASP0819 increased the negative membrane potential in a concentration-dependent manner. Oral administration of ASP0819 significantly recovered the decrease in muscle pressure threshold in rat FM models of RIM and VIM. The in vivo electrophysiological experiments showed that Aδ- and C-fibers innervating the leg muscles in the RIM model demonstrated increased spontaneous and mechanically evoked firing compared with normal rats. Intravenous infusion of ASP0819 significantly reduced both the spontaneous activity and mechanically evoked responses in Aδ-fibers in the rat RIM model. ASP0819 significantly reduced the number of abdominal contractions as an indicator of abdominal pain behaviors in the rat visceral extension model and withdrawal responses in the osteoarthritis model, respectively. Conclusion These findings suggest that ASP0819 may be a promising analgesic agent with the ability to modulate peripheral pain signal transmission. Its use in the treatment of several pain conditions should be explored, chief amongst these being FM pain.
Collapse
Affiliation(s)
| | - Tomoya Oe
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Tetsuo Kiso
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | |
Collapse
|
70
|
Ueda H, Dozono N, Tanaka K, Kaneko S, Neyama H, Uchida H. Allodynia by Splenocytes From Mice With Acid-Induced Fibromyalgia-Like Generalized Pain and Its Sexual Dimorphic Regulation by Brain Microglia. Front Neurosci 2021; 14:600166. [PMID: 33424538 PMCID: PMC7785978 DOI: 10.3389/fnins.2020.600166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Fibromyalgia (FM), a disease of unknown etiology characterized by chronic generalized pain, is partly recapitulated in an animal model induced by repeated acid saline injections into the gastrocnemius muscle. Here, we attempted to investigate the sex difference in pain hypersensitivity (mechanical allodynia and hypersensitivity to electrical stimulation) in the repeated acid saline-induced FM-like generalized pain (AcGP) model. The first unilateral acid injection into gastrocnemius muscle at day 0/D0 and second injection at D5 (post day 0, P0) induced transient and long-lasting mechanical allodynia, respectively, on both sides of male and female mice. The pretreatment with gonadectomy did not affect the first injection-induced allodynia in both sexes, but gradually reversed the second injection-induced allodynia in male but not female mice. Moreover, the AcGP in male mice was abolished by intracerebroventricular minocycline treatments during D4–P4 or P5–P11, but not by early treatments during D0–D5 in male but not female mice, suggesting that brain microglia are required for AcGP in late-onset and sex-dependent manners. We also found that the intravenous treatments of splenocytes derived from male but not female mice treated with AcGP caused allodynia in naive mice. In addition, the purified CD4+ T cells derived from splenocytes of acid-treated male mice retained the ability to cause allodynia in naive mice. These findings suggest that FM-like AcGP has multiple sexual dimorphic mechanisms.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Naoki Dozono
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Keigo Tanaka
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hitoshi Uchida
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
71
|
Arnold LM, Blauwet MB, Tracy K, Cai N, Walzer M, Blahunka P, Marek GJ. Efficacy and Safety of ASP0819 in Patients with Fibromyalgia: Results of a Proof-of-Concept, Randomized, Double-Blind, Placebo-Controlled Trial. J Pain Res 2020; 13:3355-3369. [PMID: 33328761 PMCID: PMC7735791 DOI: 10.2147/jpr.s274562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE ASP0819 is a novel, non-opioid KCa3.1 channel opener that reverses abnormal nerve firing of primary sensory afferent nerves. Currently available treatments for fibromyalgia provide only modest relief and are accompanied by a host of adverse side effects. PATIENTS AND METHODS In this phase 2a, double-blind trial (NCT03056690), adults meeting fibromyalgia diagnostic criteria were randomized 1:1 to receive either 15 mg/day of oral ASP0819 (n=91) or placebo (n=95). The primary endpoint was the change from baseline to Week 8 in the mean daily average pain score. Changes in the Fibromyalgia Impact Questionnaire Revised (FIQR) symptoms, function, and overall impact subscales, as well as changes in the patients' global impression of change, were secondary endpoints; treatment effects on FIQR total score and impact on sleep were exploratory analyses. RESULTS There was no statistically significant difference between ASP0819 and placebo for the primary endpoint (P=0.086); however, ASP0819 versus placebo significantly improved daily average pain at Weeks 2, 6, and 7 (all P<0.05). Numerical improvements were observed on the FIQR total score and several sleep items showed statistically significant improvements with ASP0819 versus placebo. There were no major safety concerns with ASP0819. Headache was the most common treatment-emergent adverse event (TEAE) occurring in both study arms; most TEAEs were mild or moderate in severity and no TEAEs suggestive of potential drug abuse were observed, as assessed by TEAE reporting and/or safety evaluations. Withdrawal effects also were not observed. CONCLUSION ASP0819 demonstrated some signals suggestive of efficacy and had a good tolerability profile in patients with fibromyalgia. Further studies are required to determine if ASP0819 can be a novel non-opioid treatment option in this patient group. CLINICALTRIALSGOV REGISTRATION NCT03056690.
Collapse
Affiliation(s)
- Leslie M Arnold
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Katherine Tracy
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - Na Cai
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - Mark Walzer
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - Paul Blahunka
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - Gerard J Marek
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| |
Collapse
|
72
|
El-Marasy SA, El Awdan SA, Hassan A, Ahmed-Farid OA, Ogaly HA. Anti-depressant effect of cerebrolysin in reserpine-induced depression in rats: Behavioral, biochemical, molecular and immunohistochemical evidence. Chem Biol Interact 2020; 334:109329. [PMID: 33279466 DOI: 10.1016/j.cbi.2020.109329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Depression is a major psychological disorder that contributes to global health problem. This study aimed to evaluate the anti-depressant effect of Cerebrolysin (CBL) in Reserpine-induced depressed rats, its effect on oxidative stress, inflammation, regulatory cyclic AMP-dependent response element binding protein (CREB)/brain derived neurotropic factor (BDNF) signaling pathways, brain monoamines and histopathological changes was assessed. Rats received either the vehicle or Reserpine (0.5 mg/kg, i.p.) for 14 days. The other three groups were pretreated with CBL (2.5, 5 ml/kg; i.p.) or fluoxetine (FLU) (5 mg/kg, p.o.), respectively for 14 days, 30 min before reserpine injection. Then analyses were conducted. CBL reversed Reserpine-induced reduction in latency to immobility and prolongation of immobility time in the forced swimming test (FST), reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced tumor necrosis factor-alpha (TNF-ɑ), and elevated BDNF cortical and hippocampal brain contents. CBL elevated protein kinase A (PKA) and nuclear factor kappa-B (NF-κB) cortical and hippocampal protein expressions. CBL also ameliorated alterations in mRNA expressions of protein kinase B (AKT), CREB and BDNF in the cortical and hippocampal tissues. CBL elevated nor-epinephrine (NE), serotonin (5-HT), and dopamine (DA) and reduced 5-Hydroxyindoleacetic acid (5-HTAA), 3,4-Dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) cortical and hippocampal contents. CBL effects were in parallel to those observed with the standard anti-depressant drug, FLU. This study shows that CBL exerted anti-depressant effect evidenced by attenuation of oxidative stress and inflammation as well as enhancement of neurogenesis, amelioration of monoaminergic system and histopathological changes.
Collapse
Affiliation(s)
| | - Sally A El Awdan
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
73
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
74
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
75
|
Hendrix J, Nijs J, Ickmans K, Godderis L, Ghosh M, Polli A. The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants (Basel) 2020; 9:E1166. [PMID: 33238564 PMCID: PMC7700330 DOI: 10.3390/antiox9111166] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.
Collapse
Affiliation(s)
- Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Unit of Physiotherapy, Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- University of Gothenburg Center for Person-Centred Care (GPCC), Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kelly Ickmans
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- External Service for Prevention and Protection at Work (IDEWE), 3001 Heverlee, Belgium
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| |
Collapse
|
76
|
Nakata T, Doi A, Uta D, Shin MC, Yoshimura M. Free gait in a shallow pool accelerates recovery after exercise in model mice with fibromyalgia. J Exerc Rehabil 2020; 16:398-409. [PMID: 33178641 PMCID: PMC7609855 DOI: 10.12965/jer.2040672.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022] Open
Abstract
This study aimed to determine the effect of pool gait exercise using fibromyalgia-induced model mice. The sensory threshold, locomotive behavior, electrocardiogram, and onset time after the gait test in shallow water using male C57BL/6J mice (weight, 30–35 g; n=21) were investigated. To induce fibromyalgia in model mice, reserpine was injected intraperitoneally into wild-type mice once a day for 3 days. Subsequently, the fibromyalgia-induced model mice were randomly classified into two groups as follows: the control group (n=11) and the pool gait group (n=10). The mice in the pool gait group walked in the same cage containing shallow warm water 5 times per week. Both groups underwent sensory thresholds and video recordings to determine locomotive behaviors weekly. Further, both heart rate and video recordings for observation of a recovery after the gait test in shallow water were undertaken (control group; n=5, pool gait group; n=5). The pool gait did not affect sensory thresholds and locomotive behavior; however, in the pool gait group, both the recovery after the test, such as onset time and gait distance, were considerably better than those of the control group. Furthermore, changes in heart rate and heart rate irregularity after the test were more apparent in the control group than in the pool gait group. The free gait in a shallow pool accelerated recovery after exercise, unlike the sensory threshold.
Collapse
Affiliation(s)
- Taiki Nakata
- Department of Rehabilitation, Kumamoto-Saiseikai Hospital, Kumamoto, Japan.,Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Atsushi Doi
- Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan.,Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Min-Chul Shin
- Graduate School of Health Science, Kumamoto Health Science University, Kumamoto, Japan.,Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Megumu Yoshimura
- Department of Orthopedic Surgery, Nakamura Hospital, Fukuoka, Japan
| |
Collapse
|
77
|
Ren K. Grand Challenges in Musculoskeletal Pain Research: Chronicity, Comorbidity, Immune Regulation, Sex Differences, Diagnosis, and Treatment Opportunities. FRONTIERS IN PAIN RESEARCH 2020; 1. [PMID: 34296207 PMCID: PMC8294784 DOI: 10.3389/fpain.2020.575479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States.,Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
78
|
Kaur A, Singh N, Bhatti MS, Bhatti R. Optimization of extraction conditions of Angelica archangelica extract and activity evaluation in experimental fibromyalgia. J Food Sci 2020; 85:3700-3710. [PMID: 33047814 DOI: 10.1111/1750-3841.15476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
Abstract
The plant Angelica archangelica, owing to its magnificent therapeutic effectiveness in folklore medicine system, has been regarded as an "angel plant." The current investigation was aimed to optimize extraction conditions of A. archangelica roots and to investigate in vivo role of optimized extract in fibromyalgia. Plant material (dried roots) was subjected to methanol extraction at variable temperature (40 to 60 °C) and time (12 to 36 hr) conditions as per two-factorial design strategy, and responses in terms of antioxidant activity were determined. The optimized extraction conditions were found to be temperature of 60 °C and time of 36 hr. HPLC fingerprinting indicated the presence of coumarins in extract. To induce fibromyalgia, the mice were administered reserpine at a dose of 0.5 mg/kg. Mice were orally treated with 100, 200, and 400 mg/kg extract, and magnitude of fibromyalgia was quantified. In comparison to reserpine group, the extract treatment attenuated pain as shown by significant increase in paw withdrawal threshold against mechanical stimuli (P < 0.05), improved motor ability indicated by increase in fall-off time in inclined plane test (P < 0.05), improved locomotion indicated by increased square crossings in open field test (P < 0.05), and improved cognition as shown by significant reduction in time to reach platform in Morris water maze test and passive avoidance task test (P < 0.05). Extract treatment significantly halted reserpine-induced rise in serum cytokine level (P < 0.05) and brain oxidative stress (P < 0.05). Angelica archangelica extract exerted its beneficial effects in fibromyalgia possibly through the attenuation of oxidative stress-mediated inflammatory cascade. PRACTICAL APPLICATION: Leads from natural products have become an integral part of drug designing processes and have high acceptability due to their better tolerance. The optimization of extraction conditions of plant yields better results and could reduce the processing time, thus increasing its industrial value.
Collapse
Affiliation(s)
- Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Manpreet Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
79
|
Neyama H, Dozono N, Uchida H, Ueda H. Mirtazapine, an α2 Antagonist-Type Antidepressant, Reverses Pain and Lack of Morphine Analgesia in Fibromyalgia-Like Mouse Models. J Pharmacol Exp Ther 2020; 375:1-9. [PMID: 32665319 DOI: 10.1124/jpet.120.265942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Treatment of fibromyalgia is an unmet medical need; however, its pathogenesis is still poorly understood. In a series of studies, we have demonstrated that some pharmacological treatments reverse generalized chronic pain but do not affect the lack of morphine analgesia in the intermittent cold stress (ICS)-induced fibromyalgia-like pain model in mice. Here we report that repeated intraperitoneal treatments with mirtazapine, which is presumed to disinhibit 5-hydroxytriptamine (5-HT) release and activate 5-HT1 receptor through mechanisms of blocking presynaptic adrenergic α2 and postsynaptic 5-HT2 and 5-HT3 receptors, completely reversed the chronic pain for more than 4 to 5 days after the cessation of treatments. The repeated mirtazapine treatments also recovered the morphine analgesia after the return of nociceptive threshold to the normal level. The microinjection of small interfering RNA (siRNA) adrenergic α2a receptor (ADRA2A) into the habenula, which showed a selective upregulation of α2 receptor gene expression after ICS, reversed the hyperalgesia but did not recover the morphine analgesia. However, both reversal of hyperalgesia and recovery of morphine analgesia were observed when siRNA ADRA2A was administered intracerebroventricularly. As the habenular is reported to be involved in the emotion/reward-related pain and hypoalgesia, these results suggest that mirtazapine could attenuate pain and/or augment hypoalgesia by blocking the habenular α2 receptor after ICS. The recovery of morphine analgesia in the ICS model, on the other hand, seems to be mediated through a blockade of α2 receptor in unidentified brain regions. SIGNIFICANCE STATEMENT: This study reports possible mechanisms underlying the complete reversal of hyperalgesia and recovery of morphine analgesia by mirtazapine, a unique antidepressant with adrenergic α2 and serotonergic receptor antagonist properties, in a type of intermittently repeated stress (ICS)-induced fibromyalgia-like pain model. Habenula, a brain region which is related to the control of emotional pain, was found to play key roles in the antihyperalgesia, whereas other brain regions appeared to be involved in the recovery of morphine analgesia in the ICS model.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Dozono
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hitoshi Uchida
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
80
|
Nakata T, Doi A, Uta D, Yoshimura M, Shin MC. Excessive exercise induces cardiac arrhythmia in a young fibromyalgia mouse model. PLoS One 2020; 15:e0239473. [PMID: 32997682 PMCID: PMC7526895 DOI: 10.1371/journal.pone.0239473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Background Fibromyalgia patients experience cardiovascular complications in addition to musculoskeletal pain. This study aimed to investigate the cardiac effects of a prolonged shallow water gait in a fibromyalgia-induced young mouse model. Methods To produce a fibromyalgia mouse model, wild-type mice were administered an intraperitoneal injection of reserpine once a day for three days, and two primary experiments were performed. First, three types of gait tests were performed before and after the reserpine injections as follows: (i) 5 minutes of free gait outside the water, (ii) 1 minute of free gait in shallow warm water, and (iii) 5 minutes of free gait in shallow warm water. Second, electrocardiogram recordings were taken before and after the three gait tests. The average heart rate and heart rate irregularity scores were analyzed. Results Exercise-induced cardiac arrhythmia was observed at 1-minute gait in shallow water during the acute stage of induced FM in young mice. Further, both cardiac arrhythmia and a decrease in HR have occurred at 5-minute gait in shallow water at the same mice. However, this phenomenon was not observed in the wild-type mice under any test conditions. Conclusion Although a short-term free gait in shallow warm water may be advantageous for increasing the motor activity of FM-model mice, we should be aware of the risk of prolonged and excessive exercise-induced cardiac arrhythmia. For gait exercises in shallow water as a treatment in FM patients. We suggest a gradual increase in exercise duration may be warranted.
Collapse
Affiliation(s)
- Taiki Nakata
- Department of Rehabilitation, Kumamoto-Saiseikai Hospital, Kumamoto, Japan
- Graduate school of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Atsushi Doi
- Graduate school of Health Science, Kumamoto Health Science University, Kumamoto, Japan
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
- * E-mail:
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama
| | - Megumu Yoshimura
- Department of Orthopedic Surgery, Nakamura Hospital, Fukuoka, Japan
| | - Min-Chul Shin
- Graduate school of Health Science, Kumamoto Health Science University, Kumamoto, Japan
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
81
|
Kiso T, Watabiki T, Sekizawa T. ASP8477, a fatty acid amide hydrolase inhibitor, exerts analgesic effects in rat models of neuropathic and dysfunctional pain. Eur J Pharmacol 2020; 881:173194. [DOI: 10.1016/j.ejphar.2020.173194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
|
82
|
Brum EDS, Fialho MFP, Fischer SPM, Hartmann DD, Gonçalves DF, Scussel R, Machado-de-Ávila RA, Dalla Corte CL, Soares FAA, Oliveira SM. Relevance of Mitochondrial Dysfunction in the Reserpine-Induced Experimental Fibromyalgia Model. Mol Neurobiol 2020; 57:4202-4217. [PMID: 32685997 DOI: 10.1007/s12035-020-01996-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
Fibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines. However, it is unclear whether reserpine causes other pathophysiologic characteristics of FM. So far, no one has investigated the relevance of mitochondrial dysfunction in the reserpine-induced experimental FM model using protection- and insult-based mitochondrial modulators. Reserpine (1 mg/kg) was subcutaneously injected once daily for three consecutive days in male Swiss mice. We carried out analyses of reserpine-induced FM-related symptoms, and their modulation by using mitochondrial insult on ATP synthesis (oligomycin; 1 mg/kg, intraperitoneally) or mitochondrial protection (coenzyme Q10; 150 mg/kg/5 days, orally). We also evaluated the effect of reserpine on mitochondrial function using high-resolution respirometry and oxidative status. Reserpine caused nociception, loss in muscle strength, and anxiety- and depressive-like behaviours in mice that were consistent with clinical symptoms of FM, without inducing body weight and temperature alterations or motor impairment. Reserpine-induced FM-related symptoms were increased by oligomycin and reduced by coenzyme Q10 treatment. Reserpine caused mitochondrial dysfunction by negatively modulating the electron transport system and mitochondrial respiration (ATP synthesis) mainly in oxidative muscles and the spinal cord. These results support the role of mitochondria in mediating oxidative stress and FM symptoms in this model. In this way, reserpine-inducing mitochondrial dysfunction and increased production of ROI contribute to the development and maintenance of nociceptive, fatigue, and depressive-like behaviours.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Susana Paula Moreira Fischer
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Diane Duarte Hartmann
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Débora Farina Gonçalves
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciúma, SC, Brazil
| | | | - Cristiane Lenz Dalla Corte
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil. .,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
83
|
Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. J Comp Neurol 2020; 528:1367-1391. [DOI: 10.1002/cne.24829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
|
84
|
Coutens B, Derreumaux C, Labaste F, Minville V, Guiard BP, Moulédous L, Bounes V, Roussin A, Frances B. Efficacy of multimodal analgesic treatment of severe traumatic acute pain in mice pretreated with chronic high dose of buprenorphine inducing mechanical allodynia. Eur J Pharmacol 2020; 875:172884. [PMID: 31870829 DOI: 10.1016/j.ejphar.2019.172884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Managing severe acute nociceptive pain in buprenorphine-maintained individuals for opioid use disorder management is challenging owing to the high affinity and very slow dissociation of buprenorphine from μ-opioid receptors that hinders the use of full agonist opioid analgesics. In a translational approach, the aim of this study was to use an animal setting to investigate the effects of a chronic high dose of buprenorphine treatment on nociceptive thresholds before and after applying a severe acute nociceptive traumatic surgery stimulus and to screen postoperative pharmacological analgesic strategies. A chronic treatment of mice with a high dose of buprenorphine (BUP HD, 2 × 200 μg/kg/day; i.p.) revealed significant mechanical allodynia. One and two days after having discontinued buprenorphine administration and having induced a severe nociceptive acute pain by a closed tibial fracture, acute administration of morphine at a dose which has analgesic effects in absence of pretreatment (4.5 mg/kg; i.p.), was ineffective to reduce pain in the BUP HD group. However, mimicking multimodal analgesia strategy used in human postoperative context, the combination of morphine (administered at the same dose) with a NMDA receptor antagonist (ketamine) or an NSAID (ketoprofen) produced antinociceptive responses in these animals. The mouse model of closed tibial fracture could be useful to identify analgesic strategies of postoperative pain for patients with chronic exposure to opioids and suffering from hyperalgesia.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Céline Derreumaux
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - François Labaste
- Hôpital de Rangueil, Centre Hospitalier Universitaire de Toulouse-Rangueil, 31300, Toulouse, France
| | - Vincent Minville
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Bruno Pierre Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France.
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Vincent Bounes
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Anne Roussin
- Equipe de Pharmacoépidémiologie UMR1027, Université Paul Sabatier Toulouse III, 31000, Toulouse, France; Centre d'Addictovigilance, Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire de Toulouse-Purpan, 31000, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| |
Collapse
|
85
|
Anxiolytic-like effects of mirogabalin, a novel ligand for α2δ ligand of voltage-gated calcium channels, in rats repeatedly injected with acidic saline intramuscularly, as an experimental model of fibromyalgia. Pharmacol Rep 2020; 72:571-579. [DOI: 10.1007/s43440-020-00103-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
|
86
|
Neyama H, Dozono N, Ueda H. NR2A-NMDA Receptor Blockade Reverses the Lack of Morphine Analgesia Without Affecting Chronic Pain Status in a Fibromyalgia-Like Mouse Model. J Pharmacol Exp Ther 2020; 373:103-112. [PMID: 31941720 DOI: 10.1124/jpet.119.262642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 03/08/2025] Open
Abstract
We have developed an experimental fibromyalgia-like mouse model using intermittent cold stress (ICS), where chronic pain is generalized, female predominant, and abolished in type 1 lysophosphatidic acid receptor-knockout (LPA1 -/-) mice but is not reversed by systemic or brain treatment with morphine. We investigated two issues in the present study: (1) whether chronic pain mechanisms and lack of brain morphine analgesia are associated in the ICS model and (2) what mechanisms are involved in the lack of morphine analgesia. ICS-induced hyperalgesia was not affected in μ-opioid receptor-knockout (MOPr -/-) mice, whereas the lack of brain morphine analgesia remained unchanged in LPA1 -/- mice, which completely abolished the hyperalgesia in the ICS model. In contrast, the lack of morphine analgesia was abolished in NR2A-NMDA receptor-knockout (NR2A -/- ) mice and blocked by intracerebroventricular (i.c.v.) injection of (R)-CPP, an NR2A antagonist, or by microinjection of siRNA NR2A into the periaqueductal gray matter region, whereas no change was observed with Ro 04-5595, an NMDA receptor subtype 2B antagonist (i.c.v.). The lack of morphine analgesia was also reversed by concomitant treatment with 1 mg/kg intraperitoneal (i.p.) of dextromethorphan, which possesses NMDA receptor antagonist activity but no analgesic activity. Finally, the hyperalgesia was completely reversed by methadone, which possesses both MOPr agonist and NMDA receptor antagonist activity. Indeed, methadone analgesia was abolished in MOPr -/- mice. These results suggest that chronic pain status and lack of morphine analgesia are independent of each other, and that lack of morphine analgesia is mediated by activation of the NR2A-NMDA receptor system. SIGNIFICANCE STATEMENT: This study reports that a type of intermittently repeated stress causes widespread pain that does not respond to morphine. Because this lack of morphine analgesia is not affected in mice, in which chronic pain is abolished, the mechanisms underlying chronic pain and lack of morphine analgesia are independent of each other. Through speculation that a lack of morphine analgesia may be a secondary event to endogenous opioid analgesic tolerance, the authors demonstrate that an antiopioid N-methyl-D-aspartate receptor system counterbalances the μ-opioid receptor-mediated analgesic mechanisms in the intermittent cold stress model.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Dozono
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
87
|
Tanei S, Miwa M, Yoshida M, Miura R, Nagakura Y. The method simulating spontaneous pain in patients with nociplastic pain using rats with fibromyalgia-like condition. MethodsX 2020; 7:100826. [PMID: 32195142 PMCID: PMC7078388 DOI: 10.1016/j.mex.2020.100826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 11/15/2022] Open
Abstract
The method shown in this article simulates spontaneous pain in patients with nociplastic pain using rats; the measurement with this method could be related to better translation of analgesic efficacies of therapeutic compounds between rats and humans. Nociplastic pain occurs in various disorders including fibromyalgia. Because the pain in patients occurs without an external stimulus, we assessed spontaneous pain in rats. The grimace scale, a methodology for rating facial expression, has been used for measuring spontaneous pain in animals. However, the responses in animals have been rather short-lived, and the scale has never been applied to animals exhibiting nociplastic pain. Here, we apply the rat grimace scale (RGS) to the reserpine-induced fibromyalgia-like rat, which induces nociplastic pain. The ratings of the orbital tightening, nose/cheek flattening, and changes in characteristics of ears and whiskers by three raters, who were blinded to the treatment allocated to rats, demonstrated substantial, long-lasting change in facial expression of rats. In this article, reference images for raters, and sample images used for rater training are provided. All raters independently indicated that the RGS score is significantly elevated with this methodology in reserpine-induced fibromyalgia-like rats.•The grimace scale, a method for rating facial expression, is applied to the reserpine-induced fibromyalgia-like rat, which manifests nociplastic pain.•Facial expression change in the reserpine-induced fibromyalgia-like rat is substantial and long-lasting.•Elevation of the RGS score in the reserpine-induced fibromyalgia-like rat may simulate spontaneous pain in patients with nociplastic pain.
Collapse
Affiliation(s)
- Shigeharu Tanei
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan.,Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Machiko Miwa
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Miku Yoshida
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Reina Miura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan.,School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.,School of Pharmacy in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
| |
Collapse
|
88
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
89
|
Fischer SPM, Brusco I, Brum ES, Fialho MFP, Camponogara C, Scussel R, Machado-de-Ávila RA, Trevisan G, Oliveira SM. Involvement of TRPV1 and the efficacy of α-spinasterol on experimental fibromyalgia symptoms in mice. Neurochem Int 2020; 134:104673. [PMID: 31926196 DOI: 10.1016/j.neuint.2020.104673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Fibromyalgia is characterised mainly by symptoms of chronic widespread pain and comorbidities like depression. Although these symptoms cause a notable impact on the patient's quality of life, the underlying aetiology and pathophysiology of this disease remain incompletely elucidated. The transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor that is involved in the development of nociceptive and depressive behaviours, while α-spinasterol, a multitarget TRPV1 antagonist and cyclooxygenase inhibitor, presents antinociceptive and antidepressant effects. The present study investigated the involvement of the TRPV1 channel and the possible effects of α-spinasterol on nociceptive and depressive-like behaviours in an experimental fibromyalgia model. The fibromyalgia model was induced with a subcutaneous (s.c.) injection of reserpine (1 mg/kg) once daily for 3 consecutive days in male Swiss mice. Reserpine administration depleted monoamines and caused mechanical allodynia. This dysfunction was inhibited by SB-366791 (1 mg/kg, oral route [p.o.]), a selective TRPV1 antagonist, with a maximum inhibition (Imax) of 73.4 ± 15.5%, or by the single or 3-day-repeated administration of α-spinasterol (0.3 mg/kg, p.o.), with an Imax of 72.8 ± 17.8% and 78.9 ± 32.9%, respectively. SB-366791 also inhibited the increase of the reserpine-induced immobility time, with an Imax of 100%, while α-spinasterol inhibited this parameter with an Imax of 98.2 ± 21.5% and 100%, by single or repeated administration, respectively. The reserpine-induced mechanical allodynia and the thermal hyperalgesia were abolished by TRPV1-positive fibers desensitization induced by previous resiniferatoxin (RTX) administration. In summary, the TRPV1 channel is involved in the development and maintenance of nociception and depressive-like behaviours in a fibromyalgia model, while the α-spinasterol has therapeutic potential to treat the pain and depression symptoms in fibromyalgia patients.
Collapse
Affiliation(s)
- Susana Paula Moreira Fischer
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extrem South Catarinense, Criciuma, SC, Brazil
| | | | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
90
|
Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther 2020; 205:107417. [DOI: 10.1016/j.pharmthera.2019.107417] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
91
|
Yao X, Li L, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp Ther Med 2019; 19:1343-1355. [PMID: 32010308 PMCID: PMC6966137 DOI: 10.3892/etm.2019.8328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fibromyalgia (FM) is a chronic complex musculoskeletal disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep disturbance, memory defects and mood changes. Fisetin, a plant flavonoid polyphenol, has been reported to possess potent antioxidant, antinociceptive and neuroprotective activities. The present study aimed to evaluate the efficacy of fisetin against reserpine-induced FM (RIF) in rats. RIF was induced in male Wistar rats (180–220 gm) using reserpine (1 mg/kg; subcutaneous; once daily for 3 consecutive days) and the rats were treated with fisetin (5, 10 and 25 mg/kg) for 21 days. Various behavioral, biochemical and molecular parameters were evaluated. Administration of reserpine induced allodynia, hyperalgesia and depression, which were significantly ameliorated (P<0.05) by fisetin (10 and 25 mg/kg), as reflected by an increase in paw and tail withdrawal latency, increased paw withdrawal threshold, and decreased immobility time. Reserpine led to decreased biogenic amine levels [5-hydroxytryptamine (5-HT), noradrenaline (NA) and dopamine (DA)] and increased the ratio to their metabolite 3,4-dihydroxyphenylacetic acid. 5-hydroxyindoleacetic acid in the spinal cord, thalamus and prefrontal cortex was significantly decreased (P<0.05) by fisetin. Immunohistological analysis of brain tissue revealed that fisetin significantly inhibited (P<0.05) reserpine-induced depletion of 5-HT. It also significantly inhibited (P<0.05) elevated oxido-nitrosative stress and reactive oxygen species (ROS) levels, as analyzed by flow cytometry in RIF rats. Fisetin exerts its antinociceptive and anti-depressive potential via modulation of decreased levels of biogenic amines (5-HT, NA and DA), elevated oxido-nitrosative stress and ROS to ameliorate allodynia, hyperalgesia, and depression in experimental RIF.
Collapse
Affiliation(s)
- Xianli Yao
- Department of Neurological Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Li Li
- Encephalopathy Department, The Traditional Chinese Medicine Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Anwesha A Mukherjee-Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India
| |
Collapse
|
92
|
Fusco R, Siracusa R, D’Amico R, Peritore AF, Cordaro M, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Melatonin Plus Folic Acid Treatment Ameliorates Reserpine-Induced Fibromyalgia: An Evaluation of Pain, Oxidative Stress, and Inflammation. Antioxidants (Basel) 2019; 8:antiox8120628. [PMID: 31817734 PMCID: PMC6943570 DOI: 10.3390/antiox8120628] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Fibromyalgia is a chronic condition characterized by increased sensory perception of pain, neuropathic/neurodegenerative modifications, oxidative, and nitrosative stress. An appropriate therapy is hard to find, and the currently used treatments are able to target only one of these aspects. Methods: The aim of this study is to investigate the beneficial effects of melatonin plus folic acid administration in a rat model of reserpine-induced fibromyalgia. Sprague–Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days and later administered with melatonin, folic acid, or both for twenty-one days. Results: Administration of reserpine led to a significant decrease in the nociceptive threshold as well as a significant increase in depressive-like symptoms. These behavioral changes were accompanied by increased oxidative and nitrosative stress. Lipid peroxidation was significantly increased, as well as nitrotyrosine and PARP expression, while superoxide dismutase, nonprotein thiols, and catalase were significantly decreased. Endogenously produced oxidants species are responsible for mast cell infiltration, increased expression pro-inflammatory mediators, and microglia activation. Conclusion: Melatonin plus acid folic administration is able to ameliorate the behavioral defects, oxidative and nitrosative stress, mast cell infiltration, inflammatory mediators overexpression, and microglia activation induced by reserpine injection with more efficacy than their separate administration.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-90-6765208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-90-6765208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| |
Collapse
|
93
|
Nagakura Y, Miwa M, Yoshida M, Miura R, Tanei S, Tsuji M, Takeda H. Spontaneous pain-associated facial expression and efficacy of clinically used drugs in the reserpine-induced rat model of fibromyalgia. Eur J Pharmacol 2019; 864:172716. [DOI: 10.1016/j.ejphar.2019.172716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
94
|
Murai N, Kondo Y, Akuzawa S, Mihara T, Shiraishi N, Kakimoto S, Matsumoto M. A novel GABAB receptor positive allosteric modulator, ASP8062, exerts analgesic effects in a rat model of fibromyalgia. Eur J Pharmacol 2019; 865:172750. [DOI: 10.1016/j.ejphar.2019.172750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
|
95
|
Brusco I, Justino AB, Silva CR, Fischer S, Cunha TM, Scussel R, Machado-de-Ávila RA, Ferreira J, Oliveira SM. Kinins and their B1 and B2 receptors are involved in fibromyalgia-like pain symptoms in mice. Biochem Pharmacol 2019; 168:119-132. [DOI: 10.1016/j.bcp.2019.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
96
|
A single administration of Neurotropin reduced the elongated immobility time in the forced swimming test of rats exposed to repeated cold stress. Behav Pharmacol 2019; 30:547-554. [DOI: 10.1097/fbp.0000000000000488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
De la Luz-Cuellar YE, Rodríguez-Palma EJ, Franco-Enzástiga Ú, Salinas-Abarca AB, Delgado-Lezama R, Granados-Soto V. Blockade of spinal α 5-GABA A receptors differentially reduces reserpine-induced fibromyalgia-type pain in female rats. Eur J Pharmacol 2019; 858:172443. [PMID: 31181208 DOI: 10.1016/j.ejphar.2019.172443] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/17/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
The role of spinal α5 subunit-containing GABAA (α5-GABAA) receptors in chronic pain is controversial. The purpose of this study was to investigate the participation of spinal α5-GABAA receptors in the reserpine-induced pain model. Reserpine administration induced tactile allodynia and muscle hyperalgesia in female and male rats. Intrathecal injection of L-655,708 and TB 21007 (7 days after the last reserpine injection) decreased tactile allodynia and, at a lesser extent, muscle hyperalgesia in female rats. The effects of these drugs produced a lower antiallodynic and antihyperalgesic effect in male than in female rats. Contrariwise, these drugs produced tactile allodynia and muscle hyperalgesia in naïve rats and these effects were lower in naïve male than female rats. Intrathecal L-838,417 prevented or reversed L-655,708-induced antiallodynia in reserpine-treated female rats. Repeated treatment with α5-GABAA receptor small interfering RNA (siRNA), but not scramble siRNA, reduced reserpine-induced allodynia in female rats. Accordingly, α5-GABAA receptor siRNA induced nociceptive hypersensitivity in naïve female rats. Reserpine enhanced α5-GABAA receptors expression in spinal cord and dorsal root ganglia (DRG), while it increased CD11b (OX-42) and glial fibrillary acidic protein (GFAP) fluorescence intensity in the lumbar spinal cord. In contrast, reserpine diminished K+-Cl- co-transporter 2 (KCC2) protein in the lumbar spinal cord. Data suggest that spinal α5-GABAA receptors play a sex-dependent proallodynic effect in reserpine-treated rats. In contrast, these receptors have a sex-dependent antiallodynic role in naïve rats.
Collapse
Affiliation(s)
- Yarim E De la Luz-Cuellar
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Úrzula Franco-Enzástiga
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| |
Collapse
|
98
|
Uchida M, Kobayashi O, Yoshida M, Miwa M, Miura R, Saito H, Nagakura Y. Coexistence of Alterations of Gastrointestinal Function and Mechanical Allodynia in the Reserpine-Induced Animal Model of Fibromyalgia. Dig Dis Sci 2019; 64:2538-2547. [PMID: 30874990 DOI: 10.1007/s10620-019-05577-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fibromyalgia (FM) is a disorder characterized by widespread chronic pain as core symptom and a broad range of comorbidities. Despite the prevalence of gastrointestinal (GI) comorbidities in patients with FM, GI functions have rarely been investigated in animal models of FM. AIMS The purpose of the present study is to investigate the coexistence of alterations of GI function in the reserpine-induced myalgia (RIM) rat, a validated FM model associated with disruption of monoamine system. METHODS Paw withdrawal threshold (von Frey hair test) was assessed as pain-associated indicator. Gastric emptying (13C breath test), small intestinal transit (charcoal meal test), and fecal water content were investigated as GI functions. RESULTS The specific regimen of reserpine for the RIM rat, i.e., 1 mg/kg s.c., once daily for three consecutive days, caused a reduction of paw withdrawal threshold (i.e., mechanical allodynia) on days 3, 5, and 7 after the first injection. The 13CO2 excreted from the RIM rat was significantly increased on day 7. The RIM rat exhibited an acceleration of small intestinal transit on day 5. Fecal water content collected from the RIM rat was significantly increased on days 3 and 5. The amount of noradrenaline was significantly decreased in GI tissues on days 3, 5, and 7 in the RIM rat. Conclusions This study revealed that accelerated gastric emptying, accelerated small intestinal transit, and increase in fecal water content coexist with mechanical allodynia in the RIM rat, simulating the coexistence of chronic pain and alterations of GI function in patients with FM.
Collapse
Affiliation(s)
- Masayuki Uchida
- Food Science and Technology Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Orie Kobayashi
- Food Science and Technology Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Miku Yoshida
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-city, Aomori, 030-0943, Japan
| | - Machiko Miwa
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-city, Aomori, 030-0943, Japan
| | - Reina Miura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-city, Aomori, 030-0943, Japan
| | - Hiroko Saito
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-city, Aomori, 030-0943, Japan
| | - Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-city, Aomori, 030-0943, Japan. .,Center for Brain and Health Sciences, Aomori University, 109-1 Takama, Ishie, Aomori-city, Aomori, 038-0003, Japan. .,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara-city, Tochigi, 324-8501, Japan.
| |
Collapse
|
99
|
Ameliorative effect of imperatorin in chemically induced fibromyalgia: Role of NMDA/NFkB mediated downstream signaling. Biochem Pharmacol 2019; 166:56-69. [DOI: 10.1016/j.bcp.2019.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
|
100
|
Siemian JN, Shang L, Seaman RW, Zhu Q, Zhang Y, Li JX. Effects of imidazoline I2 receptor agonists on reserpine-induced hyperalgesia and depressive-like behavior in rats. Behav Pharmacol 2019; 30:429-434. [PMID: 30383551 PMCID: PMC6494737 DOI: 10.1097/fbp.0000000000000454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pharmacotherapies for fibromyalgia treatment are lacking. This study examined the antinociceptive and antidepressant-like effects of imidazoline I2 receptor (I2R) agonists in a reserpine-induced model of fibromyalgia in rats. Rats were treated for 3 days with vehicle or reserpine. The von Frey filament test was used to assess the antinociceptive effects of I2 receptor agonists, and the forced swim test was used to assess the antidepressant-like effects of these drugs. 2-BFI (3.2-10 mg/kg, intraperitoneally), phenyzoline (17.8-56 mg/kg, intraperitoneally), and CR4056 (3.2-10 mg/kg, intraperitoneally) all dose-dependently produced significant antinociceptive effects, which were attenuated by the I2R antagonist idazoxan. Only CR4056 significantly reduced the immobility time in the forced swim test in both vehicle-treated and reserpine-treated rats. These data suggest that I2R agonists may be useful to treat fibromyalgia-related pain and comorbid depression.
Collapse
Affiliation(s)
- Justin N. Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Li Shang
- Department of Nursing, Affiliated Yantai Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Robert W. Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Qing Zhu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|