51
|
Uraizee I, Cheng S, Hung CL, Verma A, Thomas JD, Zile MR, Aurigemma GP, Solomon SD. Relation of N-terminal pro-B-type natriuretic peptide with diastolic function in hypertensive heart disease. Am J Hypertens 2013; 26:1234-41. [PMID: 23792241 DOI: 10.1093/ajh/hpt098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Elevated natriuretic peptide levels in asymptomatic individuals without heart failure are associated with increased risk of adverse cardiovascular outcomes and may reflect subclinical cardiac dysfunction. METHODS In a sample of 313 asymptomatic individuals (51% women, mean age 61 years) with hypertension and diastolic dysfunction, we examined the association of plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) with both conventional and advanced echocardiographic measures of systolic and diastolic function, including myocardial strain, using speckle-tracking-based analyses. RESULTS In univariate analyses, higher NT-proBNP was associated with greater left ventricular mass index (P = 0.003), left atrial volume index (P = 0.007), lateral E' velocity (P < 0.0001), E/E' ratio (P < 0.0001), peak global longitudinal systolic strain (P = 0.015), systolic strain rate (P = 0.021), and early diastolic strain rate (P < 0.0001). In multivariable analyses, NT-proBNP remained associated with measures of diastolic dysfunction, including lateral E' velocity (P = 0.013) and the E/E' ratio (P = 0.008). However, early diastolic strain rate was the echocardiographic parameter most strongly associated with NT-proBNP (P = 0.003). CONCLUSIONS In the setting of asymptomatic hypertensive heart disease and preserved ejection fraction, elevation in natriuretic peptide levels is predominantly associated with subclinical diastolic dysfunction.
Collapse
Affiliation(s)
- Imran Uraizee
- Brigham and Women's Hospital, Cardiovascular Division, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Del Ry S, Cabiati M, Martino A, Cavallini C, Caselli C, Aquaro G, Battolla B, Prescimone T, Giannessi D, Mattii L, Lionetti V. High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction. Int J Cardiol 2013; 168:2426-34. [DOI: 10.1016/j.ijcard.2013.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
|
53
|
Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium. PLoS One 2013; 8:e72278. [PMID: 23991079 PMCID: PMC3749099 DOI: 10.1371/journal.pone.0072278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 07/15/2013] [Indexed: 01/07/2023] Open
Abstract
Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. Conclusions Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered.
Collapse
|
54
|
Kim HY, Cho KW, Xu DY, Kang DG, Lee HS. Endogenous ACh tonically stimulates ANP secretion in rat atria. Am J Physiol Heart Circ Physiol 2013; 305:H1050-6. [PMID: 23913708 DOI: 10.1152/ajpheart.00469.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exogenous acetylcholine (ACh) is known to stimulate atrial natriuretic peptide (ANP) secretion concomitantly with a decrease in atrial pulse pressure. However, the role of intrinsic ACh in the regulation of ANP secretion remains unknown. Recently, it was shown that nonneuronal and neuronal ACh is present in the cardiac atria. From this finding we hypothesize that endogenously released ACh is involved in the regulation of ANP secretion in an autocrine or paracrine manner in the atria. Experiments were performed in isolated beating rat atria. ANP was measured using radioimmunoassay. To increase the availability of the ACh in the extracellular space of the atrium, its degradation was inhibited with an inhibitor of acetylcholinesterase. Acetylcholinesterase inhibition with physostigmine increased ANP secretion concomitantly with a decrease in atrial dynamics in a concentration-dependent manner. Inhibitors of M2 muscarinic ACh receptor (mAChR), methoctramine, and ACh-activated K(+) (KACh(+)) channels, tertiapin-Q, abolished the physostigmine-induced changes. The effects were not observed in the atria from rats treated with pertussis toxin. Furthermore, the physostigmine-induced effects were attenuated by an inhibitor of high-affinity choline transporter, hemicholinium-3, which is a rate-limiting step of ACh synthesis. Inhibitors of the mAChR signaling pathway and ACh synthesis also attenuated the basal levels of ANP secretion and accentuated atrial dynamics. These findings suggest that endogenously released ACh tonically stimulates ANP secretion from atrial cardiomyocytes via activation of M2 mAChR-Gi/o-KACh(+) channel signaling. It is also suggested that the ACh-ANP signaling is implicated in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Body-fluid Research Center & College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, Republic of Korea; and
| | | | | | | | | |
Collapse
|
55
|
Abstract
Heart failure is an important public health problem that is increasing in prevalence throughout the world. Not only is this condition common, but it is associated with significant morbidity and mortality as well as high costs to medical care systems. Vasodilator drugs help unload the heart and may have other effects that could benefit heart failure patients. Consequently, they have emerged as an important therapeutic approach for patients with this condition. Novel vasodilator therapies that are currently in development target new pathways, potentially giving clinicians alternate options for improving outcomes in this vulnerable population. This review focuses on investigational drugs that have the ability to dilate blood vessels amongst their therapeutic properties. These drugs include the natriuretic peptides that activate particulate guanylate cyclase, the novel agent cinaciguat that activates the soluble guanylate cyclase system, and finally a recombinant form of the naturally occurring vasodilating agent relaxin, a hormone that mediates many of the changes that allows the cardiovascular system to successfully adapt to pregnancy.
Collapse
|
56
|
Glezeva N, Collier P, Voon V, Ledwidge M, McDonald K, Watson C, Baugh J. Attenuation of monocyte chemotaxis--a novel anti-inflammatory mechanism of action for the cardio-protective hormone B-type natriuretic peptide. J Cardiovasc Transl Res 2013; 6:545-57. [PMID: 23625718 DOI: 10.1007/s12265-013-9456-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/27/2013] [Indexed: 01/20/2023]
Abstract
B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.
Collapse
Affiliation(s)
- Nadezhda Glezeva
- School of Medicine and Medical Science, UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
57
|
Korostyshevskaya IM, Maksimov VF. Age-related structural and functional characteristics of cardiac myoendocrine cells of rats in a normal state and with hereditary hypertension. Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Borgognone A, Lowe KL, Watson SP, Madhani M. Natriuretic peptides induce weak VASP phosphorylation at Serine 239 in platelets. Platelets 2013; 25:1-7. [PMID: 23469931 DOI: 10.3109/09537104.2013.773969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyclic guanosine-3',5'-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; e.g. atrial NP [ANP]), which activate soluble and particulate guanylyl cyclases, respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate vasodilator-stimulated phosphoprotein (VASP) at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis.
Collapse
Affiliation(s)
- Alessandra Borgognone
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| | | | | | | |
Collapse
|
59
|
Del Ry S. C-type natriuretic peptide: a new cardiac mediator. Peptides 2013; 40:93-8. [PMID: 23262354 DOI: 10.1016/j.peptides.2012.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023]
Abstract
Natriuretic peptides are endogenous hormones released by the heart in response to myocardial stretch and overload. While atrial and brain natriuretic peptides (ANP, BNP) were immediately considered cardiac hormones and their role was well-characterized and defined in predicting risk in cardiovascular disease, evidence indicating the role of C-type natriuretic peptide (CNP) in cardiovascular regulation was slow to emerge until about 8 years ago. Since then, considerable literature on CNP and the cardiovascular system has been published; the aim of this review is to examine current literature relating to CNP and cardiovascular disease, in particular its role in heart failure (HF) and myocardial infarction (MI). This review retraces the fundamental steps in research that led understanding the role of CNP in HF and MI; from increased CNP mRNA expression and plasmatic concentrations in humans and in animal models, to detection of CNP expression in cardiomyocytes, to its evaluation in human leukocytes. The traditional view of CNP as an endothelial peptide has been surpassed by the results of many studies published in recent years, and while its physiological role is still under investigation, information is now available regarding its contribution to cardiovascular function. Taken together, these observations suggest that CNP and its specific receptor, NPR-B, can play a very important role in regulating cardiac hypertrophy and remodeling, indicating NPR-B as a new potential drug target for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- S Del Ry
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| |
Collapse
|
60
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
61
|
Matheeussen V, Jungraithmayr W, De Meester I. Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharmacol Ther 2012; 136:267-82. [DOI: 10.1016/j.pharmthera.2012.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 01/21/2023]
|
62
|
Benditt DG, Chen LY. Peptides in Postural Orthostatic Tachycardia Syndrome. J Am Coll Cardiol 2012; 60:321-3. [DOI: 10.1016/j.jacc.2012.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
63
|
Korostyshevskaya IM, Maksimov VF. Where and when natriuretic peptides are secreted in the heart. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Vink S, Jin A, Poth K, Head G, Alewood P. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59:434-45. [DOI: 10.1016/j.toxicon.2010.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
65
|
Matera MG, Calzetta L, Passeri D, Facciolo F, Rendina EA, Page C, Cazzola M, Orlandi A. Epithelium integrity is crucial for the relaxant activity of brain natriuretic peptide in human isolated bronchi. Br J Pharmacol 2012; 163:1740-54. [PMID: 21410689 DOI: 10.1111/j.1476-5381.2011.01339.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Brain natriuretic peptide (BNP) plays an important role in several biological functions, including bronchial relaxation. Here, we have investigated the role of BNP and its cognate receptors in human bronchial tone. EXPERIMENTAL APPROACH Effects of BNP on responses to carbachol and histamine were evaluated in non-sensitized, passively sensitized, epithelium-intact or denuded isolated bronchi and in the presence of methoctramine, N(ω) -nitro-L-arginine methyl ester (L-NAME) and aminoguanidine. Natriuretic peptide receptors (NPRs) were investigated by immunohistochemistry, RT-PCR and real-time PCR. Release of NO and acetylcholine from bronchial tissues and cultured BEAS-2B bronchial epithelial cells was also investigated. KEY RESULTS BNP reduced contractions mediated by carbachol and histamine, with decreased E(max) (carbachol: 22.7 ± 4.7%; histamine: 59.3 ± 1.8%) and increased EC(50) (carbachol: control 3.33 ± 0.88 µM, BNP 100 ± 52.9 µM; histamine: control 16.7 ± 1.7 µM, BNP 90 ± 30.6 µM); BNP was ineffective in epithelium-denuded bronchi. Among NPRs, only atrial NPR (NPR1) transcripts were detected in bronchial tissue. Bronchial NPR1 immunoreactivity was detected in epithelium and inflammatory cells but faint or absent in airway smooth muscle cells. NPR1 transcripts in bronchi increased after incubation with BNP, but not after sensitization. Methoctramine and quinine abolished BNP-induced relaxant activity. The latter was associated with increased bronchial mRNA for NO synthase and NO release, inhibited by L-NAME and aminoguanidine. In vitro, BNP increased acetylcholine release from bronchial epithelial cells, whereas NO release was unchanged. CONCLUSIONS AND IMPLICATIONS Epithelial cells mediate the BNP-induced relaxant activity in human isolated bronchi.
Collapse
Affiliation(s)
- Maria G Matera
- Unit of Pharmacology, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Monti LD, Lucotti PCG, Setola E, Rossodivita A, Pala MG, Galluccio E, LaCanna G, Castiglioni A, Cannoletta M, Meloni C, Zavaroni I, Bosi E, Alfieri O, Piatti PM. Effects of chronic elevation of atrial natriuretic peptide and free fatty acid levels in the induction of type 2 diabetes mellitus and insulin resistance in patients with mitral valve disease. Nutr Metab Cardiovasc Dis 2012; 22:58-65. [PMID: 20709514 DOI: 10.1016/j.numecd.2010.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The relationship between atrial natriuretic peptide (ANP), increased free fatty acid (FFA) and insulin resistance in patients with mitral valve disease (MVD), a group characterised by elevated atrial pressure and increased ANP levels, is not defined. The present study was performed to evaluate, in MVD patients, the relationship between increased ANP and FFA levels and insulin resistance and the role of mitral valve replacement/repair in ameliorating these metabolic alterations. Conversely, coronary heart disease (CHD) patients were evaluated before and after coronary artery bypass grafting (CABG), since they are known to be insulin resistant in the presence of chronic FFA increase. METHODS AND RESULTS Fifty MVD patients and 55 CHD patients were studied before and 2 months after surgery and compared with 166 normal subjects. Before surgery, 56% of MVD patients had impaired glucose tolerance or newly diagnosed type 2 diabetes after a standard oral glucose load and this percentage decreased to 46% after surgery. In CHD, impaired glucose tolerance (IGT) or newly diagnosed type 2 diabetic patients were 67% of patients before and after CABG. In MVD, left atrial (LA) volume, ANP, FFA incremental area and insulin levels were higher and Insulin Sensitivity (IS) index significantly reduced while after surgery, LA volume, ANP and FFA significantly decreased and IS index significantly improved. In CHD, insulin resistance and hyperinsulinaemia were present both before and after surgery with increased tumour necrosis factor (TNF)-α and interleukin (IL)-6 levels. CONCLUSION In MVD, a higher degree of abnormal glucose tolerance and insulin resistance are associated to increased levels of ANP and FFA, while these metabolic alterations are improved by mitral valve replacement/repair surgery. Clinical Trial.gov registration number NCT 00520962.
Collapse
Affiliation(s)
- L D Monti
- Cardiodiabetes and Core Laboratory, Metabolic and Cardiovascular Science Division, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Crivellente F, Bocchini N, Bonato M, Vandin L, Faustinelli I, Cristofori P. Atrial natriuretic peptides in Han Wistar, Sprague-Dawley and spontaneously hypertensive rats. J Appl Toxicol 2011; 32:521-6. [PMID: 22083722 DOI: 10.1002/jat.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 11/06/2022]
Abstract
The atrial natriuretic peptide (ANP) and its precursor (N-terminal fragment of atrial natriuretic peptide, NT-proANP) are natriuretic peptides released into the circulation as a consequence of an acute atrial stretch. As for the brain natriuretic peptide and its N-terminal fragment, the biological significance of ANP and NT-proANP has been widely studied in humans, but the literature is lacking information about the determination of these biomarkers in veterinary medicine and, in particular, in the toxicological species used in preclinical pharmaceutical drug development. This paper describes the evaluation of ANP and NT-proANP levels in a healthy population of Han Wistar and Sprague-Dawley rats, as well as in a rodent model of hypertension (Spontaneously Hypertensive rats). Both biomarkers were measured by mean of two commercially available enzyme immunoassays and serum levels were correlated with heart weight and histopathological findings in the heart, with the aim of building an integrated assessment of the significance of these biomarkers. Results obtained demonstrated that NT-proANP and ANP can be accurately measured in the different rat strains, with NT-proANP concentrations higher than those of ANP, as expected because of its longer half-life. In addition, both correlated well with cardiac hypertrophy evaluated by means of heart weight and histopathological examination. NT-proANP and ANP represent reliable markers of cardiac hypertrophy in the rat.
Collapse
|
68
|
Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R258. [PMID: 22032777 PMCID: PMC3334809 DOI: 10.1186/cc10519] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/27/2011] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) following cardiovascular surgery is a common disease process and is associated with both morbidity and mortality. The aim of our study was to evaluate the cardiovascular and renal effects of an atrial natriuretic peptide (ANP, carperitide) and a B-type (or brain) natriuretic peptide (BNP, nesiritide) for preventing and treating AKI in cardiovascular surgery patients. METHODS Electronic databases, including PubMed, EMBASE and references from identified articles were used for a literature search. RESULTS Data on the infusion of ANP or BNP in cardiovascular surgery patients was collected from fifteen randomized controlled trials and combined. The infusion of ANP or BNP increased the urine output and creatinine clearance or glomerular filtration rate, and reduced the use of diuretics and the serum creatinine levels. A meta-analysis showed that ANP infusion significantly decreased peak serum creatinine levels, incidence of arrhythmia and renal replacement therapy. The meta-analysis also showed that ANP or BNP infusion significantly decreased the length of ICU stay and hospital stay compared with controls. However, the combined data were insufficient to determine how ANP or BNP infusion during the perioperative period influences long-term outcome in cardiovascular surgery patients. CONCLUSIONS The infusion of ANP or BNP may preserve postoperative renal function in cardiovascular surgery patients. A large, multicenter, prospective, randomized controlled trial will have to be performed to assess the therapeutic potential of ANP or BNP in preventing and treating AKI in the cardiovascular surgical setting.
Collapse
|
69
|
Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule AD, McKie PM, Martin FL, Burnett JC. Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal Physiol 2011; 301:F943-52. [PMID: 21865266 DOI: 10.1152/ajprenal.00170.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal aging is characterized by structural changes in the kidney including fibrosis, which contributes to the increased risk of kidney and cardiac failure in the elderly. Studies involving healthy kidney donors demonstrated subclinical age-related nephropathy on renal biopsy that was not detected by standard diagnostic tests. Thus there is a high-priority need for novel noninvasive biomarkers to detect the presence of preclinical age-associated renal structural and functional changes. C-type natriuretic peptide (CNP) possesses renoprotective properties and is present in the kidney; however, its modulation during aging remains undefined. We assessed circulating and urinary CNP in a Fischer rat model of experimental aging and also determined renal structural and functional adaptations to the aging process. Histological and electron microscopic analysis demonstrated significant renal fibrosis, glomerular basement membrane thickening, and mesangial matrix expansion with aging. While plasma CNP levels progressively declined with aging, urinary CNP excretion increased, along with the ratio of urinary to plasma CNP, which preceded significant elevations in proteinuria and blood pressure. Also, CNP immunoreactivity was increased in the distal and proximal tubules in both the aging rat and aging human kidneys. Our findings provide evidence that urinary CNP and its ratio to plasma CNP may represent a novel biomarker for early age-mediated renal structural alterations, particularly fibrosis. Thus urinary CNP could potentially aid in identifying subjects with preclinical structural changes before the onset of symptoms and disease, allowing for the initiation of strategies designed to prevent the progression of chronic kidney disease particularly in the aging population.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Div. of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Rehman SU, Januzzi JL. Natriuretic Peptide testing in primary care. Curr Cardiol Rev 2011; 4:300-8. [PMID: 20066138 PMCID: PMC2801862 DOI: 10.2174/157340308786349499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 01/08/2023] Open
Abstract
The incidence, as well as the morbidity and mortality associated with heart failure (HF) continue to rise despite advances in diagnostics and therapeutics. A recent advance in the diagnostic and therapeutic approach to HF is the use of natriuretic peptide (NP) testing, including both B-type natriuretic peptide (BNP) and its amino terminal cleavage equivalent (NT-proBNP). NPs may be elevated at an early stage among those with symptoms as well among those without. The optimal approach for applying NP testing in general populations is to select the target population and optimal cut off values carefully. Superior diagnostic performance is observed among those with higher baseline risk (such as hypertensives or diabetics). As well, unlike for acute HF, the cut off value for outpatient testing for BNP is 20-40 pg/mL and for NTproBNP it is 100-150 ng/L. In symptomatic primary care patients, both BNP and NT-proBNP serve as excellent tools for excluding HF based on their excellent negative predictive values and their use may be cost effective. Among those with established HF, it is logical to assume that titration of treatment to achieve lower NPs levels may be advantageous. There are several ongoing trials looking at that prospect.
Collapse
Affiliation(s)
- Shafiq U Rehman
- Department of Medicine and Division of Cardiology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | | |
Collapse
|
71
|
Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, Naeije R, Dewachter L. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 2011; 33:1017-26. [PMID: 21606077 DOI: 10.1093/eurheartj/ehr111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Three-month chronic systemic-to-pulmonary shunting in growing piglets has been reported as an early pulmonary arterial hypertension (PAH) model with preserved right ventricular (RV) function. We sought to determine whether prolonged shunting might be associated with more severe PAH and RV failure. METHODS AND RESULTS Fourteen growing piglets were randomized to a sham operation or the anastomosis of the left innominate artery to the pulmonary arterial trunk. Six months later, the shunt was closed and the animals underwent haemodynamic evaluation followed by tissue sampling for pathobiological assessment. Prolonged shunting had resulted in increased mean pulmonary artery pressure (22 ± 2 versus 17 ± 1 mmHg) and pulmonary arteriolar medial thickness, while cardiac output was decreased. However, RV-arterial coupling was markedly deteriorated, with a ~50% decrease in the ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Lung tissue expressions of endothelin-1, angiopoietin-1, and bone morphogenetic protein receptor-2 were similarly altered compared with previously observed after 3-month shunting. At the RV tissue level, pro-apoptotic ratio of Bax-to-Bcl-2 expressions and caspase-3 activation were increased, along with an increase in cardiomyocyte size, while expressions in voltage-gated potassium channels (Kv1.5 and Kv2.1) and angiogenic factors (angiopoietin-2 and vascular endothelial growth factor) were decreased. Right ventricular expressions of pro-inflammatory cytokines [interleukin (IL)-1α, IL-1β, tumour necrosis factor-α (TNF-α)] and natriuretic peptide precursors (NPPA and NPPB) were increased. There was an inverse correlation between RV Ees/Ea and pro-apoptotic Bax/Bcl-2 ratios. CONCLUSIONS Prolonged left-to-right shunting in piglets does not further aggravate pulmonary vasculopathy, but is a cause of RV failure, which appears related to an activation of apoptosis and inflammation.
Collapse
Affiliation(s)
- Benoit Rondelet
- Physiology Laboratory, Faculty of Medicine, Université Libre de Bruxelles, 808 Lennik Road, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Dendroaspis natriuretic peptide is the most potent natriuretic peptide to cause relaxation of lower esophageal sphincter. ACTA ACUST UNITED AC 2011; 167:246-9. [DOI: 10.1016/j.regpep.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 01/16/2023]
|
73
|
Sips PY, Brouckaert P, Ichinose F. The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. Basic Res Cardiol 2011; 106:635-43. [PMID: 21394564 DOI: 10.1007/s00395-011-0167-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 01/16/2023]
Abstract
Nitric oxide (NO)-dependent soluble guanylate cyclase (sGC) activation is an important component of cardiac signal transduction pathways, including the cardioprotective signaling cascade induced by ischemic preconditioning (IPC). The sGCα subunit, which binds to the common sGCβ1 subunit, exists in two different isoforms, sGCα1 and sGCα2, but their relative physiological roles remain unknown. In the present study, we studied Langendorff-perfused isolated hearts of genetically engineered mice lacking functional sGCα1 (sGCα1KO mice), which is the predominant isoform in the heart. Our results show that the loss of sGCα1 has a positive inotropic and lusitropic effect on basal cardiac function, indicating an important role for sGCα1 in regulating basal myocardial contractility. Surprisingly, IPC led to a similar 35-40% reduction in infarct size and concomitant protein kinase Cε (PKCε) phosphorylation in both wild-type (WT) and sGCα1KO hearts subjected to 40 min of global ischemia and reperfusion. Inhibition of the activation of all sGC isoforms by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μmol/L) completely abolished the protection by IPC in WT and sGCα1KO hearts. NO-stimulated cGMP production was severely attenuated in sGCα1KO hearts compared to WT hearts, indicating that the sGCα2 isoform only produces minute amounts of cGMP after NO stimulation. Taken together, our results indicate that although sGCα1 importantly regulates cardiac contractility, it is not required for cardioprotection by IPC. Instead, our results suggest that possibly only minimal sGC activity, which in sGCα1KO hearts is provided by the sGCα2 isoform, is sufficient to transduce the cardioprotective signal induced by IPC via phosphorylation of PKCε.
Collapse
Affiliation(s)
- Patrick Y Sips
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
74
|
Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA, Berrera M, Surdo NC, Craig MA, Smith G, Hamilton G, Zaccolo M. cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res 2011; 108:929-39. [PMID: 21330599 DOI: 10.1161/circresaha.110.230698] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE cAMP and cGMP are intracellular second messengers involved in heart pathophysiology. cGMP can potentially affect cAMP signals via cGMP-regulated phosphodiesterases (PDEs). OBJECTIVE To study the effect of cGMP signals on the local cAMP response to catecholamines in specific subcellular compartments. METHODS AND RESULTS We used real-time FRET imaging of living rat ventriculocytes expressing targeted cAMP and cGMP biosensors to detect cyclic nucleotides levels in specific locales. We found that the compartmentalized, but not the global, cAMP response to isoproterenol is profoundly affected by cGMP signals. The effect of cGMP is to increase cAMP levels in the compartment where the protein kinase (PK)A-RI isoforms reside but to decrease cAMP in the compartment where the PKA-RII isoforms reside. These opposing effects are determined by the cGMP-regulated PDEs, namely PDE2 and PDE3, with the local activity of these PDEs being critically important. The cGMP-mediated modulation of cAMP also affects the phosphorylation of PKA targets and myocyte contractility. CONCLUSIONS cGMP signals exert opposing effects on local cAMP levels via different PDEs the activity of which is exerted in spatially distinct subcellular domains. Inhibition of PDE2 selectively abolishes the negative effects of cGMP on cAMP and may have therapeutic potential.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Institute of Neuroscience & Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension 2010; 57:201-7. [PMID: 21189408 DOI: 10.1161/hypertensionaha.110.160796] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myocardial aging is characterized by left ventricular (LV) fibrosis leading to diastolic and systolic dysfunction. Studies have established the potent antifibrotic and antiproliferative properties of C-type natriuretic peptide (CNP); however, the relationship between circulating CNP, LV fibrosis, and associated changes in LV function with natural aging are undefined. Accordingly, we characterized the relationship of plasma CNP with LV fibrosis and function in 2-, 11-, and 20-month-old male Fischer rats. Further in vitro, we established the antiproliferative actions of CNP and the participation of the clearance receptor using adult human cardiac fibroblasts. Here we establish for the first time that a progressive decline in circulating CNP characterizes natural aging and is strongly associated with a reciprocal increase in LV fibrosis that precedes impairment of diastolic and systolic function. Additionally, we demonstrate in cultured adult human cardiac fibroblasts that the direct antiproliferative actions of high-dose CNP may involve a non-cGMP pathway via the clearance receptor. Together, these studies provide new insights into myocardial aging and the relationship to the antifibrotic and antiproliferative peptide CNP.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
77
|
Caniffi C, Elesgaray R, Gironacci M, Arranz C, Costa MA. C-type natriuretic peptide effects on cardiovascular nitric oxide system in spontaneously hypertensive rats. Peptides 2010; 31:1309-18. [PMID: 20363270 DOI: 10.1016/j.peptides.2010.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
Abstract
The aim was to study the effects of C-type natriuretic peptide (CNP) on mean arterial pressure (MAP) and the cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHR), and to investigate the signaling pathways involved in this interaction. SHR and WKY rats were infused with saline or CNP. MAP and nitrites and nitrates excretion (NO(x)) were determined. Catalytic NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS) were measured in the heart and aorta artery. NOS activity induced by CNP was determined in presence of: iNOS or nNOS inhibitors, NPR-A/B natriuretic peptide receptors blocker and Gi protein and calmodulin inhibitors. CNP diminished MAP and increased NO(x) in both groups. Cardiovascular NOS activity was higher in SHR than in WKY. CNP increased NOS activity, but this activation was lower in SHR. CNP had no effect on NOS isoforms expression. iNOS and nNOS inhibitors did not modify CNP-induced NOS activity. NPR-A/B blockade induced no changes in NOS stimulation via CNP in both tissues. Cardiovascular NOS response to CNP was reduced by Gi protein and calmodulin inhibitors in both groups. CNP interacts with NPR-C receptors, activating Ca-calmodulin eNOS via Gi protein. NOS response to CNP is impaired in the heart and aorta of SHR. Alterations in the interaction between CNP and NO would be involved in the maintenance of high blood pressure in this model of hypertension.
Collapse
Affiliation(s)
- Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco, CONICET, Junín 956, Piso 7, 1113 Ciudad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
78
|
Shah SJ, Michaels AD. Acute effects of intravenous nesiritide on cardiac contractility in heart failure. J Card Fail 2010; 16:720-7. [PMID: 20797595 DOI: 10.1016/j.cardfail.2010.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 03/31/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although nesiritide is a potent vasodilator, studies using myocytes and isolated muscle strips have shown that recombinant B-type natriuretic peptide (BNP; nesiritide) decreases contractility. We sought to determine whether nesiritide decreases contractility in heart failure patients. METHODS AND RESULTS Twenty-five heart failure patients underwent left heart catheterization (using a pressure-volume conductance catheter) and echocardiography at baseline and after a 2 mcg/kg bolus and 30-minute nesiritide infusion (0.01 mcg.kg.min). From invasive and noninvasive measurements, left ventricular (LV) systolic function indices were calculated, including ejection fraction, end-systolic elastance (E(es); single-beat invasive and noninvasive methods) and preload-recruitable stroke work (PRSW; noninvasive, single-beat method). The mean age was 60 +/- 11 years, 48% were male, 56% had coronary disease, and 64% had hypertension. Although nesiritide did not change LV ejection fraction, it did decrease contractility on pressure-volume analysis. Noninvasive E(es) decreased from 2.6 +/- 1.6 to 2.0 +/- 1.4 mm Hg/mL (P = .02). For those with reduced ejection fraction, E(es) decreased by invasive (P = .006) and noninvasive (P = .02) methods. PRSW decreased from 76 +/- 37 to 62 +/- 28 g/cm(2) (P = .003). On tissue Doppler imaging, nesiritide reduced the systolic annular tissue velocity of the mitral annulus from 8.0 +/- 1.9 to 6.9 +/- 1.3 cm/s (P = .04). CONCLUSIONS Nesiritide infusion acutely decreases derived measures of contractility and systolic function in patients with chronic heart failure.
Collapse
Affiliation(s)
- Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
79
|
Gorbe A, Giricz Z, Szunyog A, Csont T, Burley DS, Baxter GF, Ferdinandy P. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res Cardiol 2010; 105:643-50. [PMID: 20349314 DOI: 10.1007/s00395-010-0097-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) and B-type natriuretic peptide (BNP) are protective against ischemia-reperfusion injury as they increase intracellular cGMP level via activation of soluble (sGC) or particulate guanylate cyclases (pGC), respectively. The aim of the present study was to examine if the cGMP-elevating mediators, NO and BNP, share a common downstream signaling pathway via cGMP-dependent protein kinase (PKG) in cardiac cytoprotection. Neonatal rat cardiac myocytes in vitro were subjected to 2.5 h simulated ischemia (SI) followed by 2 h reoxygenation. Cell viability was tested by trypan blue exclusion assay. PKG activity of cardiac myocytes was assessed by phospholamban (PLB) phosphorylation determined by western blot. Cell death was 34 +/- 2% after SI/reoxygenation injury in the control group. cGMP-inducing agents significantly decreased irreversible cell injury: the cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10 nM) decreased it to 13 +/- 1% (p < 0.001), the direct NO-donor S-nitroso-N-acetylpenicillamine (SNAP, 1 microM) to 18 +/- 6% (p < 0.05) and BNP (10 nM) to 12 +/- 2% (p < 0.001), respectively. This protective effect was abolished by the selective PKG inhibitor KT-5823 (600 nM) in each case. As PLB is not a unique reporter for PKG activity since it is also phosphorylated by protein kinase A (PKA), we examined PLB phosphorylation in the presence of the PKA inhibitor KT-5720 (1 microM). The ratio of pPLB/PLB significantly increased after administration of both BNP and 8-Br-cGMP under ischemic conditions, which was abolished by the PKG inhibitor. This is the first demonstration that elevated cGMP produced either by the sGC activator SNAP or the pGC activator BNP exerts cytoprotective effects via a common downstream signaling pathway involving PKG activation.
Collapse
Affiliation(s)
- Aniko Gorbe
- Department of Biochemistry, University of Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
80
|
Mitrovic V, Hernandez AF, Meyer M, Gheorghiade M. Role of guanylate cyclase modulators in decompensated heart failure. Heart Fail Rev 2010; 14:309-19. [PMID: 19568931 DOI: 10.1007/s10741-009-9149-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this review we investigate the role of particulate and soluble guanylate cyclase (pGC and sGC, respectively) pathways in heart failure, and several novel drugs that modify guanylate cyclase. Nesiritide and ularitide/urodilatin are natriuretic peptides with vasodilating, natriuretic and diuretic effects, acting on pGC, whilst cinaciguat (BAY 58-2667) is a novel sGC activator. Cinaciguat has a promising and novel mode of action because it can stimulate cyclic guanosine-3',5'-monophosphate synthesis by targeting sGC in its nitric oxide-insensitive, oxidised ferric (Fe(3+)) or haem-free state. Thus, cinaciguat may also be effective under oxidative stress conditions resulting in oxidised or haem-free sGC refractory to traditional organic nitrate therapies. Preliminary studies of cinaciguat in patients with acute decompensated heart failure show substantial improvements in haemodynamics and symptoms, whilst maintaining renal function.
Collapse
|
81
|
Natriuretic Peptides in Systemic Sclerosis-related Pulmonary Arterial Hypertension. Semin Arthritis Rheum 2010; 39:278-84. [DOI: 10.1016/j.semarthrit.2009.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/10/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
|
82
|
Casserly B, Klinger JR. Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:269-87. [PMID: 20054445 PMCID: PMC2802126 DOI: 10.2147/dddt.s4805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B-type natriuretic peptide (BNP) is a member of the natriuretic peptide family, a group of widely distributed, but evolutionarily conserved, polypeptide mediators that exert myriad cardiovascular effects. BNP is a potent vasodilator with mitogenic, hypertrophic and pro-inflammatory properties that is upregulated in pulmonary hypertensive diseases. Circulating levels of BNP correlate with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with pulmonary arterial hypertension (PAH). Elevated plasma BNP levels are associated with increased mortality in patients with PAH and a fall in BNP levels after therapy is associated with improved survival. These findings have important clinical implications in that a noninvasive blood test may be used to identify PAH patients at high-risk of decompensation and to guide pulmonary vasodilator therapy. BNP also has several biologic effects that could be beneficial to patients with PAH. However, lack of a convenient method for achieving sustained increases in circulating BNP levels has impeded the development of BNP as a therapy for treating pulmonary hypertension. New technologies that allow transdermal or oral administration of the natriuretic peptides have the potential to greatly accelerate research into therapeutic use of BNP for cor pulmonale and pulmonary vascular diseases. This review will examine the basic science and clinical research that has led to our understanding of the role of BNP in cardiovascular physiology, its use as a biomarker of right ventricular function and its therapeutic potential for managing patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary and Critical Care Medicine, The Memorial Hospital of Rhode Island, Pawtucket, RI, USA
| | | |
Collapse
|
83
|
Does B-type natriuretic peptide or its gene polymorphism predict patient outcome after coronary artery bypass graft surgery? Anesthesiology 2009; 111:1378-9; author reply 1378-9. [PMID: 19934885 DOI: 10.1097/aln.0b013e3181bf2fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Natriuretic peptides and cardiovascular damage in the metabolic syndrome: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009; 118:231-40. [PMID: 19886866 DOI: 10.1042/cs20090204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natriuretic peptides are endogenous antagonists of vasoconstrictor and salt- and water-retaining systems in the body's defence against blood pressure elevation and plasma volume expansion, through direct vasodilator, diuretic and natriuretic properties. In addition, natriuretic peptides may play a role in the modulation of the molecular mechanisms involved in metabolic regulation and cardiovascular remodelling. The metabolic syndrome is characterized by visceral obesity, hyperlipidaemia, vascular inflammation and hypertension, which are linked by peripheral insulin resistance. Increased visceral adiposity may contribute to the reduction in the circulating levels of natriuretic peptides. The dysregulation of neurohormonal systems, including the renin-angiotensin and the natriuretic peptide systems, may in turn contribute to the development of insulin resistance in dysmetabolic patients. In obese subjects with the metabolic syndrome, reduced levels of natriuretic peptides may be involved in the development of hypertension, vascular inflammation and cardio vascular remodelling, and this may predispose to the development of cardiovascular disease. The present review summarizes the regulation and function of the natriuretic peptide system in obese patients with the metabolic syndrome and the involvement of altered bioactive levels of natriuretic peptides in the pathophysiology of cardiovascular disease in patients with metabolic abnormalities.
Collapse
|
85
|
Singh HS, Bibbins-Domingo K, Ali S, Wu AHB, Schiller NB, Whooley MA. N-terminal pro-B-type natriuretic peptide and inducible ischemia in the Heart and Soul Study. Clin Cardiol 2009; 32:447-53. [PMID: 19685518 DOI: 10.1002/clc.20569] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND B-type natriuretic peptide (BNP) is predictive of inducible ischemia in patients with coronary heart disease (CHD). Whether N-terminal pro-B-type natriuretic peptide (NT-proBNP) has a comparable strength of association with ischemia is uncertain. HYPOTHESIS Resting NT-proBNP levels are associated with inducible ischemia in patients with stable CHD. METHODS We performed a cross-sectional study of 901 outpatients with stable CHD. NT-proBNP was measured in all patients prior to exercise treadmill testing and stress echocardiography. In addition, plasma BNP was measured in a subset of 355 participants. Logistic regression was used to examine the association of NT-proBNP and BNP quartiles with inducible ischemia. RESULTS Inducible ischemia was found in 216 (24%) patients. The proportion with inducible ischemia ranged from 42% (95/225) in the highest quartile of NT-proBNP levels (>410 pg/ml) to 9% (21/226) in the lowest quartile (0-72 pg/ml). The highest quartile had a 7-fold greater odds of inducible ischemia than the lowest quartile (odds ratio [OR]: 7.1, 95% confidence interval [CI]: 4.2-12; P < 0.0001). This association remained robust after adjustment for traditional cardiovascular risk factors, left ventricular ejection fraction, and diastolic dysfunction (OR: 3.6, 95% CI: 1.4-9.1; P = 0.009). In the subgroup with measurements of both NT-proBNP and BNP, both natriuretic peptides were predictive of ischemia. The multivariable-adjusted c-statistics for inducible ischemia were 0.71 for NT-proBNP and 0.62 for BNP (entered as continuous variables). CONCLUSIONS Resting NT-proBNP levels are independently associated with inducible ischemia in outpatients with stable CHD. Baseline elevations of natriuretic peptide may indicate subclinical inducible ischemia in high risk patients with CHD.
Collapse
Affiliation(s)
- Harsimran S Singh
- Division of Cardiology, Columbia University, New York Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
86
|
Casals G, Ros J, Sionis A, Davidson MM, Morales-Ruiz M, Jiménez W. Hypoxia induces B-type natriuretic peptide release in cell lines derived from human cardiomyocytes. Am J Physiol Heart Circ Physiol 2009; 297:H550-5. [DOI: 10.1152/ajpheart.00250.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B-type natriuretic peptide (BNP) is a peptide hormone of myocardial origin with significant cardioprotective properties. Patients with myocardial ischemia present with high levels of BNP in plasma and elevated expression in the myocardium. However, the molecular mechanisms of BNP induction in the ischemic myocardium are not well understood. The aim of the investigation was to assess whether myocardial hypoxia induces the production of BNP in human ventricular myocytes. To test the hypothesis that reduced oxygen tension can directly stimulate BNP gene expression and release in the absence of hemodynamic or neurohormonal stimuli, we used an in vitro model system of cultured human ventricular myocytes (AC16 cells). Cells were cultured under normoxic (21% O2) or hypoxic (5% O2) conditions for up to 48 h. The accumulation of BNP, atrial natriuretic peptide (ANP), and vascular endothelial growth factor (VEGF) was then measured. Hypoxia stimulated the protein release of BNP and VEGF but not ANP. In concordance, the increased mRNA levels of BNP and VEGF but not ANP were found on culturing AC16 cells under hypoxic conditions. The analysis of the transcriptional activity of the hypoxia-inducible factor 1 (HIF-1) in nuclear extracts showed that HIF-1 activity was induced under hypoxic conditions. Finally, the treatment of AC16 cells with the HIF-1 inhibitor rotenone in hypoxia inhibited BNP and VEGF release. In conclusion, these data indicate that hypoxia induces the synthesis and secretion of BNP in human ventricular myocytes, likely through HIF-1-enhanced transcriptional activity.
Collapse
|
87
|
Indrambarya T, Boyd JH, Wang Y, McConechy M, Walley KR. Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R98. [PMID: 19549333 PMCID: PMC2717470 DOI: 10.1186/cc7930] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/02/2009] [Accepted: 06/23/2009] [Indexed: 11/24/2022]
Abstract
Introduction Arginine vasopressin is a vasoactive drug commonly used in distributive shock states including mixed shock with a cardiac component. However, the direct effect of arginine vasopressin on the function of the ischemia/reperfusion injured heart has not been clearly elucidated. Methods We measured left ventricular ejection fraction using trans-thoracic echocardiography in C57B6 mice, both in normal controls and following ischemia/reperfusion injury induced by a one hour ligation of the left anterior descending coronary artery. Mice were treated with one of normal saline, dobutamine (8.33 μg/kg/min), or arginine vasopressin (0.00057 Units/kg/min, equivalent to 0.04 Units/min in a 70 kg human) delivered by an intraperitoneal micro-osmotic pump. Arterial blood pressure was measured using a micromanometer catheter. In addition, mortality was recorded and cardiac tissues processed for RNA and protein. Results Baseline left ventricular ejection fraction was 65.6% (60 to 72). In normal control mice, there was no difference in left ventricular ejection fraction according to infusion group. Following ischemia/reperfusion injury, AVP treatment significantly reduced day 1 left ventricular ejection fraction 46.2% (34.4 to 52.0), both in comparison with baseline and day 1 saline treated controls 56.9% (42.4 to 60.2). There were no significant differences in preload (left ventricular end diastolic volume), afterload (blood pressure) or heart rate to account for the effect of AVP on left ventricular ejection fraction. The seven-day mortality rate was highest in the arginine vasopressin group. Following ischemia/reperfusion injury, we found no change in cardiac V1 Receptor expression but a 40% decrease in Oxytocin Receptor expression. Conclusions Arginine vasopressin infusion significantly depressed the myocardial function in an ischemia/reperfusion model and increased mortality in comparison with both saline and dobutamine treated animals. The use of vasopressin may be contraindicated in non-vasodilatory shock states associated with significant cardiac injury.
Collapse
Affiliation(s)
- Toonchai Indrambarya
- Critical Care Research Laboratories, Heart + Lung Institute, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada.
| | | | | | | | | |
Collapse
|
88
|
Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG. Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 2009; 84:209-17. [PMID: 19546173 DOI: 10.1093/cvr/cvp208] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Atrial natriuretic peptide (ANP) is a hormone that has both antihypertrophic and antifibrotic properties in the heart. We hypothesized that myocyte-derived ANP inhibits endothelin (ET) gene expression in fibroblasts. METHODS AND RESULTS We have investigated the mechanism(s) involved in the antiproliferative effect of ANP on cardiac fibroblasts in a cell culture model. We found that cardiac myocytes inhibited DNA synthesis in co-cultured cardiac fibroblasts as did treatment with the ET-1 antagonist BQ610. The effect of co-culture was reversed by antibody directed against ANP or the ANP receptor antagonist HS-142-1. ANP inhibited the expression of the ET-1 gene and ET-1 gene promoter activity in cultured fibroblasts. The site of the inhibition was localized to a GATA-binding site positioned between -132 and -135 upstream from the transcription start site. GATA4 expression was demonstrated in cardiac fibroblasts, GATA4 bound the ET-1 promoter both in vitro and in vivo, and siRNA-mediated knockdown of GATA4 inhibited ET-1 expression. ET-1 treatment resulted in increased levels of phospho-serine(105) GATA4 in cardiac fibroblasts and this induction was partially suppressed by co-treatment with ANP. CONCLUSION Collectively, these findings suggest that locally produced ET-1 serves as an autocrine stimulator of fibroblast proliferation, that ANP produced in neighbouring myocytes serves as a paracrine inhibitor of this proliferation, and that the latter effect operates through a reduction in GATA4 phosphorylation and coincident reduction in GATA4-dependent transcriptional activity.
Collapse
Affiliation(s)
- Denis J Glenn
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
89
|
Cardiac mast cells regulate myocyte ANP release via histamine H2 receptor in beating rabbit atria. ACTA ACUST UNITED AC 2009; 155:33-8. [DOI: 10.1016/j.regpep.2009.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 02/06/2009] [Accepted: 03/15/2009] [Indexed: 11/19/2022]
|
90
|
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122:216-38. [PMID: 19306895 PMCID: PMC2709600 DOI: 10.1016/j.pharmthera.2009.02.009] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade - cGMP synthesis, effector activation, or catabolism - have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies.
Collapse
Affiliation(s)
- Emily J Tsai
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
91
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 777] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
92
|
Chaudhary KR, Batchu SN, Das D, Suresh MR, Falck JR, Graves JP, Zeldin DC, Seubert JM. Role of B-type natriuretic peptide in epoxyeicosatrienoic acid-mediated improved post-ischaemic recovery of heart contractile function. Cardiovasc Res 2009; 83:362-70. [PMID: 19401302 DOI: 10.1093/cvr/cvp134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS This study examined the functional role of B-type natriuretic peptide (BNP) in epoxyeicosatrienoic acid (EET)-mediated cardioprotection in mice with targeted disruption of the sEH or Ephx2 gene (sEH null). METHODS AND RESULTS Isolated mouse hearts were perfused in the Langendorff mode and subjected to global no-flow ischaemia followed by reperfusion. Hearts were analysed for recovery of left ventricular developed pressure (LVDP), mRNA levels, and protein expression. Naïve hearts from sEH null mice had similar expression of preproBNP (Nppb) mRNA compared with wild-type (WT) hearts. However, significant increases in Nppb mRNA and BNP protein expression occurred during post-ischaemic reperfusion and correlated with improved post-ischaemic recovery of LVDP. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid prior to ischaemia reduced the preproBNP mRNA in sEH null hearts. Inhibitor studies demonstrated that perfusion with the natriuretic peptide receptor type-A (NPR-A) antagonist, A71915, limited the improved recovery in recombinant full-length mouse BNP (rBNP)- and 11,12-EET-perfused hearts as well as in sEH null mice. Increased expression of phosphorylated protein kinase C epsilon and Akt were found in WT hearts perfused with either 11,12-EET or rBNP, while mitochondrial glycogen synthase kinase-3beta was significantly lower in the same samples. Furthermore, treatment with the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin abolished improved LVDP recovery in 11,12-EET-treated hearts but not did significantly inhibit recovery of rBNP-treated hearts. CONCLUSION Taken together, these data indicate that EET-mediated cardioprotection involves BNP and PI3K signalling events.
Collapse
Affiliation(s)
- Ketul R Chaudhary
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2N8
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Natriuretic peptide system gene variants are associated with ventricular dysfunction after coronary artery bypass grafting. Anesthesiology 2009; 110:738-47. [PMID: 19326473 DOI: 10.1097/aln.0b013e31819c7496] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ventricular dysfunction (VnD) after primary coronary artery bypass grafting is associated with increased hospital stay and mortality. Natriuretic peptides have compensatory vasodilatory, natriuretic, and paracrine influences on myocardial failure and ischemia. The authors hypothesized that natriuretic peptide system gene variants independently predict risk of VnD after primary coronary artery bypass grafting. METHODS A total of 1,164 patients undergoing primary coronary artery bypass grafting with cardiopulmonary bypass at two institutions were prospectively enrolled. After prospectively defined exclusions, 697 patients of European descent (76 with VnD) were analyzed. VnD was defined as need for at least 2 new inotropes and/or new mechanical ventricular support after coronary artery bypass grafting. A total of 139 haplotype-tagging single nucleotide polymorphisms (SNPs) within 7 genes (NPPA, NPPB, NPPC, NPR1, NPR2, NPR3, CORIN) were genotyped. SNPs univariately associated with VnD were entered into logistic regression models adjusting for clinical covariates predictive of VnD. To control for multiple comparisons, permutation analyses were conducted for all SNP associations. RESULTS After adjusting for clinical covariates and multiple comparisons within each gene, seven NPPA/NPPB SNPs (rs632793, rs6668352, rs549596, rs198388, rs198389, rs6676300, rs1009592) were associated with decreased risk of postoperative VnD (additive model; odds ratios 0.44-0.55; P = 0.010- 0.036) and four NPR3 SNPs (rs700923, rs16890196, rs765199, rs700926) were associated with increased risk of postoperative VnD (recessive model; odds ratios 3.89-4.28; P = 0.007-0.034). CONCLUSIONS Genetic variation within the NPPA/NPPB and NPR3 genes is associated with risk of VnD after primary coronary artery bypass grafting. Knowledge of such genotypic predictors may result in better understanding of the molecular mechanisms underlying postoperative VnD.
Collapse
|
94
|
Nguyen HG, Korach A, Collura C, Eskenazi BR, Vita JA, Shapira OM. Differential effects of natriuretic peptides on arterial and venous coronary artery bypass conduits. Ann Thorac Surg 2009; 87:748-56. [PMID: 19231384 DOI: 10.1016/j.athoracsur.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND Arterial grafts have patency rates superior to venous grafts in patients undergoing coronary bypass grafting surgery. Natriuretic peptides play a major role in vascular homeostasis. We hypothesized that natriuretic peptides might have different effects on arterial and venous conduits. METHODS The relaxation responses and tissue levels of cyclic guanosine monophosphate (cGMP) after exposure to atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide were assessed in segments of internal mammary artery, radial artery, and saphenous vein obtained from the same patients at the time of bypass surgery (n = 12). Natriuretic peptide receptor (NPR) expression was assessed using immunohistochemistry and Western blotting. RESULTS Relaxation of the internal mammary artery and radial artery to all the natriuretic peptides were similar, and greater than that of saphenous vein, correlating with increased tissue levels of cGMP in both arterial conduits. Relaxation responses to all three natriuretic peptides were nearly abolished in the presence of LY83583, an inhibitor of guanylyl cyclase. Exposure of the conduits to N(G)-Nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) resulted in a modest but significant blunting of the relaxation responses. Expression of NPR(A), NPR(B) and NPR(C)was strong in the endothelium and vascular smooth muscle layer of the internal mammary artery and radial artery, and was significantly less in saphenous vein. CONCLUSIONS Natriuretic peptides are potent vasodilators of the internal mammary artery and radial artery but not the saphenous vein. The relaxation response is mediated through guanylyl cyclase and nitric oxide synthase. These observations may provide additional insight into the mechanisms that account for superior patency of arterial conduits.
Collapse
Affiliation(s)
- Hao G Nguyen
- Department of Cardiothoracic Surgery, Boston Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
95
|
Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:161-70. [PMID: 19186188 DOI: 10.1016/j.pbiomolbio.2009.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the mammalian heart, myocytes and fibroblasts can communicate via gap junction, or connexin-mediated current flow. Some of the effects of this electrotonic coupling on the action potential waveform of the human ventricular myocyte have been analyzed in detail. The present study employs a recently developed mathematical model of the human atrial myocyte to investigate the consequences of this heterogeneous cell-cell interaction on the action potential of the human atrium. Two independent physiological processes which alter the physiology of the human atrium have been studied. i) The effects of the autonomic transmitter acetylcholine on the atrial action potential have been investigated by inclusion of a time-independent, acetylcholine-activated K(+) current in this mathematical model of the atrial myocyte. ii) A non-selective cation current which is activated by natriuretic peptides has been incorporated into a previously published mathematical model of the cardiac fibroblast. These results identify subtle effects of acetylcholine, which arise from the nonlinear interactions between ionic currents in the human atrial myocyte. They also illustrate marked alterations in the action potential waveform arising from fibroblast-myocyte source-sink principles when the natriuretic peptide-mediated cation conductance is activated. Additional calculations also illustrate the effects of simultaneous activation of both of these cell-type specific conductances within the atrial myocardium. This study provides a basis for beginning to assess the utility of mathematical modeling in understanding detailed cell-cell interactions within the complex paracrine environment of the human atrial myocardium.
Collapse
|
96
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
97
|
Hobbs RE, Mills RM. Endogenous B-type natriuretic peptide: a limb of the regulatory response to acutely decompensated heart failure. Clin Cardiol 2008; 31:407-12. [PMID: 18781599 PMCID: PMC6653423 DOI: 10.1002/clc.20304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/14/2007] [Indexed: 11/12/2022] Open
Abstract
Acutely decompensated heart failure (ADHF) represents an episodic failure of cardiorenal homeostasis that may resolve with upregulation of natriuretic peptides, bradykinin, and certain prostacyclins. B-type natriuretic peptide (BNP) has multiple favorable effects, including vasodilation, diuresis, natriuresis, and inhibition of vascular endothelial proliferation and cardiac fibrosis. By antagonizing the effects of activation of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system in volume overload, the endogenous BNP response may help rescue patients from episodic ADHF. Although knowledge of BNP physiology is expanding, we still have limited understanding of the heterogeneity of proBNP-derived molecules, including active 32 amino acid BNP and less active junk BNP forms. Emerging evidence suggests that in ADHF, the endogenous BNP response is overwhelmed by neurohormonal activation. This relative BNP deficiency may also be accompanied by physiologic resistance to BNP. Additionally, abnormalities of BNP production may result in a lower proportion of active BNP relative to less active forms that may also be detected by point-of-care tests. Improved detection of the various BNP species may clarify these concepts and facilitate improved clinical management of ADHF.
Collapse
Affiliation(s)
- Robert E Hobbs
- Section of Heart Failure and Transplant Medicine, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
98
|
|
99
|
Sodi R, Dubuis E, Shenkin A, Hart G. B-type natriuretic peptide (BNP) attenuates the L-type calcium current and regulates ventricular myocyte function. ACTA ACUST UNITED AC 2008; 151:95-105. [PMID: 18616964 DOI: 10.1016/j.regpep.2008.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/22/2008] [Accepted: 06/15/2008] [Indexed: 10/21/2022]
Abstract
A fundamental question in physiology is how hormones regulate the functioning of a cell or organ. It was therefore the aim of this study to investigate the effect(s) of BNP-32 on calcium handling by ventricular myocytes obtained from the rat left ventricle. We specifically tested the hypothesis that BNP-32 decreased the L-type calcium current (I(Ca,L)). Perforated patch clamp technique was used to record I(Ca,L) and action potential (AP) in voltage and current clamp mode, respectively. Myocyte shortening was measured using a photodiode array edge-detection system and intracellular calcium transients were measured by fluorescence photometry. Western blotting was used to determine the relative change in the expression of proteins. At the concentrations tested, BNP-32 significantly decreased cell shortening in a dose-dependent manner; increased the phase II slope of the AP by 53.0%; increased the APD(50) by 16.9%; reduced the I(Ca,L) amplitude with a 22.9% decrease in the peak amplitude and reduced Ca(2+)-dependent inactivation; increased the V(1/2) activation of the L-type calcium channel by 51.1% and decreased V(1/2) inactivation by 31.8%; and, intracellular calcium transient amplitude was significantly decreased by 32.0%, whereas the time to peak amplitude and T(1/2) were both significantly increased by 38.7% and 89.4% respectively. Sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) protein expression was reduced by BNP-32. These data suggest that BNP-32 regulates ventricular myocyte function by attenuating I(Ca,L), altering the AP and reducing SERCA2a activity and/or expression. This study suggests a novel constitutive mechanism for the autocrine action of BNP on the L-type calcium channel in ventricular myocytes.
Collapse
Affiliation(s)
- R Sodi
- Department of Clinical Biochemistry & Metabolic Medicine, Royal Liverpool & Broadgreen University Hospital, Prescot street, Liverpool L7 8XP, United Kingdom.
| | | | | | | |
Collapse
|
100
|
Weber M, Burian M, Dragutinovic I, Moellmann H, Nef H, Elsaesser A, Mitrovic V, Hamm C, Geisslinger G. Genetic polymorphism of the type A human natriuretic peptide receptor (NPR-A) gene contributes to the interindividual variability in the BNP system. Eur J Heart Fail 2008; 10:482-9. [PMID: 18436476 DOI: 10.1016/j.ejheart.2008.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 12/06/2007] [Accepted: 03/26/2008] [Indexed: 10/22/2022] Open
Abstract
AIMS To analyse the contribution of recently described genetic polymorphisms in the human natriuretic peptide receptor (NPR-A) to the interindividual variability in the BNP system. METHODS AND RESULTS We evaluated NT-proBNP in 402 subjects, including healthy controls (n=93), patients with acute coronary syndrome (n=194) and heart failure (n=115). Three polymorphic sites encoding six common haplotypes of the NPR-A receptor gene, including three haplotypes in the 5' region (CT11, CT10 and CT6) and three haplotypes in the 3' region (3-plus, 4-minus and 4-plus), were studied. The frequency of the identified "4-minus" haplotype was higher in control subjects with high NT-proBNP (>75th percentile) levels as compared to those with low NT-proBNP levels (15.2% vs. 5.7%, p<0.05). In the control subjects, carriers of the "4-plus/4-minus" genotype had about 2-fold higher median NT-proBNP levels than individuals with other genetic variants (142 pg/ml (88-371 pg/ml) vs. 71 pg/ml (35-111 pg/ml, p=0.011). In contrast, in patients with cardiovascular disorders no relation between NT-proBNP and the described polymorphisms was observed. CONCLUSION The "4-minus" haplotype of the NPR-A receptor gene is associated with high NT-proBNP values and is a genetic determinant of the interindividual variability in the BNP system in healthy individuals but probably not in patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Michael Weber
- Kerckhoff Heart Center, Department of Cardiology, Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|