51
|
Wang S, Wang J, Liu K, Bai W, Cui X, Han S, Gao X, Zhu B. Signaling Interaction between Facial and Meningeal Inputs of the Trigeminal System Mediates Peripheral Neurostimulation Analgesia in a Rat Model of Migraine. Neuroscience 2020; 433:184-199. [PMID: 32171818 DOI: 10.1016/j.neuroscience.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
Peripheral neurostimulation within the trigeminal nerve territory has been used for pain alleviation during migraine attacks, but the mechanistic basis of this non-invasive intervention is still poorly understood. In this study, we investigated the therapeutic role of peripheral stimulation of the trigeminal nerve, which provides homosegmental innervation to intracranial structures, by assessing analgesic effects in a nitroglycerin (NTG)-induced rat model of migraine. As a result of neurogenic inflammatory responses in the trigeminal nervous system, plasma protein extravasation was induced in facial skin by applying noxious stimulation to the dura mater. Noxious chemical stimulation of the dura mater led to protein extravasation in facial cutaneous tissues and caused mechanical sensitivity. Trigeminal ganglion (TG) neurons were double-labeled via retrograde tracing to detect bifurcated axons. Extracellular recordings of wide dynamic range (WDR) neurons in the spinal trigeminal nucleus caudalis (Sp5C) demonstrated the convergence and interaction of inputs from facial tissues and the dura mater. Peripheral neurostimulation of homotopic facial tissues represented segmental pain inhibition on cephalic cutaneous allodynia in the migraine model. The results indicated that facial territories and intracranial structures were directly connected with each other through bifurcated double-labeled neurons in the TG and through second-order WDR neurons. Homotopic stimulation at the C-fiber intensity threshold resulted in much stronger inhibition of analgesia than the same intensity of heterotopic stimulation. These results provide novel evidence for the neurological bases through which peripheral neurostimulation may be effective in treating migraine in clinical practice.
Collapse
Affiliation(s)
- Shuya Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu Han
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
52
|
Martinelli D, Arceri S, Tronconi L, Tassorelli C. Chronic migraine and Botulinum Toxin Type A: Where do paths cross? Toxicon 2020; 178:69-76. [PMID: 32250749 DOI: 10.1016/j.toxicon.2020.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Migraine is a highly prevalent and disabling disorder accounted among the primary headaches. It is the expression of a complex, and not yet fully understood, pathophysiology involving the sensitization of peripheral and central nociceptive pathways. In this review we succinctly illustrate the molecular, anatomical, and functional abnormalities underlying the migraine attack that are relevant for understanding in more depth the neurobiology behind the therapeutic effect of Botulinum Toxin Type A (BoNT-A). BoNT-A has proved effective in several neurological conditions and, more recently, also in chronic migraine. Its antimigraine mechanism of action was initially thought to be limited to the periphery and interpreted as an inhibitory activity on the processes associated to the local release of neuropeptides, with subsequent induction of peripheral sensitization. Increasing experimental evidence has become available to suggest that additional mechanisms are possibly involved, including the direct/indirect inhibition of sensitization processes in central nociceptive pathways.
Collapse
Affiliation(s)
- Daniele Martinelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Sebastiano Arceri
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Tronconi
- Mondino Foundation IRCCS, Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Cristina Tassorelli
- Mondino Foundation IRCCS, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
53
|
Rainero I, Roveta F, Vacca A, Noviello C, Rubino E. Migraine pathways and the identification of novel therapeutic targets. Expert Opin Ther Targets 2020; 24:245-253. [PMID: 32054351 DOI: 10.1080/14728222.2020.1728255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Migraine is a chronic neurovascular disorder characterized by recurrent headache attacks associated with neurological and autonomic symptoms. The pathophysiological mechanisms of the disease are extremely complex, involving hypothalamic and trigeminovascular activation, cortical spreading depression, release of pro-inflammatory peptides, peripheral and central sensitization. The underlying cellular and molecular mechanisms have been scarcely investigated. Recently, genetic studies have suggested that different metabolic pathways could be involved in the pathogenesis of migraine.Areas covered: This review focuses on cellular and molecular mechanisms involved in migraine, suggesting a role for circadian clocks, ion channels, synaptic plasticity, vascular factors, ion metal homeostasis, and impaired glucose metabolism in the pathogenesis of the disease. Accordingly, the article proposes new therapeutic targets that may be of particular relevance for disease prevention.Expert opinion: Several complex molecular mechanisms are involved in setting the genetic threshold for migraine and the pathogenesis of headache attacks. Most promising new therapeutic targets are the modulation of hypothalamic activity and ion channels involved in pain transmission. Further studies in animals and humans are necessary to enhance the elucidation of the molecular mechanisms of migraine and open new avenues for disease prevention.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Fausto Roveta
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Elisa Rubino
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
54
|
Qu Z, Liu L, Yang Y, Zhao L, Xu X, Li Z, Zhu Y, Jing X, Wang X, Zhang CS, Fisher M, Li B, Wang L. Electro-acupuncture inhibits C-fiber-evoked WDR neuronal activity of the trigeminocervical complex: Neurophysiological hypothesis of a complementary therapy for acute migraine modeled rats. Brain Res 2020; 1730:146670. [PMID: 31953213 DOI: 10.1016/j.brainres.2020.146670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Acupuncture has become a relevant complementary and alternative treatment for acute migraine; however, the neurophysiological mechanism (C-fibers) underlying this effect remains unclear. C-fibers play a crucial role for diffuse noxious inhibitory controls (DNIC) at wide dynamic range (WDR) neurons in the trigeminocervical complex (TCC) in migraine attacks, and we supposed that this may be the mechanism of acupuncture analgesia. This study aimed to examine the neurophysiology of acupuncture intervention in an acute migraine rat model. METHODS Inflammatory soup (IS) or saline was injected into the dura mater to establish a migraine and control model in rats. To explore the neurobiological mechanism of acupuncture for migraine, we implemented electro-acupuncture (EA), non-electric-stimulation acupuncture, and no-acupuncture in IS and saline injected rats, and recorded the single-cell extraneural neurophysiology of the atlas (C1) spinal dorsal horn neurons in the TCC. RESULTS Our research shows that electro-acupuncture at GB8 (Shuaigu), located in the periorbital region receptive field of the trigeminal nerve, may rapidly reduce the C-fiber evoked WDR neuronal discharges of the TCC within 60 s. DISCUSSION This study provides pioneering evidence of a potential neurobiological mechanism for the analgesic effect on migraine attacks achieved by electro-acupuncture intervention via DNIC. The data indicates that EA may become a crucial supplementary and alternative therapy for migraineurs that failed to respond to acute medications, e.g., fremanezumab, which achieves its analgesic effect via modulating Aσ-fibers, not C-fibers.
Collapse
Affiliation(s)
- Zhengyang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China; Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Yang
- Department of History, University College London, London, UK
| | - Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Zhijuan Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yupu Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Claire Shuiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Marc Fisher
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China.
| |
Collapse
|
55
|
Qu Z, Liu L, Zhao L, Xu X, Li Z, Zhu Y, Zhang C, Jing X, Wang X, Li B, Zhang CS, Fisher M, Wang L. Prophylactic Electroacupuncture on the Upper Cervical Segments Decreases Neuronal Discharges of the Trigeminocervical Complex in Migraine-Affected Rats: An in vivo Extracellular Electrophysiological Experiment. J Pain Res 2020; 13:25-37. [PMID: 32021392 PMCID: PMC6960663 DOI: 10.2147/jpr.s226922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This rat experiment aims to demonstrate the efficacy of electrical acupuncture in preventing migraine attacks by stimulating the acupoint GB20. Introduction Migraine, which takes 2ed at level four causes of GBD’s disease hierarchy, becomes a public health issue. It is important for physicians to supplement their knowledge of its treatment and consider alternative methods of therapy, such as acupuncture. However, the neurobiological and pathophysiological mechanisms of this prophylactic effect were unclear. The trigeminocervical complex is thought to be an important relay station in migraine pathophysiology as the key nuclei of the trigeminovascular system and the brainstem descending pain modulation system. Methods There were six groups involved in this study: control, model, electroacupuncture, non-acupoint electroacupuncture, saline+electroacupuncture and saline+non-acupoint electroacupuncture. We injected saline or inflammatory soup into dura mater to induce control or migraine in the rats. The mechanical pain threshold and the single-cell extraneural neurophysiology of the C1 spinal dorsal horn neurons in the trigeminocervical complex were detected. Results Pre-electroacupuncture could significantly increase the mechanical pain threshold of the periorbital region receptive field of the trigeminal nerve and decrease the discharges of neurons in the trigeminocervical complex. Acupuncture also reversed the abnormal skin pain response of the periorbital region receptive field of the trigeminal nerve caused by low-intensity stimulation. Discussion We believe that our study makes a significant contribution to the literature because it is the first of its kind to use GB20 to provide relief from migraine attacks and mechanical cephalic cutaneous hypersensitivity by regulating the neuronal discharge from trigeminocervical complex.
Collapse
Affiliation(s)
- Zhengyang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhijuan Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Yupu Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Chen Zhang
- Acupuncture and Moxibustion Department, Beijing Massage Hospital, Beijing, People's Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Claire Suiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Marc Fisher
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
56
|
Edvinsson L, Haanes KA. Views on migraine pathophysiology: Where does it start? ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Sciences Division of Experimental Vascular Research Lund University Lund Sweden
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| |
Collapse
|
57
|
|
58
|
Enhanced descending pain facilitation in acute traumatic brain injury. Exp Neurol 2019; 320:112976. [PMID: 31185197 DOI: 10.1016/j.expneurol.2019.112976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). We observed significant hindpaw allodynia in TBI rats that was reduced after DHT but not vehicle treatment. Immunohistochemical studies demonstrated profound spinal serotonin depletion in DHT-treated rats. Furthermore, lumbar intrathecal administration of the 5-HT3 receptor antagonist ondansetron at 7 days post-injury (DPI), when hindpaw allodynia was maximal, also attenuated nociceptive sensitization. Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.
Collapse
|
59
|
Jia Z, Chen X, Tang W, Zhao D, Yu S. Atypical functional connectivity between the anterior cingulate cortex and other brain regions in a rat model of recurrent headache. Mol Pain 2019; 15:1744806919842483. [PMID: 30900511 PMCID: PMC6484243 DOI: 10.1177/1744806919842483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We explored the atypical functional connectivity between the anterior cingulate cortex and other brain areas in rats subjected to repeated meningeal nociception. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious rats. Rats were subdivided according to the frequency of the inflammatory soup infusions. Functional connectivity analysis seeded on the anterior cingulate cortex was performed on rats 21 days after inflammatory soup infusion. Glyceryl trinitrate was injected following baseline scanning in the low-frequency inflammatory soup group and magnetic resonance imaging data were acquired 1 h after the injection. The rats exhibited nociceptive behavior after high-frequency inflammatory soup infusion. The anterior cingulate cortex showed increased functional connectivity with the cerebellum in the inflammatory soup groups. The medulla showed increased functional connectivity with the anterior cingulate cortex in the ictal period in the low-frequency inflammatory soup rats. Several areas showed increased functional connectivity with the anterior cingulate cortex in the high-frequency inflammatory soup group, including the pontine tegmentum, midbrain, thalamus, corpus callosum, hippocampus, and retrosplenial, visual, sensory, and motor cortices. This study indicated that the medulla participates in the early stage of a migraine attack and may be associated with the initiation of migraine. Sensitization of the trigeminal nociceptive pathway might contribute to the cutaneous allodynia seen in chronic migraine. Brain areas important for memory function may be related to the chronification of migraine. Electrophysiological studies should examine those migraine-related areas and provide new targets for migraine treatment and prevention.
Collapse
Affiliation(s)
- Zhihua Jia
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Dengfa Zhao
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
60
|
Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol 2019; 15:483-490. [PMID: 31263254 DOI: 10.1038/s41582-019-0216-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
|
61
|
Takeuti AA, Fávero ML, Zaia EH, Ganança FF. Auditory brainstem function in women with vestibular migraine: a controlled study. BMC Neurol 2019; 19:144. [PMID: 31248379 PMCID: PMC6595618 DOI: 10.1186/s12883-019-1368-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vestibular migraine (VM) has been recognized as a diagnostic entity over the past three decades. It affects up to 1% of the general population and 7% of patients seen in dizziness clinics. It is still underdiagnosed; consequently, it is important to conduct clinical studies that address diagnostic indicators of VM. The aim of this study was to assess auditory brainstem function in women with vestibular migraine using electrophysiological testing, contralateral acoustic reflex and loudness discomfort level. METHODS The study group consisted of 29 women with vestibular migraine in the interictal period, and the control group comprised 25 healthy women. Auditory brainstem response, frequency following response, binaural interaction component and assessment of contralateral efferent suppression were performed. The threshold of loudness discomfort and the contralateral acoustic reflex were also investigated. The results were compared between the groups. RESULTS There was a statistically significant difference between the groups in the frequency following response and the loudness discomfort level. CONCLUSIONS The current study suggested that temporal auditory processing and loudness discomfort levels are altered in VM patients during the interictal period, indicating that these measures may be useful as diagnostic criteria.
Collapse
Affiliation(s)
- Alice A. Takeuti
- Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana L. Fávero
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação (DERDIC), Pontíficia Universidade Catolica de São Paulo, São Paulo, Brazil
| | | | - Fernando F. Ganança
- Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
62
|
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int J Mol Sci 2019; 20:E2932. [PMID: 31208068 PMCID: PMC6628212 DOI: 10.3390/ijms20122932] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disorder affecting an increasing number of subjects. Currently, this disorder is not entirely understood, and limited therapeutic solutions are available. Migraine manifests as a debilitating headache associated with an altered sensory perception that may compromise the quality of life. Animal models have been developed using chemical, physical or genetic modifications, to evoke migraine-like hallmarks for the identification of novel molecules for the treatment of migraine. In this context, experimental models based on the use of chemicals as nitroglycerin or inflammatory soup were extensively used to mimic the acute state and the chronicity of the disorder. This manuscript is aimed to provide an overview of murine models used to investigate migraine pathophysiology. Pharmacological targets as 5-HT and calcitonin gene-related peptide (CGRP) receptors were evaluated for their relevance in the development of migraine therapeutics. Drug delivery systems using nanoparticles may be helpful for the enhancement of the brain targeting and bioavailability of anti-migraine drugs as triptans. In conclusion, the progresses in migraine management have been reached with the development of emerging agonists of 5-HT receptors and novel antagonists of CGRP receptors. The nanoformulations may represent a future perspective in which already known anti-migraine drugs showed to better exert their therapeutic effects.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
63
|
Koneru SN, Staelin R, Rawe IM. Chronic pain intervention using pulsed shortwave therapy: the relationship between pain demographics and central sensitization inventory. Pain Manag 2019; 9:283-296. [PMID: 31140929 DOI: 10.2217/pmt-2018-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The central sensitization inventory (CSI) is a validated, patient-reported questionnaire that quantifies symptoms of hypersensitivity disorders such as chronic pain, for which central sensitization (CS) may be the etiology. Objective: To investigate the analgesic effectiveness of ActiPatch and analyze the relationship between baseline CSI scores and demographics of chronic pain sufferers. Methods: Upon completing a 7-day ActiPatch trial, baseline CSI scores along with other assessment measures were obtained via e-mail from 174 chronic pain sufferers. Conclusion: CSI scores were positively correlated with gender (higher for women), baseline visual analog scale scores and pain duration. ActiPatch was found to be effective in reducing baseline pain for all subjects by an average of 4.3 visual analog scale points.
Collapse
Affiliation(s)
- Sree N Koneru
- Clinical Research Division, BioElectronics Corporation, Frederick, MD 13905, USA
| | - Richard Staelin
- Fuqua School of Business, Duke University, Durham, NC 27708, USA
| | - Ian M Rawe
- Clinical Research Division, BioElectronics Corporation, Frederick, MD 13905, USA
| |
Collapse
|
64
|
Zhang Q, Han X, Wu H, Zhang M, Hu G, Dong Z, Yu S. Dynamic changes in CGRP, PACAP, and PACAP receptors in the trigeminovascular system of a novel repetitive electrical stimulation rat model: Relevant to migraine. Mol Pain 2019; 15:1744806918820452. [PMID: 30799680 PMCID: PMC6365643 DOI: 10.1177/1744806918820452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migraine is the seventh most disabling disorder globally, with prevalence
of 11.7% worldwide. One of the prevailing mechanisms is the activation
of the trigeminovascular system, and calcitonin gene-related peptide
(CGRP) is an important therapeutic target for migraine in this system.
Recent studies suggested an emerging role of pituitary adenylate
cyclase-activating peptide (PACAP) in migraine. However, the relation
between CGRP and PACAP and the role of PACAP in migraine remain
undefined. In this study, we established a novel repetitive (one,
three, and seven days) electrical stimulation model by stimulating
dura mater in conscious rats. Then, we determined expression patterns
in the trigeminal ganglion and the trigeminal nucleus caudalis of the
trigeminovascular system. Electrical stimulation decreased facial
mechanical thresholds, and the order of sensitivity was as follows:
vibrissal pad >inner canthus >outer canthus (P < 0.001). The
electrical stimulation group exhibited head-turning and head-flicks
(P < 0.05) nociceptive behaviors. Importantly, electrical
stimulation increased the expressions of CGRP, PACAP, and the
PACAP-preferring type 1 (PAC1) receptor in both trigeminal ganglion
and trigeminal nucleus caudalis (P < 0.05). The expressions of two
vasoactive intestinal peptide (VIP)-shared type 2 (VPAC1 and VPAC2)
receptors were increased in the trigeminal ganglion, whereas in the
trigeminal nucleus caudalis, their increases were peaked on Day 3 and
then decreased by Day 7. PACAP was colocalized with NEUronal Nuclei
(NeuN), PAC1, and CGRP in both trigeminal ganglion and the trigeminal
nucleus caudalis. Our results demonstrate that the repetitive
electrical stimulation model can simulate the allodynia during the
migraine chronification, and PACAP plays a role in the pathogenesis of
migraine potentially via PAC1 receptor.
Collapse
Affiliation(s)
- Qing Zhang
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China.,2 Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xun Han
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Hangfei Wu
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mingjie Zhang
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Guanqun Hu
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- 1 Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
65
|
Effect of Electroacupuncture on Hyperalgesia and Vasoactive Neurotransmitters in a Rat Model of Conscious Recurrent Migraine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9512875. [PMID: 31217804 PMCID: PMC6537014 DOI: 10.1155/2019/9512875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Migraine onset is associated with the abnormal release of vasoactive neurotransmitters from perivascular nerves, and these neurotransmitters are involved in the pathophysiology of migraine. Hyperalgesia is a key feature of migraine, and accumulating evidence indicates that electroacupuncture (EA) at the single acupuncture point (Fengchi [GB20]) is effective in ameliorating hyperalgesia. In clinical practice, multiple acupuncture points are widely used, especially GB20 and Yanglingquan (GB34). However, the role played by vasoactive neurotransmitters in acupuncture antihyperalgesic effect at the single or multiple acupuncture points remains unknown. We aimed to determine whether EA would exert its antihyperalgesic effects by modulating vasoactive neurotransmitter release from the perivascular nerves. Furthermore, we examined whether targeting multiple acupuncture points would be more effective than targeting a single point in reducing hyperalgesia. The mechanical and thermal hyperalgesia were evaluated by measuring the facial and hind-paw mechanical withdrawal thresholds, tail-flick and hot-plate latencies. Plasma concentrations of vasoactive neurotransmitters were determined using rat-specific ELISA kits from jugular vein, including calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), pituitary adenylate cyclase-activating polypeptide (PACAP), nitric oxide (NO), and endothelin-1 (ET-1). The result suggested that EA significantly ameliorated the mechanical and thermal hyperalgesia, reduced c-Fos levels in the trigeminal ganglion, and attenuated plasma and dural levels of vasoactive neurotransmitters, especially in the multiple acupuncture points group (GB20+GB34). In conclusion, EA exerts antihyperalgesic effect in a rat model of conscious recurrent migraine, possibly via modulation of the vasoactive neurotransmitters. Furthermore, targeting multiple acupuncture points is more effective than targeting a single point in reducing hyperalgesia.
Collapse
|
66
|
Pei P, Liu L, Zhao LP, Qu ZY, Tang CY, Wang LP, Yang W. Electroacupuncture exerts an anti-migraine effect via modulation of the 5-HT7 receptor in the conscious rat. Acupunct Med 2019; 37:47-54. [PMID: 30843418 DOI: 10.1136/acupmed-2017-011410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Acupuncture has been recommended as an alternative therapy for migraine. Emerging evidence suggests that the 5-HT7 receptor (5-HT7R) plays a significant facilitatory role in descending modulation in migraine pathophysiology, and that activation of 5-HT7R in the descending pathway is involved in migraine central sensitisation. Objective: To investigate the ability of electroacupuncture (EA) to ameliorate central sensitisation via modulation of 5-HT7R in the descending pain pathways using a rat model of migraine induced by repetitive dural electrical stimulation (DES). Design: 64 male Sprague-Dawley rats were randomly divided into four groups: Normal group; DES group (receiving dural electrical stimulation only); DES+GB20 group (DES model group treated with EA at GB20); and DES+Sham group (DES model group treated with EA at a non-traditional (sham) acupuncture point). The presence of cutaneous allodynia was determined by measuring facial and hind-paw withdrawal latencies to electronic von-Frey. The expression of 5-HT7R in the descending pathways (periaqueductal grey, raphe magnus nucleus, and trigeminal nucleus caudalis) was assessed using immunofluorescence and Western blotting. Results: Facial and hind-paw withdrawal thresholds were significantly increased in the DES+GB20 group compared with the untreated DES group. The expression of 5-HT7R was significantly decreased in the DES+GB20 group compared with the DES group (one-way analysis of variance (ANOVA), P<0.05). No significant differences in behaviour or expression were found between the rats in the DES+Sham group and the untreated DES group (one-way ANOVA, P>0.05). Conclusion: EA at GB20 may ameliorate central sensitisation in migraine by inhibiting the activation of 5-HT7 receptors in the descending pain pathway in a rat model of migraine.
Collapse
Affiliation(s)
- Pei Pei
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Luo-Peng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Zheng-Yang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chu-Ying Tang
- Acupuncture and Moxibustion Department, Shenzhen Bao’an TCM Hospital, Shenzhen, China
| | - Lin-Peng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenming Yang
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
67
|
Acupuncture-Analgesia-Mediated Alleviation of Central Sensitization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6173412. [PMID: 30984277 PMCID: PMC6431485 DOI: 10.1155/2019/6173412] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/20/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Pain can trigger central amplification called central sensitization, which ultimately results in hyperalgesia and/or allodynia. Many reports have showed acupuncture has an analgesic effect. We searched the related article on PubMed database and Cochrane database to discover central sensitization pathway in acupuncture analgesia. We summarized that acupuncture enhances the descending inhibitory effect and modulates the feeling of pain, thus modifying central sensitization. The possible mechanisms underlying the analgesic effects of acupuncture include segmental inhibition and the activation of the endogenous opioid, adrenergic, 5-hydroxytryptamine, and N-methyl-D-aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate pathways. Moreover, acupuncture can locally reduce the levels of inflammatory mediators. In clinical settings, acupuncture can be used to treat headache, neuropathic pain, low back pain, osteoarthritis, and irritable bowel syndrome. These mechanisms of acupuncture analgesia may be involved in the alleviation of central sensitization.
Collapse
|
68
|
Wang XY, Zhou HR, Wang S, Liu CY, Qin GC, Fu QQ, Zhou JY, Chen LX. NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model. J Headache Pain 2018; 19:102. [PMID: 30400767 PMCID: PMC6755586 DOI: 10.1186/s10194-018-0935-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Background Although the mechanism of chronic migraine (CM) is unclear, it might be related to central sensitization and neuronal persistent hyperexcitability. The tyrosine phosphorylation of NR2B (NR2B-pTyr) reportedly contributes to the development of central sensitization and persistent pain in the spinal cord. Central sensitization is thought to be associated with an increase in synaptic efficiency, but the mechanism through which NR2B-pTyr regulates synaptic participation in CM-related central sensitization is unknown. In this study, we aim to investigate the role of NR2B-pTyr in regulating synaptic plasticity in CM-related central sensitization. Methods Male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections to model recurrent trigeminovascular or dural nociceptor activation, which is assumed to occur in patients with CM. We used the von Frey test to detect changes in mechanical withdrawal thresholds, and western blotting and immunofluorescence staining assays were performed to detect the expression of NR2B-pTyr in the trigeminal nucleus caudalis (TNC). NR2B-pTyr was blocked with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)-pyrazolo [3,4-d] pyrimidine (PP2) and the protein tyrosine kinase inhibitor genistein to detected the changes in calcitonin gene-related peptide (CGRP), substance P (SP), and the synaptic proteins postsynaptic density 95 (PSD95), synaptophysin (Syp), synaptotagmin1 (Syt-1). The synaptic ultrastructures were observed by transmission electron microscopy (TEM), and the dendritic architecture of TNC neurons was observed by Golgi-Cox staining. Results Statistical analyses revealed that repeated infusions of IS induced mechanical allodynia and significantly increased the expression of NR2B Tyr-1472 phosphorylation (pNR2B-Y1472) and NR2B Tyr-1252 phosphorylation (pNR2B-Y1252) in the TNC. Furthermore, the inhibition of NR2B-pTyr by PP2 and genistein relieved allodynia and reduced the expression of CGRP, SP, PSD95, Syp and Syt-1 and synaptic transmission. Conclusions These data indicate that NR2B-pTyr might regulate synaptic plasticity in central sensitization in a CM rat model. The inhibition of NR2B tyrosine phosphorylation has a protective effect on threshold dysfunction and migraine attacks through the regulation of synaptic plasticity in central sensitization.
Collapse
Affiliation(s)
- Xue-Ying Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Hui-Ru Zhou
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Sha Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Chao-Yang Liu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Guang-Cheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Qing-Qing Fu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Ji-Ying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Xue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| |
Collapse
|
69
|
Patterns of Altered Corneal Sensation in Patients With Chronic Migraine. Eye Contact Lens 2018; 44 Suppl 2:S400-S403. [DOI: 10.1097/icl.0000000000000553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
70
|
Verkest C, Piquet E, Diochot S, Dauvois M, Lanteri-Minet M, Lingueglia E, Baron A. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br J Pharmacol 2018; 175:4154-4166. [PMID: 30079481 DOI: 10.1111/bph.14462] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Acid-sensing ion channels (ASICs) are neuronal proton sensors emerging as potential therapeutic targets in pain of the orofacial region. Amiloride, a non-specific ASIC blocker, has been shown to exert beneficial effects in animal models of migraine and in patients. We explored the involvement of the ASIC1-subtype in cutaneous allodynia, a hallmark of migraine affecting cephalic and extra-cephalic regions in about 70% of migrainers. EXPERIMENTAL APPROACH We investigated the effects of systemic injections of amiloride and mambalgin-1, a specific inhibitor of ASIC1a- and ASIC1b-containing channels, on cephalic and extra-cephalic mechanical sensitivity in a rodent model of acute and chronic migraine induced by i.p. injections of isosorbide dinitrate. KEY RESULTS I.v. injections of these inhibitors reversed cephalic and extra-cephalic acute cutaneous mechanical allodynia in rats, a single injection inducing a delay in the subsequent establishment of chronic allodynia. Both mambalgin-1 and amiloride also reversed established chronic allodynia. The anti-allodynic effects of mambalgin-1 were not altered in ASIC1a-knockout mice, showing the ASIC1a subtype is not involved in these effects which were comparable to those of the anti-migraine drug sumatriptan and of the preventive drug topiramate on acute and chronic allodynia respectively. A single daily injection of mambalgin-1 also had a significant preventive effect on allodynia chronification. CONCLUSIONS AND IMPLICATIONS These pharmacological data support the involvement of peripheral ASIC1-containing channels in migraine cutaneous allodynia as well as in its chronification. They highlight the therapeutic potential of ASIC1 inhibitors as both an acute and prophylactic treatment for migraine.
Collapse
Affiliation(s)
- Clément Verkest
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Emilie Piquet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Mélodie Dauvois
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Michel Lanteri-Minet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France.,Inserm/UdA, U1107, Neuro-Dol, Trigeminal Pain and Migraine, Université d'Auvergne, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Anne Baron
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| |
Collapse
|
71
|
Wang S, Wu BX, Liu CY, Qin GC, Yan WH, Zhou JY, Chen LX. Expression of ASIC3 in the Trigeminal Nucleus Caudalis Plays a Role in a Rat Model of Recurrent Migraine. J Mol Neurosci 2018; 66:44-52. [PMID: 30209688 DOI: 10.1007/s12031-018-1113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Acid-sensing ion channel 3 (ASIC3) is abundant in the trigeminal nervous system and is most sensitive to a slight pH decrease. Recent studies have indicated that ASIC3 in the peripheral trigeminal ganglia is likely involved in the pathogenesis of migraine pain. However, it is unclear whether this receptor plays a role in recurrent migraine, namely, migraine chronicity. Here, we aimed to investigate the role of ASIC3 in an animal model of recurrent migraine (RM). In this study, we established a rat model of RM through repeated administration of inflammatory soup (IS) onto the dura. Then, we tested the mechanical pain thresholds of the face and hindpaws by von Frey filaments. qRT-PCR, Western blot and immunofluorescence labelling were used to detect the expression and localization of ASIC3 in the trigeminal nucleus caudalis (TNC). The protein levels of calcitonin gene-related peptide (CGRP), its receptor component receptor activity modifying protein 1 (RAMP1) and c-Fos were analysed following treatment with the ASIC3 inhibitor APETx2 and activator 2-guanidine-4-methylquinazoline (GMQ). We found decreased pain thresholds after repeated dural inflammatory stimulation, which suggested the establishment of an RM model. Based on this model, we observed elevated expression of ASIC3 in the TNC group compared to that in the Sham group. ASIC3 was primarily expressed in neurons but not in astrocytes of the TNC. Moreover, APETx2 attenuated tactile allodynia and significantly decreased the expression of c-Fos, CGRP and RAMP1, while GMQ aggravated these effects compared to those observed in the IS + vehicle group. These findings indicate a critical role of ASIC3 channels in the pathophysiology of RM, and ASIC3 might represent a potential therapeutic target to prevent the progression of migraine.
Collapse
Affiliation(s)
- Sha Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bai-Xue Wu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chao-Yang Liu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guang-Cheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wen-Hui Yan
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ji-Ying Zhou
- Chongqing Key Laboratory of Neurology, Chongqing, 400016, People's Republic of China
| | - Li-Xue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
72
|
Contreras EFR, Fernandes G, Ongaro PCJ, Campi LB, Gonçalves DAG. Systemic diseases and other painful conditions in patients with temporomandibular disorders and migraine. Braz Oral Res 2018; 32:e77. [DOI: 10.1590/1807-3107bor-2018.vol32.0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/21/2018] [Indexed: 02/17/2023] Open
|
73
|
Liu Q, Liu C, Jiang L, Li M, Long T, He W, Qin G, Chen L, Zhou J. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res 2018; 11:1129-1140. [PMID: 29942148 PMCID: PMC6007207 DOI: 10.2147/jpr.s159146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Evidence suggests that the activation of α7 nicotinic acetylcholine receptor (α7nAChR) can greatly decrease the neuroinflammation response. Neuroinflammation plays a pivotal role in the pathogenesis of chronic migraine (CM). Clinical observations also show that nicotine gum induces analgesic effects in migraine patients. However, whether α7nAChR is involved in CM is unclear. Objective To investigate the role of α7nAChR in CM and provide a new therapeutic target for CM. Materials and methods Thirty-six male Sprague–Dawley rats were distributed randomly into control, CM, PNU-282987, and α-bungarotoxin groups (n=9 rats in each group). The CM model was established by the recurrent daily administration of inflammatory soup on the dura over the course of 1 week. The hind paw threshold and facial allodynia were assessed by the von Frey test. The expression levels of α7nAChR, tumor necrosis factor-alpha, and interleukin-1 beta were analyzed by Western blot and real-time fluorescence quantitative polymerase chain reaction. The location of α7nAChR in the hippocampus was quantified by immunofluorescence, as well as the microglial and astrocyte alterations. Changes in the calcitonin gene-related peptide and the phosphorylated JNK protein among different groups were measured by Western blot. Results We found that the expression of α7nAChR was reduced after repeated inflammatory soup administration. The increased expression of tumor necrosis factor-alpha, interleukin-1 beta, and calcitonin gene-related peptide in CM group were significantly decreased by PNU-282987 and aggravated by α-bungarotoxin. Moreover, PNU-282987 decreased the numbers of astrocytes and microglia compared with the numbers in the CM group in both hippocampal CA1 and CA3 regions. In contrast, α-bungarotoxin activated the astrocytes and microglia, but the differences with respect to the CM group were not significant. Activated c-Jun N-terminal kinase signaling was observed in CM rats and was also blocked by PNU-282987. Conclusion The activation of α7nAChR increased the mechanical threshold and alleviated pain in the CM rat model. α7nAChR activation also decreased the upregulation of astrocytes and microglia through the p-c-Jun N-terminal kinase–mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chaoyang Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Maolin Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Long
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei He
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
74
|
Propranolol treatment prevents chronic central sensitization induced by repeated dural stimulation. Pain 2018; 158:2025-2034. [PMID: 28700539 DOI: 10.1097/j.pain.0000000000001007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Migraine is currently conceptualized as a chronic disease with episodic manifestations. In some patients, migraine attack frequency increases, leading to chronic migraine. Daily preventive therapy is initiated to decrease attack frequency. Propranolol, a first-line medication for migraine prophylaxis, reduces attack frequency in nearly 50% of patients receiving it. However, the mechanisms of its antimigraine action are unclear. We examined the effect of daily propranolol treatment (10 mg·kg per os, 8 days) in a rat model of recurrent activation of dural nociceptors (repeated infusion of an inflammatory soup (IS) on the dura through a cannula every 2-3 days). Propranolol does not abort IS-induced acute cephalic mechanical allodynia but blocks the development of a chronic cutaneous hypersensitivity upon repeated IS injections. Furthermore, propranolol prevents (1) the elevated touch-evoked Fos expression within the trigeminocervical complex, (2) enhanced both spontaneous activity, and evoked responses of second-order trigeminovascular neurons, (3) elevated touch-evoked rostral ventromedial medulla and locus coeruleus Fos expression and (4) diffuse noxious inhibitory controls impairment, induced by repeated IS injections. Our results suggest that propranolol exerts its prophylactic action, at least in part, by blocking the chronic sensitization of descending controls of pain, arising from the rostral ventromedial medulla and locus coeruleus, and in turn preventing the maintenance of a state of facilitated trigeminovascular transmission within the trigeminocervical complex. Assessing changes in these brain areas has the potential to elucidate the mechanisms for migraine transformation and to reveal novel biological and molecular targets for specific migraine-preventive therapies.
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW Chronic migraine (CM) is a recalcitrant subtype of migraine which causes high degrees of disability, poor treatment responses, and frequent recurrences in sufferers. However, the pathophysiological mechanisms underlying the development and chronification of migraine attacks remain incompletely understood. A validated animal model could help to decipher the pathogenic mechanism of the disease, facilitating the development of possible therapeutic strategies for CM. In this review, we aimed to summarize current animal models of CM and discuss the validity of these models. RECENT FINDINGS Several methods have been available to induce recurrent headache-like behaviors or biochemical changes in rodents, including repeated dural application of inflammatory soup, chronic systemic infusion of nitroglycerin, repeated administration of acute migraine abortive treatment to simulate medication overuse headache, or genetic modification. These models exhibit some features that are believed to be associated with migraine; however, none of the model can recapitulate all the clinical phenotypes found in humans and each has its own weakness. The complex features of CM increase the difficulty of constructing a proper animal model. Nonetheless, currently available models are valid to certain degrees. Future directions might consider simulating the spontaneity and chronicity of migraine by combining known genetic substrates and allostatic loads into the same model.
Collapse
|
76
|
Irvine KA, Sahbaie P, Liang DY, Clark JD. Traumatic Brain Injury Disrupts Pain Signaling in the Brainstem and Spinal Cord. J Neurotrauma 2018; 35:1495-1509. [PMID: 29373948 DOI: 10.1089/neu.2017.5411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common consequence of traumatic brain injury (TBI) that can increase the suffering of a patient and pose a significant challenge to rehabilitative efforts. Unfortunately, the mechanisms linking TBI to pain are poorly understood, and specific treatments for TBI-related pain are still lacking. Our laboratory has shown that TBI causes pain sensitization in areas distant to the site of primary injury, and that changes in spinal gene expression may underlie this sensitization. The aim of this study was to examine the roles that pain modulatory pathways descending from the brainstem play in pain after TBI. Deficiencies in one type of descending inhibition, diffuse noxious inhibitory control (DNIC), have been suggested to be responsible for the development of chronic pain by allowing excess and uncontrolled afferent nociceptive inputs. Here we expand our knowledge of pain after TBI in two ways: (1) by outlining the neuropathology in pain-related centers of the brain and spinal cord involved in DNIC using the rat lateral fluid percussion (LFP) model of TBI, and (2) by evaluating the effects of a potent histone acetyl transferase inhibitor, anacardic acid (AA), on LFP-induced pain behaviors and neuropathology when administered for several days after TBI. The results revealed that TBI induces transient mechanical allodynia and a chronic persistent loss of DNIC. Further, while short-term AA treatment can block acute nociceptive sensitization and some early neuropathological changes, this treatment neither prevented the loss of DNIC nor did it alter long-term neuropathological changes in the brain or spinal cord.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - Peyman Sahbaie
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - De-Yong Liang
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - J David Clark
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| |
Collapse
|
77
|
Dodick DW. A Phase-by-Phase Review of Migraine Pathophysiology. Headache 2018; 58 Suppl 1:4-16. [DOI: 10.1111/head.13300] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
|
78
|
Walling I, Smith H, Gee LE, Kaszuba B, Chockalingam A, Barborica A, Donos C, Shin DS, Pilitsis JG. Occipital Nerve Stimulation Attenuates Neuronal Firing Response to Mechanical Stimuli in the Ventral Posteromedial Thalamus of a Rodent Model of Chronic Migraine. Neurosurgery 2018; 81:696-701. [PMID: 28402559 DOI: 10.1093/neuros/nyx135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/06/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic migraine (CM) is a highly debilitating disease, and many patients remain refractory to medicinal therapy. Given the convergent nature of neuronal networks in the ventral posteromedial nucleus (VPM) and the evidence of sensitization of pain circuitry in this disease, we hypothesize CM rats will have increased VPM neuronal firing, which can be attenuated using occipital nerve stimulation (ONS). OBJECTIVE To determine whether VPM firing frequency differs between CM and sham rats, and whether ONS significantly alters firing rates during the application of mechanical stimuli. METHODS Fourteen male Sprague-Dawley rats were infused with inflammatory media once daily through an epidural cannula for 2 wk to induce a CM state. Sham animals (n = 6) underwent cannula surgery but received no inflammatory media. ONS electrodes were implanted bilaterally and single-unit recordings were performed in the VPM of anesthetized rats during mechanical stimulation of the face and forepaw in the presence and absence of ONS. RESULTS CM rats had significantly higher neuronal firing rates (P < .001) and bursting activity (P < .01) in response to mechanical stimuli when compared to shams. ONS significantly reduced neuronal firing in the VPM of CM rats during the application of 0.8 g (P = .04), 4.0 g (P = .04), and 15.0 g (P = .02) Von Frey filaments. ONS reduced bursting activity in CM rats during the 4.0 and 15 g filaments (P < .05). No significant changes in bursting activity or firing frequency were noted in sham animals during ONS. CONCLUSION We demonstrate that neuronal spike frequencies and bursting activity in the VPM are increased in an animal model of CM compared to shams. Our results suggest that the mechanism of ONS may involve attenuation of neurons in the VPM of CM rats during the application of mechanical stimuli.
Collapse
Affiliation(s)
- Ian Walling
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Heather Smith
- Department of Neurosurgery, Albany Medical Center, Albany New York
| | - Lucy E Gee
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany New York
| | - Brian Kaszuba
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | | | - Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania.,FHC Incorporated, Bowdoin, Maine
| | - Cristian Donos
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York.,Department of Neurosurgery, Albany Medical Center, Albany New York
| |
Collapse
|
79
|
Eren OE, Ruscheweyh R, Schankin C, Schöberl F, Straube A. The cold pressor test in interictal migraine patients - different parasympathetic pupillary response indicates dysbalance of the cranial autonomic nervous system. BMC Neurol 2018; 18:41. [PMID: 29661162 PMCID: PMC5901875 DOI: 10.1186/s12883-018-1043-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
Background Data on autonomic nervous system (ANS) activations in migraine patients are quite controversial, with previous studies reporting over- and underactivation of the sympathetic as well as parasympathetic nervous system. In the present study, we explicitly aimed to assess the cranial ANS in migraine patients compared to healthy controls by applying the cold pressor test to a cohort of migraine patients in the interictal phase and measuring the pupillary response. Methods In this prospective observational study, a strong sympathetic stimulus was applied to 20 patients with episodic migraine in the interictal phase and 20 matched controls without migraine, whereby each participant dipped the left hand into ice-cold (4 °C) water for a maximum of 5 min (cold pressor test). At baseline, 2, and 5 min during the cold pressor test, infrared monocular pupillometry was applied to quantify pupil diameter and light reflex parameters. Simultaneously, heart rate and blood pressure were measured by the external brachial RR-method at distinct time intervals to look for at least clinically relevant changes of the cardiovascular ANS. Results There were no significant differences between the migraine patients and controls at baseline and after 2 min of sympathetic stimulation in all the measured pupillary and cardio-vascular parameters. However, at 5 min, pupillary light reflex (PLR) constriction velocity was significantly higher in migraineurs than in controls (5.59 ± 0.73 mm/s vs. 5.16 ± 0.53 mm/s; unpaired t-test p < 0.05), while both cardiovascular parameters and PLR dilatation velocity were similar in both groups at this time point. Conclusions Our findings of an increased PLR constriction velocity after sustained sympathetic stimulation in interictal migraine patients suggest an exaggerated parasympathetic response of the cranial ANS. This indicates that brainstem parasympathetic dysregulation might play a significant role in migraine pathophysiology. More dedicated examination of the ANS in migraine patients might be of value for a deeper understanding of its pathophysiology. Electronic supplementary material The online version of this article (10.1186/s12883-018-1043-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ozan E Eren
- Department of Neurology, University Hospital, LMU Munich, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.
| | - Ruth Ruscheweyh
- Department of Neurology, University Hospital, LMU Munich, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Florian Schöberl
- Department of Neurology, University Hospital, LMU Munich, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital, LMU Munich, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
80
|
Kunkler PE, Zhang L, Johnson PL, Oxford GS, Hurley JH. Induction of chronic migraine phenotypes in a rat model after environmental irritant exposure. Pain 2018; 159:540-549. [PMID: 29200178 PMCID: PMC5812801 DOI: 10.1097/j.pain.0000000000001124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Air pollution is linked to increased emergency department visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that chronic environmental irritant exposure sensitizes the trigeminovascular system response to nasal administration of environmental irritants. Here, we examine whether chronic environmental irritant exposure induces migraine behavioral phenotypes. Male rats were exposed to acrolein, a transient receptor potential channel ankyrin-1 (TRPA1) agonist, or room air by inhalation for 4 days before meningeal blood flow measurements, periorbital cutaneous sensory testing, or other behavioral testing. Touch-induced c-Fos expression in trigeminal nucleus caudalis was compared in animals exposed to room air or acrolein. Spontaneous behavior and olfactory discrimination was examined in open-field testing. Acrolein inhalation exposure produced long-lasting potentiation of blood flow responses to a subsequent TRPA1 agonist and sensitized cutaneous responses to mechanical stimulation. C-Fos expression in response to touch was increased in trigeminal nucleus caudalis in animals exposed to acrolein compared with room air. Spontaneous activity in an open-field and scent preference behavior was different in acrolein-exposed compared with room air-exposed animals. Sumatriptan, an acute migraine treatment blocked acute blood flow changes in response to TRPA1 or transient receptor potential vanilloid receptor-1 agonists. Pretreatment with valproic acid, a prophylactic migraine treatment, attenuated the enhanced blood flow responses observed after acrolein inhalation exposures. Environmental irritant exposure yields an animal model of chronic migraine in which to study mechanisms for enhanced headache susceptibility after chemical exposure.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - LuJuan Zhang
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Philip Lee Johnson
- Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Joyce Harts Hurley
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
81
|
Hu G, Zhang M, Su M, Zhang Q, Wu H, Wang X, Dong Z, Yu S. Wider range of allodynia in a rat model of repeated dural nociception compared with infraorbital nerve chronic constriction injury. Neurosci Lett 2018; 666:120-126. [PMID: 29277624 DOI: 10.1016/j.neulet.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND To identify differences in allodynia and grooming behaviours between rat models of either repeated dural nociception with inflammatory soup (IS) or infraorbital nerve chronic constriction injury (IoN-CCI). METHODS Repeated dural nociception was induced via the application of IS to the dural meninges and IoN-CCI was applied to model neuropathic pain. All surgeries were performed on the right side and a sham operation was performed on the control group. Mechanical and thermal withdrawal thresholds were tested on different facial areas and hindpaw during the interictal period and grooming behaviours were recorded. RESULTS A significant decreases was found in the mechanical withdrawal thresholds of the bilateral vibrissa pad and right periorbital area in both the IS and the IoN-CCI groups, but only in the left periorbital area of the IS group. Hindpaw thermal allodynia was evident only in the IS group. Ipsilateral hindpaw grooming behaviour increased in the IS group and facial grooming behaviour increased in the IoN-CCI group. CONCLUSIONS Repeated dural nociception induced by IS and IoN-CCI in rats effectively simulated chronic migraine (CM) and trigeminal neuralgia (TN), respectively. The IS group exhibited a wider range of allodynia than the IoN-CCI group, but further studies are necessary to determine underlying mechanisms.
Collapse
Affiliation(s)
- Guanqun Hu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Mingjie Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Min Su
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qing Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hangfei Wu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaolin Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
82
|
Solstrand Dahlberg L, Linnman CN, Lee D, Burstein R, Becerra L, Borsook D. Responsivity of Periaqueductal Gray Connectivity Is Related to Headache Frequency in Episodic Migraine. Front Neurol 2018; 9:61. [PMID: 29487563 PMCID: PMC5816750 DOI: 10.3389/fneur.2018.00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Migraineurs show hypersensitivity to sensory stimuli at various stages throughout the migraine cycle. A number of putative processes have been implicated including a dysfunction in the descending pain modulatory system in which the periaqueductal gray (PAG) is considered to play a crucial role. Recurring migraine attacks could progressively perturb this system, lowering the threshold for future attacks, and contribute to disease chronification. Here, we investigated PAG connectivity with other brain regions during a noxious thermal stimulus to determine changes in migraineurs, and associations with migraine frequency. 21 episodic migraine patients and 22 matched controls were included in the study. During functional MRI, a thermode was placed on the subjects' temple delivering noxious and non-noxious heat stimuli. A psychophysiological interaction (PPI) analysis was carried out to examine pain-induced connectivity of the PAG with other brain regions. The PPI analysis showed increased PAG connectivity with the S1 face representation area and the supplementary motor area, an area involved with pain expectancy, in patients with higher frequency of migraine attacks. PAG connectivity with regions involved with the descending pain modulatory system (i.e., prefrontal cortex) was decreased in the migraineurs versus healthy individuals. Our results suggest that high frequency migraineurs may have diminished resistance to cephalic pain and a less efficient inhibitory pain modulatory response to external stressor (i.e., noxious heat). The findings support the notion that in migraine there is less effective pain modulation (viz., decreased pain inhibition or increased pain facilitation), potentially contributing to increased occurrence of attacks/chronification of migraine.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Clas N Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Danielle Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
| | - Rami Burstein
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
83
|
Munro G, Petersen S, Jansen-Olesen I, Olesen J. A unique inbred rat strain with sustained cephalic hypersensitivity as a model of chronic migraine-like pain. Sci Rep 2018; 8:1836. [PMID: 29382888 PMCID: PMC5789845 DOI: 10.1038/s41598-018-19901-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Animal models of migraine-like pain enabling ongoing study of behaviour typically involve the systemic administration of chemical vasodilators or dural administration of inflammatory algogens. However, neither method mediates prolonged effects on behavior indicative of enduring pathophysiological changes occurring within dural or trigeminal pain circuits. We generated successive generations of a unique inbred rat strain, spontaneous trigeminal allodynia (STA) rats, previously reported to exhibit an episodic migraine-like behavioural phenotype. We show that both male and female STA rats display robust and sustained reductions in periorbital thresholds to cutaneous mechanical stimulation. Otherwise, the general behavior (e.g. locomotor, grooming) of these rats appeared normal. In female STA rats, the mechanical hypersensitivity was confined to the cephalic region, manifested after puberty through adolescence, and was sustained into adulthood recapitulating the clinical manifestation of migraine. We exploited this hitherto unidentified chronic phenotype to show that the migraine-specific drugs sumatriptan (5-HT1B/1D receptor agonist) and olcegepant (CGRP receptor antagonist) could completely reverse cephalic hypersensitivity using a within subject cross-over paradigm. Our findings indicate that STA rats actually possess a phenotype indicative of migraine chronicity which is exquisitely sensitive to migraine therapeutics. This unique strain could prove to be an invaluable resource in preclinical migraine drug discovery.
Collapse
Affiliation(s)
- Gordon Munro
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark.
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark
| |
Collapse
|
84
|
Comparison of somatosensory cortex excitability between migraine and “strict-criteria” tension-type headache: a magnetoencephalographic study. Pain 2018; 159:793-803. [DOI: 10.1097/j.pain.0000000000001151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
85
|
Gasparini CF, Smith RA, Griffiths LR. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J Headache Pain 2017; 18:20. [PMID: 28194570 PMCID: PMC5307402 DOI: 10.1186/s10194-016-0711-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.
Collapse
Affiliation(s)
- Claudia Francesca Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD, 4222, Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn Robyn Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
86
|
Concomitant Migraine and Temporomandibular Disorders are Associated With Higher Heat Pain Hyperalgesia and Cephalic Cutaneous Allodynia. Clin J Pain 2017; 32:882-8. [PMID: 26905569 DOI: 10.1097/ajp.0000000000000369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to assess differences in the levels of hyperalgesia and cutaneous allodynia (CA) among women with migraine, temporomandibular disorders (TMD), or both. MATERIALS AND METHODS Eighty women participated in the study. Mean ages for the control group, TMD group, migraine group, and migraine+TMD group were 26.15 (95% confidence interval [CI], 28.73 to 23.57), 31.65 (95% CI, 37.82 to 25.48), 35.05 (95% CI, 40.37 to 29.73), and 34.20 (95% CI, 37.99 to 30.41) years, respectively. The 12-item Allodynia Symptom Checklist was administered to assess CA. All participants underwent the Quantitative Sensory Test to determine the cold-pain and heat-pain thresholds. Mechanical pain thresholds were assessed using Semmes-Weinstein monofilaments. One-way analysis of variance and χ tests were used for statistical analysis. Alpha was set at 0.05 level for statistical significance. RESULTS For all sites evaluated, the mean cold-pain threshold values were significantly lower in the TMD, migraine, and TMD+migraine groups compared with the control group. However, the mean heat-pain threshold values in the extracephalic region were significantly smaller only for the TMD+migraine group compared with the control group (41.94°C; 95% CI, 40.54 to 43.34 vs. 44.79°C; 95% CI, 43.45 to 46.12; P=0.03). Mechanical hyperalgesia in orofacial and neck sites was significantly lower in the TMD and TMD+migraine groups compared with the control group. Mean total 12-item Allodynia Symptom Checklist score in the TMD+migraine group was significantly higher than in the migraine group (9.53; 95% CI, 7.45 to 11.60 vs. 6.95; 95% CI, 5.35 to 8.55; P=0.02). CONCLUSIONS More pronounced levels of hyperalgesia and CA were found in patients with both TMD and migraine. Thus, it is suggested that the concomitant presence of TMD and migraine may be related to intensification of central sensitization.
Collapse
|
87
|
De Icco R, Martinelli D, Bitetto V, Fresia M, Liebler E, Sandrini G, Tassorelli C. Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: A randomized, cross-over, sham-controlled study. Cephalalgia 2017; 38:1658-1664. [PMID: 29154689 DOI: 10.1177/0333102417742347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction The mechanism of action of non-invasive vagal nerve stimulation in the treatment of migraine is elusive. We studied its effect in a human model of pain, the nociceptive withdrawal reflex. Methods We enrolled 10 healthy subjects who underwent active non-invasive vagal nerve stimulation and sham treatment in a randomized, cross-over, sham-controlled study. Non-invasive vagal nerve stimulation was delivered with gammaCore®. The assessment of the nociceptive withdrawal reflex was performed at baseline (T0) and at 5 (T5) and 30 (T30) minutes after stimulation. Results Non-invasive vagal nerve stimulation significantly increased the reflex threshold to single stimulus at both T5 and T30 and the temporal summation threshold at T30. Sham treatment did not modify any parameters. Discussion These findings are consistent with a modulation of central descending pathways for pain control. An altered spinal and supraspinal control of pain has been described in primary headache, so this effect may partially explain the therapeutic effect of non-invasive vagal nerve stimulation.
Collapse
Affiliation(s)
- Roberto De Icco
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Martinelli
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Vito Bitetto
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy
| | - Mauro Fresia
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy
| | | | - Giorgio Sandrini
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- 1 Headache Science Centre, C. Mondino National Neurological Institute, Pavia, Italy.,2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
88
|
Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger. Pain 2017; 157:2722-2730. [PMID: 27841839 DOI: 10.1097/j.pain.0000000000000692] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine is one of the most common and most disabling disorders. Between attacks, migraine patients are otherwise normal but are sensitized to nonnoxious events known as triggers. The purpose of these studies was to investigate whether a headache-like event causes sensitization, or priming, to subsequent subthreshold events. Interleukin-6 (IL-6) was applied to the rat cranial dura mater which produced cutaneous facial and hind paw allodynia that lasted 24 hours. At 72 hours, IL-6-treated rats developed allodynia in response to dural stimulation with either a pH 6.8 or pH 7.0 solution and to a systemic nitric oxide (NO) donor, a well-known migraine trigger. Vehicle-treated rats did not respond to either pH stimulus or to the NO donor, demonstrating that IL-6 exposure primes rats to subthreshold stimuli. Inhibitors of brain-derived neurotrophic factor (BDNF) signaling given either systemically or intracisternally 24 hours after IL-6 eliminated responses to dural pH stimulation at 72 hours. Additionally, intracisternal administration of BDNF without previous dural stimulation produced allodynia and once resolved, animals were primed to dural pH 6.8/pH 7.0 and a systemic NO donor. Finally, hind paw IL-6 produced paw allodynia but not priming to paw injection of pH 7.0 at 72 hours demonstrating differences in priming depending on location. These data indicate that afferent input from the meninges produces BDNF-dependent priming of the dural nociceptive system. This primed state mimics the interictal period of migraine where attacks can be triggered by normally nonnoxious events and suggests that BDNF-dependent plasticity may contribute to migraine.
Collapse
|
89
|
Barbanti P, Ferroni P. Onabotulinum toxin A in the treatment of chronic migraine: patient selection and special considerations. J Pain Res 2017; 10:2319-2329. [PMID: 29033605 PMCID: PMC5628659 DOI: 10.2147/jpr.s113614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Discovered by serendipity, onabotulinum toxin A (BoNT-A) is the only US Food and Drug Administration-approved treatment for the prevention of chronic migraine (CM), one of the most disabling and burdensome human conditions. Its efficacy, safety and tolerability, proved by the largest and longest migraine therapeutic trial (the Phase III Research Evaluating Migraine Prophylaxis Therapy program [PREEMPT]), have been replicated by various real-life studies also in the presence of medication overuse. The benefit of BoNT-A prophylaxis is likely due to its ability to counteract peripheral and central nociceptive sensitization through reversible chemical denervation of pericranial sensitive afferents. Its efficacy increases considerably over time during long-term treatments, significantly varying among patients. The present review focuses on the state-of-the art of current knowledge on putative instrumental, biochemical and clinical predictors of BoNT-A responsiveness, outlining the need for a thorough characterization of the full phenotypic migraine picture when trying to predict good responders. Available evidence suggests that disentangling the BoNT-A responsiveness puzzle requires 1) a reappraisal of easy-obtainable clinical details (eg, site and quality of pain, presence of cranial autonomic symptoms), 2) a proper stratification of patients with CM according to their headache frequency, 3) the evaluation of potential synergistic effects of concomitant prophylaxis/treatment and 4) a detailed assessment of modifiable risk factors evolution during treatment.
Collapse
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences
| | - Patrizia Ferroni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
90
|
Protein Kinase C γ Contributes to Central Sensitization in a Rat Model of Chronic Migraine. J Mol Neurosci 2017; 63:131-141. [PMID: 28842814 DOI: 10.1007/s12031-017-0960-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
Abstract
Protein kinase C γ (PKCγ) is a critical regulator of central sensitization and is widely recognized to be involved in the pathogenesis of chronic migraine (CM). However, the function of PKCγ in CM remains unknown. This study investigated the role of PKCγ on pathogenesis of CM. We repeated infusions of inflammatory soup (IS) on the intact dura of conscious rats to model recurrent trigeminovascular or dural nociceptor activation assumed to occur in patients with CM. The von Frey test was then used to detect changes in pain threshold. QT-PCR, western blotting, and double immunofluorescence staining were performed to detect the expression and location of PKCγ in the trigeminal nucleus caudalis (TNC) and the expressions of calcitonin gene-related peptide (CGRP), c-Fos, and phosphorylation level of GluR1 subunit at serine 831. Chelerythrine chloride (CHE) and phorbol 12-myristate 13-acetate (PMA) were administrated to investigate the role of PKCγ in central sensitization. We found that repeated infusions of IS induced mechanical allodynia. PKCγ was significantly increased in TNC after CM. Furthermore, inhibition of PKCγ by CHE relieved allodynia and reduced the expression of CGRP and c-Fos. Activation of PKCγ by PMA aggravated allodynia and increased the expression of CGRP and c-Fos. In addition, inhibition of PKCγ reduced the phosphorylation level of GluR1; in contrast, activation of PKCγ increased the phosphorylation level of GluR1. These results suggest PKCγ-induced GluR1 phosphorylation might participate in central sensitization in a rat model of CM. We suggest that PKCγ is a potential therapeutic target for CM.
Collapse
|
91
|
Guy N, Voisin D, Mulliez A, Clavelou P, Dallel R. Medication overuse reinstates conditioned pain modulation in women with migraine. Cephalalgia 2017; 38:1148-1158. [DOI: 10.1177/0333102417727545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study investigated the effects of medication overuse and withdrawal on modulation of pain processing in women with migraine. Temporal summation of laser-evoked thermal pain was used to measure the effects of conditioned pain modulation. Methods 36 female participants (12 healthy volunteers, 12 with episodic migraine and 12 with medication overuse headache) were included in a two session protocol. Medication overuse headache subjects were also tested three weeks after medication overuse headache withdrawal. Mechanical and laser-evoked thermal pain thresholds were measured on the back of the non-dominant hand where, later, temporal summation of laser-evoked thermal pain to repetitive thermal stimuli was elicited for 30 min, at an intensity producing moderate pain. Between the 10th and 20th minutes, the contralateral foot was immersed into a water bath at a not painful (30℃) or painfully cold (8℃; conditioned pain modulation) temperature. Results Episodic migraine, medication overuse headache and medication overuse headache withdrawal were associated with an increase in extracephalic temporal summation of laser-evoked thermal pain as compared to healthy volunteer subjects, while there was no alteration of laser-evoked thermal and mechanical extracephalic pain thresholds in these subjects. Conditioned pain modulation was highly efficient in temporal summation of laser-evoked thermal pain in healthy volunteer subjects, with a solid post-effect (reduction of pain). Conditioned pain modulation was still present, but reduced, in episodic migraine. By contrast, conditioned pain modulation was normal in medication overuse headache and strongly reduced in medication overuse headache withdrawal. Furthermore, in medication overuse headache withdrawal, the post-effect was no longer a decrease, but a facilitation of pain. Conclusions These data show that a decrease in conditioned pain modulation does not underlie medication overuse headache in women. On the contrary, medication overuse reinstated conditioned pain modulation in female migraine patients. They also identify different phenotypes of pain modulation in migraine patients. Registration number N° 2008-A00471-54.
Collapse
Affiliation(s)
- Nathalie Guy
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Daniel Voisin
- Neurocentre Magendie, Inserm U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | | | - Pierre Clavelou
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| |
Collapse
|
92
|
Friedman DI, Quiros PA, Subramanian PS, Mejico LJ, Gao S, McDermott M, Wall M. Headache in Idiopathic Intracranial Hypertension: Findings From the Idiopathic Intracranial Hypertension Treatment Trial. Headache 2017; 57:1195-1205. [PMID: 28752894 DOI: 10.1111/head.13153] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To characterize the phenotype, headache-related disability, medical co-morbidities, use of symptomatic headache medications, and headache response to study interventions in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT). METHODS Patients with untreated IIH and mild vision loss enrolled in the IIHTT and randomized to acetazolamide (ACZ) and weight loss or placebo (PLB) and weight loss had prospective assessment of headache disability using the Headache Impact Test-6 (HIT-6) questionnaire. Subjects with headache at the baseline visit were assigned a headache phenotype using the International Classification for Headache Disorders version 3 beta (ICHD-3b). Medication overuse was determined using the participants' reported medication use for the preceding month and ICHD-3b thresholds for diagnosing medication overuse headache. We investigated relationships between headache disability and various other clinical characteristics at baseline and at 6 months. RESULTS Headache was present in 139 (84%) of the 165 enrollees at baseline. The most common headache phenotypes were migraine (52%), tension-type headache (22%), probable migraine (16%), and probable tension-type headache (4%). Fifty-one (37%) participants overused symptomatic medications at baseline, most frequently simple analgesics. A similar amount of improvement in the adjusted mean (± standard error) HIT-6 score occurred in the ACZ (-9.56 ± 1.05) and PLB groups (-9.11 ± 1.14) at 6 months (group difference -0.45, 95% CI -3.50 to 2.60, P = .77). Headache disability did not correlate with any of the studies, variables of interest, which included: the lumbar puncture opening pressure at baseline or at 6 months, body mass index, the amount of weight lost, papilledema grade, perimetric mean deviation, or the use of hormonal contraception. Headache disability was significantly associated with patient-reported quality of life in the physical, mental, and visual domains. CONCLUSIONS Headache was common, of varied character, disabling, and associated with poorer quality of life in our cohort of patients with mild visual impairment. The lack of correlation between headache disability and cerebrospinal fluid (CSF) pressure at baseline and at the end of the randomized phase of the study implies that headache in IIH may be related to factors other than intracranial hypertension, and that specific headache treatment is needed in addition to therapies directed at lowering CSF pressure.
Collapse
Affiliation(s)
- Deborah I Friedman
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA
| | - Peter A Quiros
- Departments of Neurology & Neurotherapeutics and Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prem S Subramanian
- Departments of Ophthalmology, Neurology and Neurosurgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Departments of Neurology and Ophthalmology, SUNY UMU, Syracuse, NY, USA
| | - Luis J Mejico
- Departments of Neurology and Ophthalmology, SUNY UMU, Syracuse, NY, USA
| | - Shan Gao
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael McDermott
- Departments of Biostatistics and Computational Biology, Neurology; Center for Neurotherapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael Wall
- Departments of Neurology and Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
93
|
Increased Amplitude of Thalamocortical Low-Frequency Oscillations in Patients with Migraine. J Neurosci 2017; 36:8026-36. [PMID: 27466345 DOI: 10.1523/jneurosci.1038-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED For many years, neurobiological theories have emphasized the importance of neuronal oscillations in the emergence of brain function. At the same time, clinical studies have shown that disturbances or irregularities in brain rhythms may relate to various common neurological conditions, including migraine. Increasing evidence suggests that the CNS plays a fundamental role in the predisposition to develop different forms of headache. Here, we present human imaging data that strongly support the presence of abnormal low-frequency oscillations (LFOs) in thalamocortical networks of patients in the interictal phase of migraine. Our results show that the main source of arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus. In addition, spontaneous LFOs in the thalamus were selectively associated with the headache attack frequency, meaning that the varying amplitude of dysrhythmia could predispose patients to recurrent attacks. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability. We further speculate that the intrinsic dynamics of thalamocortical network oscillations are crucial for early sensory processing and therefore could underlie important pathophysiological processes involved in multisensory integration. SIGNIFICANCE STATEMENT In many cases, migraine attacks are thought to begin centrally. A major obstacle to studying intrinsic brain activity has been the identification of the precise anatomical structures and functional networks that are involved in migraine. Here, we present imaging data that strongly support the presence of abnormal low-frequency oscillations in thalamocortical networks of patients in the interictal phase of migraine. This arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus and was selectively associated with headache attack frequency. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability and higher-level processes involved in multisensory integration.
Collapse
|
94
|
Jia Z, Tang W, Zhao D, Yu S. Disrupted functional connectivity between the periaqueductal gray and other brain regions in a rat model of recurrent headache. Sci Rep 2017; 7:3960. [PMID: 28638117 PMCID: PMC5479837 DOI: 10.1038/s41598-017-04060-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/25/2017] [Indexed: 01/03/2023] Open
Abstract
Functional connectivity (FC) has been used to investigate the pathophysiology of migraine. We aimed to identify atypical FC between the periaqueductal gray (PAG) and other brain areas in rats induced by repeated meningeal nociception. The rat model was established by infusing an inflammatory soup (IS) through supradural catheters in conscious rats. Quiescent and face-grooming behaviors were observed to assess nociceptive behavior. FC analysis seeded on the PAG was performed on rats 21 days after IS infusion. The rats exhibited nociceptive behavior correlates of human behaviors associated with migraine after IS infusion. The PAG showed increased FC with the prefrontal cortex, cingulate gyrus, and motor cortex but decreased FC with the basal ganglia, dorsal lateral thalamus, internal capsule and prelimbic cortex in the rat model. The atypical FC of the PAG with brain regions in the rat model that are involved in nociception, somatosensory processing, emotional processing, and pain modulation are consistent with the clinical data from migraineurs, indicate that resting-state FC changes in migraine patients may be a consequence of headache attacks, and further validate this rat model of chronic migraine.
Collapse
Affiliation(s)
- Zhihua Jia
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Tang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dengfa Zhao
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
95
|
Dallel R, Descheemaeker A, Luccarini P. Recurrent administration of the nitric oxide donor, isosorbide dinitrate, induces a persistent cephalic cutaneous hypersensitivity: A model for migraine progression. Cephalalgia 2017; 38:776-785. [DOI: 10.1177/0333102417714032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background A subgroup of migraineurs experience an increase in attack frequency leading to chronic migraine. Methods We assessed in rats the roles of dose and repeat administration of systemic isosorbide dinitrate (ISDN), a nitric oxide donor, on the occurrence and development of cephalic/face and extracephalic/hindpaw mechanical allodynia as a surrogate of migraine pain, and the effect of acute systemic sumatriptan and olcegepant and chronic systemic propranolol on these behavioral changes. Results A single high (H-ISDN) but not low (L-ISDN) dose of ISDN induces a reversible cephalic and extracephalic mechanical allodynia. However, with repeat administration, L-ISDN produces reversible cephalic but never extracephalic allodynia, whereas H-ISDN induces cephalic and extracephalic allodynia that are both potentiated. H-ISDN-induced cephalic allodynia thus gains persistency. Sumatriptan and olcegepant block single H-ISDN-induced behavioral changes, but only olcegepant reduces these acute changes when potentiated by repeat administration. Neither sumatriptan nor olcegepant prevent chronic cephalic hypersensitivity. Conversely, propranolol blocks repeat H-ISDN-induced chronic, but not acute, behavioral changes. Conclusions Repeated ISDN administration appears to be a naturalistic rat model for migraine progression, suitable for screening acute and preventive migraine therapies. It suggests frequent and severe migraine attacks associated with allodynia may be a risk factor for disease progression.
Collapse
Affiliation(s)
- Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- Centre Hospitalier Universitaire (CHU) de Clermont-Ferrand, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Philippe Luccarini
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| |
Collapse
|
96
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
97
|
Munro G, Jansen-Olesen I, Olesen J. Animal models of pain and migraine in drug discovery. Drug Discov Today 2017; 22:1103-1111. [PMID: 28476535 DOI: 10.1016/j.drudis.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Preclinical research activities in relation to pain typically involve the 'holy trinity' of nociceptive, inflammatory and neuropathic pain for purposes of target validation and defining target product profiles of novel analgesic compounds. For some reason it seems that headache or migraine are rarely considered as additional entities to explore. Frontline medications used in the treatment of, for example, inflammatory pain, neuropathic pain and migraine (NSAIDs versus pregabalin/duloxetine versus triptans) reveal distinct differences in pathophysiology that partially explain this approach. Nevertheless, for many patients enduring chronic pain, regardless of aetiology, high unmet needs remain. By focusing more on commonalities shared between neuropathic pain and headache disorders such as migraine, drug discovery efforts could be spread more efficiently across a larger indication area. Here, some of the most commonly used models and methods employed within 'pain and migraine' drug development will be presented. Recent advances within these disciplines suggest that, with the addition of a few extra carefully chosen ancillary models and/or endpoints, the relative value in terms of resources used, reciprocal flow of information and net worth of a 'typical' package could be increased substantially for the pain and migraine fields.
Collapse
Affiliation(s)
- Gordon Munro
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Nordre Ringvej 69, 2600 Glostrup, Denmark.
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Nordre Ringvej 69, 2600 Glostrup, Denmark
| |
Collapse
|
98
|
Abstract
Aim To provide an overview of mechanisms underlying craniofacial pain; to highlight peripheral and central adaptations that may promote chronification of pain in craniofacial pain states such as migraine and temporomandibular disorders (TMD). Background Pain is a common symptom associated with disorders involving craniofacial tissues including the teeth and their supporting structures, the temporomandibular joint and the muscles of the head. Most acute painful craniofacial conditions are easily recognized and well managed, but others, especially those that are chronic (e.g., migraine, TMD and trigeminal neuropathies), present clinical challenges. Preclinical studies have provided substantial information about the anatomical and physiological mechanisms related to the initiation and modulation of nociceptive signals in the trigeminal system. While knowledge of the mechanisms underlying chronic craniofacial pain remains limited, both clinical and preclinical investigations suggest that changes in afferent inputs to the brain as well as in brain structure and modulatory pathways occur in chronic pain. Collectively, these changes result in amplification of nociception that promotes and sustains craniofacial chronic pain states. Conclusions The increased understanding gained of the physiological and pathological processing of nociception in the trigeminal system has provided new perspectives for the mechanistic understanding of acute craniofacial pain conditions and the peripheral and central adaptations that are related to pain chronification. Such knowledge may contribute to improvements in currently available treatments as well as to the development of novel analgesic therapies.
Collapse
Affiliation(s)
- Juliana Geremias Chichorro
- 1 Departamento de Farmacologia, Universidade Federal do Parana - UFPR Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Frank Porreca
- 2 Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Barry Sessle
- 3 Department of Oral Physiology Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,4 Department of Physiology Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
99
|
Gaul C, Holle-Lee D, Straube A. [Botulinum toxin type A in headache treatment : Established and experimental indications]. DER NERVENARZT 2017; 87:853-9. [PMID: 27300190 DOI: 10.1007/s00115-016-0138-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years botulinum toxin type A has been used increasingly more in the treatment of specific headache disorders. Especially regarding chronic migraine with and without combined medication overuse, convincing randomized studies have proven the efficacy of this treatment option and have led to approval for this indication. Regarding other headache entities, such as episodic migraine, tension-type headache, trigeminal autonomic cephalalgia (TAC), neuralgic, neuropathic and myofascial pain, currently available scientific data on the efficacy of botulinum toxin type A are scarce and often ambiguous. The exact underlying mechanisms of the influence of botulinum toxin type A on the pathophysiology of headache are not completely clear but an influence on the release of calcitonin gene-related peptide (CGRP) seems to play a crucial role. This article summarizes the most important studies as well as experiences of treatment with botulinum toxin type A regarding different headache entities.
Collapse
Affiliation(s)
- C Gaul
- Migräne- und Kopfschmerzklinik Königstein, Ölmühlweg 31, 61462, Königstein im Taunus, Deutschland.
| | - D Holle-Lee
- Klinik für Neurologie und Westdeutsches Kopfschmerzzentrum Essen, Universitätsklinikum Essen, Essen, Deutschland
| | - A Straube
- Klinik für Neurologie, Ludwig-Maximilians-Universität, München, Deutschland
| |
Collapse
|
100
|
Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7203458. [PMID: 28393079 PMCID: PMC5368391 DOI: 10.1155/2017/7203458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 11/23/2022]
Abstract
Tyrosine phosphorylation of NR2B (NR2B-pTyr), a subunit of the N-methyl-D-aspartate (NMDA) receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM) through calcitonin gene-related peptide (CGRP) in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO) was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM.
Collapse
|