51
|
Lobeline attenuates ethanol abstinence-induced depression-like behavior in mice. Alcohol 2017; 61:63-70. [PMID: 28554528 DOI: 10.1016/j.alcohol.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 01/02/2023]
Abstract
Evidence indicates that the brain nicotinic acetylcholine receptor (nAChRs) ligand lobeline reduces depression-like behaviors, ethanol drinking, and nicotine withdrawal-induced depression-like behaviors. The purpose of the present study was to determine the effects of lobeline on ethanol abstinence-induced depression-like behavior and associated neuroadaptive changes in mice. Adult C57BL/6J male mice were allowed to drink 10% ethanol for 4 weeks using a two-bottle choice procedure. Mice were tested after 24 h and 14 days of ethanol abstinence in a forced swim test (FST), a measure for depression-like behavior. Acute lobeline treatment (1 mg/kg) significantly reduced immobility time compared to controls after 24 h and 14 days of abstinence. In addition, abstinence from chronic ethanol exposure reduced serotonin levels in the hippocampus, which was reversed by acute lobeline treatment. Repeated lobeline treatment (1 mg/kg, once daily) for 14 days during ethanol abstinence also significantly reduced FST immobility in mice exposed to ethanol. Chronic ethanol exposure significantly reduced the number of 5-bromo 2'-deoxyuridine (BrdU)-positive cells in the dentate gyrus of the hippocampus, indicating decreased hippocampal cell proliferation. Abstinence from chronic ethanol exposure also decreased brain-derived neurotrophic factor (BDNF) in the dentate gyrus and CA3 region of the hippocampus. In contrast, repeated lobeline treatment significantly increased both BrdU- and BDNF-positive cells. Taken together, our results indicate that lobeline produced antidepressant-like effects, likely by targeting brain β2-containing nAChRs, serotonergic neurotransmission, and/or hippocampal cell proliferation. Therefore, lobeline may have therapeutic utility to treat alcohol abstinence-induced depression.
Collapse
|
52
|
Roni MA, Rahman S. Lobeline attenuates ethanol abstinence-induced depression-like behavior in mice. Alcohol 2017. [DOI: https://doi.org/10.1016/j.alcohol.2017.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Fernandez GM, Lew BJ, Vedder LC, Savage LM. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience 2017; 348:324-334. [PMID: 28257889 DOI: 10.1016/j.neuroscience.2017.02.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.
Collapse
Affiliation(s)
- Gina M Fernandez
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Brandon J Lew
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States.
| |
Collapse
|
54
|
Decreased plasma concentrations of brain-derived neurotrophic factor in preeclampsia. Clin Chim Acta 2017; 464:142-147. [DOI: 10.1016/j.cca.2016.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023]
|
55
|
Neupane SP. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front Immunol 2016; 7:655. [PMID: 28082989 PMCID: PMC5186784 DOI: 10.3389/fimmu.2016.00655] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Bidirectional communication links operate between the brain and the body. Afferent immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that provokes an immune response in the periphery that, by means of circulatory cytokines and other neuroimmune mediators, ultimately causes alterations in the brain function. Alcohol can also directly impact the immune functions of microglia, the resident immune cells of the central nervous system (CNS). Several lines of research have established the contribution of specific inflammatory mediators in the development and progression of depressive illness. Much of the available evidence in this field stems from cross-sectional data on the immune interactions between isolated AUD and major depression (MD). Given their heterogeneity as disease entities with overlapping symptoms and shared neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be a critical determinant of the frequent comorbidity between AUD and MD. This review presents a summary and analysis of the extant literature on neuroimmune interface in the AUD–MD comorbidity.
Collapse
Affiliation(s)
- Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Norwegian Centre for Addiction Research (SERAF), University of Oslo, Oslo, Norway
| |
Collapse
|
56
|
Boschen KE, Klintsova AY. Neurotrophins in the Brain: Interaction With Alcohol Exposure During Development. VITAMINS AND HORMONES 2016; 104:197-242. [PMID: 28215296 PMCID: PMC5997461 DOI: 10.1016/bs.vh.2016.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a result of the teratogenic effects of alcohol on the developing fetus. Decades of research examining both individuals with FASDs and animal models of developmental alcohol exposure have revealed the devastating effects of alcohol on brain structure, function, behavior, and cognition. Neurotrophic factors have an important role in guiding normal brain development and cellular plasticity in the adult brain. This chapter reviews the current literature showing that alcohol exposure during the developmental period impacts neurotrophin production and proposes avenues through which alcohol exposure and neurotrophin action might interact. These areas of overlap include formation of long-term potentiation, oxidative stress processes, neuroinflammation, apoptosis and cell loss, hippocampal adult neurogenesis, dendritic morphology and spine density, vasculogenesis and angiogenesis, and behaviors related to spatial memory, anxiety, and depression. Finally, we discuss how neurotrophins have the potential to act in a compensatory manner as neuroprotective molecules that can combat the deleterious effects of in utero alcohol exposure.
Collapse
Affiliation(s)
- K E Boschen
- University of Delaware, Newark, DE, United States
| | | |
Collapse
|
57
|
Scheidt L, Fries GR, Stertz L, Cabral JCC, Kapczinski F, de Almeida RMM. Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016; 37:143-51. [PMID: 26630405 DOI: 10.1590/2237-6089-2015-0017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of ethanol exposure in adolescent rats during adulthood by assesssing aggression and anxiety-like behaviors and measuring the levels of inflammatory markers. METHODS Groups of male Wistar rats (mean weight 81.4 g, n = 36) were housed in groups of four until postnatal day (PND) 60. From PNDs 30 to 46, rats received one of three treatments: 3 g/kg of ethanol (15% w/v, orally, n = 16), 1.5 g/kg of ethanol (12.5% w/v, PO, n = 12), or water (n = 12) every 48 hours. Animals were assessed for aggressive behavior (resident x intruder test) and anxiety-like behaviors (elevated plus maze) during adulthood. RESULTS Animals that received low doses of alcohol showed reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus as compared to the control group. No significant difference was found in prefrontal cortex. CONCLUSIONS Intermittent exposure to alcohol during adolescence is associated with lower levels of BDNF in the hippocampus, probably due the episodic administration of alcohol, but alcohol use did not alter the level agression toward a male intruder or anxiety-like behaviors during the adult phase.
Collapse
Affiliation(s)
- Letícia Scheidt
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Laura Stertz
- Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | | | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | | |
Collapse
|
58
|
Gavin DP, Kusumo H, Zhang H, Guidotti A, Pandey SC. Role of Growth Arrest and DNA Damage-Inducible, Beta in Alcohol-Drinking Behaviors. Alcohol Clin Exp Res 2016; 40:263-72. [PMID: 26842245 DOI: 10.1111/acer.12965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The contribution of epigenetic factors, such as histone acetylation and DNA methylation, to the regulation of alcohol-drinking behavior has been increasingly recognized over the last several years. GADD45b is a protein demonstrated to be involved in DNA demethylation at neurotrophic factor gene promoters, including at brain-derived neurotrophic factor (Bdnf) which has been highly implicated in alcohol-drinking behavior. METHODS DNA methyltransferase-1 (Dnmt1), 3a, and 3b, and Gadd45a, b, and g mRNA were measured in the nucleus accumbens (NAc) and ventral tegmental areas of high ethanol (EtOH) consuming C57BL/6J (C57) and low alcohol consuming DBA/2J (DBA) mice using quantitative reverse transcriptase polymerase chain reaction (PCR). In the NAc, GADD45b protein was measured via immunohistochemistry and Bdnf9a mRNA using in situ PCR. Bdnf9a promoter histone H3 acetylated at lysines 9 and 14 (H3K9,K14ac) was measured using chromatin immunoprecipitation, and 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) using methylated DNA immunoprecipitation. Alcohol-drinking behavior was evaluated in Gadd45b haplodeficient (+/-) and null mice (-/-) utilizing drinking-in-the-dark (DID) and 2-bottle free-choice paradigms. RESULTS C57 mice had lower levels of Gadd45b and g mRNA and GADD45b protein in the NAc relative to the DBA strain. C57 mice had lower NAc shell Bdnf9a mRNA levels, Bdnf9a promoter H3K9,K14ac, and higher Bdnf9a promoter 5HMC and 5MC. Acute EtOH increased GADD45b protein, Bdnf9a mRNA, and histone acetylation and decreased 5HMC in C57 mice. Gadd45b +/- mice displayed higher drinking behavior relative to wild-type littermates in both DID and 2-bottle free-choice paradigms. CONCLUSIONS These data indicate the importance of the DNA demethylation pathway and its interactions with histone posttranslational modifications in alcohol-drinking behavior. Further, we suggest that lower DNA demethylation protein GADD45b levels may affect Bdnf expression possibly leading to altered alcohol-drinking behavior.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Handojo Kusumo
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
59
|
Orrù A, Caffino L, Moro F, Cassina C, Giannotti G, Di Clemente A, Fumagalli F, Cervo L. Contingent and non-contingent recreational-like exposure to ethanol alters BDNF expression and signaling in the cortico-accumbal network differently. Psychopharmacology (Berl) 2016; 233:3149-60. [PMID: 27370019 DOI: 10.1007/s00213-016-4358-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
RATIONALE Although brain-derived neurotrophic factor (BDNF) is part of a homeostatic pathway involved in the development of alcohol dependence, it is not clear whether this is also true after recreational ethanol consumption. OBJECTIVES We examined BDNF expression and signaling in the cortico-striatal network immediately and 24 h after either a single intravenous (i.v.) ethanol operant self-administration session or the last of 14 sessions. METHODS To compare contingent and non-contingent ethanol exposure, we incorporated the "yoked control-operant paradigm" in which rats actively taking ethanol (S-Et) were paired with two yoked controls receiving passive infusions of ethanol (Y-Et) or saline. RESULTS A single ethanol exposure transiently reduced BDNF mRNA levels in the medial prefrontal cortex (mPFC) of Y-Et. Immediately after the last of 14 sessions, mRNA and mature BDNF protein levels (mBDNF) were reduced in the mPFC in both S-Et and Y-Et while mBDNF expression was raised in the nucleus accumbens (NAc), suggesting enhanced anterograde transport from the mPFC. Conversely, 24 h later mBDNF expression and signaling were raised in the mPFC and NAc of S-Et rats but reduced in the NAc of Y-Et rats, with concomitant reduction of downstream signaling pathways. CONCLUSIONS Our findings indicate that recreational-like i.v. doses of ethanol promote early changes in neurotrophin expression, depending on the length and modality of administration, the brain region investigated, and the presence of the drug. A rapid intervention targeting the BDNF system might be useful to prevent escalation to alcohol abuse.
Collapse
Affiliation(s)
- Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy.
- Institute of Translational Pharmacology (C.N.R.), Parco Scientifico e Tecnologico della Sardegna, Polaris - Edificio 5 - Località, Piscinamanna, 09010, Pula, Cagliari, Italy.
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Chiara Cassina
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
60
|
Marshall SA, Geil CR, Nixon K. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration. Brain Sci 2016; 6:E16. [PMID: 27240410 PMCID: PMC4931493 DOI: 10.3390/brainsci6020016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity.
Collapse
Affiliation(s)
- Simon Alex Marshall
- Department of Psychology & Neuroscience; University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chelsea Rhea Geil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
61
|
Lhullier AC, Moreira FP, da Silva RA, Marques MB, Bittencourt G, Pinheiro RT, Souza LDM, Portela LV, Lara DR, Jansen K, Wiener CD, Oses JP. Increased serum neurotrophin levels related to alcohol use disorder in a young population sample. Alcohol Clin Exp Res 2016; 39:30-3. [PMID: 25623403 DOI: 10.1111/acer.12592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND The diagnosis of alcohol use disorder is based on clinical signs and on the measurement of biological markers. However, these markers are neither sufficiently sensitive, nor specific enough, for determining the effects of alcohol abuse on the central nervous system. Serum neurotrophins are important regulators of neural survival, development, function, and plasticity and have been found to be reduced in alcohol use disorder. The aim of this study was to investigate the alterations in serum neurotrophin levels (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF], and nerve growth factor [NGF]) in alcohol use disorder in a young population, and thus possibly representing the early stages of the illness. METHODS This is a cross-sectional study, nested in a population-based study of people aged 18 to 35, involving 795 participants. The participants responded to the CAGE questionnaire, and a CAGE score of ≥2 was considered to be a positive screen for the abuse/dependence or moderate to severe alcohol use disorder. Serum BDNF, GDNF, and NGF levels were measured by ELISA. RESULTS In the CAGE ≥ 2 group, GDNF (p ≤ 0.001) and NGF (p ≤ 0.001) serum levels were significantly increased, and the BDNF elevation was near a statistical significance (p = 0.068) when compared to the CAGE < 2 group. A significantly positive correlation was observed only in the CAGE ≥ 2 group for BDNF/GDNF (r = 0.37, p < 0.001) and GDNF/NGF (r = 0.84, p < 0.001) levels. The correlation between the NGF and BDNF levels was significantly positive in both groups (r = 0.28, p < 0.001 for the CAGE < 2 group, and r = 0.30, p = 0.008 for the CAGE ≥ 2 group). CONCLUSIONS These results suggest that elevated neurotrophins are candidate markers for the early stages of alcohol misuse.
Collapse
Affiliation(s)
- Alfredo C Lhullier
- Escola de Psicologia, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas, Pelotas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Fernandez GM, Stewart WN, Savage LM. Chronic Drinking During Adolescence Predisposes the Adult Rat for Continued Heavy Drinking: Neurotrophin and Behavioral Adaptation after Long-Term, Continuous Ethanol Exposure. PLoS One 2016; 11:e0149987. [PMID: 26930631 PMCID: PMC4773001 DOI: 10.1371/journal.pone.0149987] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
Abstract
Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in spatial working memory, non-spatial discrimination learning and behavioral flexibility were explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH exposure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed at different time-points: during CET, following acute abstinence (48-hrs), and after protracted abstinence (6-8 wks). Our results revealed that an adolescent onset of CET leads to increased EtOH consumption that persisted into adulthood. In both adult and adolescent onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alternation, was not significantly affected by CET as a function of age of drinking onset, but higher blood-EtOH levels were correlated with lower spontaneous alternation scores. Regardless of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that adolescent EtOH exposure changes long-term consumption patterns producing behavioral and neural dysfunctions that persist across the lifespan.
Collapse
Affiliation(s)
- Gina M. Fernandez
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - William N. Stewart
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York, United States of America
| |
Collapse
|
63
|
Pedrón VT, Varani AP, Balerio GN. Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice. Synapse 2016; 70:187-97. [DOI: 10.1002/syn.21886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Valeria T. Pedrón
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso (C1113AAD) Buenos Aires Argentina
| | - André P. Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires; Junín 956, 5° piso (C1113AAD) Buenos Aires Argentina
| | - Graciela N. Balerio
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires; Junín 956, 5° piso (C1113AAD) Buenos Aires Argentina
| |
Collapse
|
64
|
Zhang XY, Tan YL, Chen DC, Tan SP, Yang FD, Zunta-Soares GB, Soares JC. Effects of cigarette smoking and alcohol use on neurocognition and BDNF levels in a Chinese population. Psychopharmacology (Berl) 2016; 233:435-45. [PMID: 26518023 DOI: 10.1007/s00213-015-4124-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Few studies have examined the potential interactive effect of both smoking and drinking on cognition. Brain-derived neurotrophic factor (BDNF) plays a critical role in cognition. This is the first study to examine the neurocognitive consequences of cigarette smoking combined with chronic alcohol consumption and their relationship to serum BDNF levels in a Chinese Han population. MATERIALS AND METHODS We recruited 191 healthy male subjects, including 47 isolated smokers, 31 isolated chronic alcohol users, 58 combined smokers and chronic alcohol users, and 55 non-smokers and non-alcohol users. We then compared the repeatable battery for the assessment of neuropsychological status (RBANS) scores and serum BDNF levels in these four groups. RESULTS When compared to the non-smoking + non-alcohol-using group, the smoking group performed worse on immediate memory, attention, language, and RBANS total score. There were no significant differences in the RBANS scores between the alcohol-using group and non-smoking + non-alcohol-using group, or between the smoking group and smoking + alcohol-using group. We did not find an association between BDNF and smoking or drinking status or between BDNF and cognitive performance. In the smoking group, there was a significant correlation between BDNF and carbon monoxide concentration, and between BDNF and the Fagerstrom Test for Nicotine Dependence (FTND) total score. CONCLUSIONS Our results suggest that smoking is associated with cognitive decline, but not with BDNF levels in a normal population. However, smoking severity is positively associated with BDNF levels. Concomitant alcohol use does not worsen the cognitive decline caused by smoking.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- UT Center of Excellence on Mood Disorders (UTCEMD), Biomedical and Behavioral Sciences Building, 1941 East Road, Houston, TX, 77054, USA.
| | - Yun-Long Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da-Chun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu-De Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
65
|
Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats. Int J Mol Sci 2015; 16:30422-30437. [PMID: 26703578 PMCID: PMC4691182 DOI: 10.3390/ijms161226242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.
Collapse
Affiliation(s)
- Shahla Shojaei
- Department of Biochemistry and Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Research Policy Centre, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| |
Collapse
|
66
|
Vedder LC, Hall JM, Jabrouin KR, Savage LM. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcohol Clin Exp Res 2015; 39:2143-53. [PMID: 26419807 PMCID: PMC4624484 DOI: 10.1111/acer.12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition, and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol-related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke-Korsakoff syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol (EtOH)- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. METHODS Adult rats were randomly assigned to 1 of 6 treatment conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH over 6 months; severe pyrithiamine-induced TD (PTD-moderate acute stage); moderate PTD (PTD-early acute stage); moderate PTD followed by CET (PTD-CET); moderate PTD during CET (CET-PTD); and pair-fed (PF) control. After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. RESULTS Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility, and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone, and the synergistic effects of moderate TD with CET lead to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. CONCLUSIONS These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Joseph M Hall
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Kimberly R Jabrouin
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
67
|
Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl Psychiatry 2015; 5:e677. [PMID: 26556286 PMCID: PMC5068760 DOI: 10.1038/tp.2015.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
Neurotrophic factors have been investigated in relation to depression. The aim of the present study was to widen this focus to sortilin, a receptor involved in neurotrophic signalling. The serum sortilin level was investigated in 152 individuals with depression and 216 control individuals, and eight genetic markers located within the SORT1 gene were successfully analysed for association with depression. Genotyping was performed using the Sequenom MassARRAY platform. All the individuals returned a questionnaire and participated in a semi-structured diagnostic interview. Sortilin levels were measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum sortilin levels in depressed individuals compared with controls (P=0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate to altered activity of neurotrophic factors.
Collapse
|
68
|
Schunck RVA, Torres IL, Laste G, de Souza A, Macedo IC, Valle MTC, Salomón JL, Moreira S, Kuo J, Arbo MD, Dallegrave E, Leal MB. Protracted alcohol abstinence induces analgesia in rats: Possible relationships with BDNF and interleukin-10. Pharmacol Biochem Behav 2015; 135:64-9. [DOI: 10.1016/j.pbb.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
69
|
Neupane SP, Lien L, Ueland T, Mollnes TE, Aukrust P, Bramness JG. Serum brain-derived neurotrophic factor levels in relation to comorbid depression and cytokine levels in Nepalese men with alcohol-use disorders. Alcohol 2015; 49:471-8. [PMID: 25873205 DOI: 10.1016/j.alcohol.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
Neurodegenerative and inflammatory processes are involved separately in major depression (MD) and alcohol-use disorders (AUD). Little is known about the nature of this relationship in the context of comorbid AUD and depression disorders. In this study, we determined brain-derived neurotrophic factor (BDNF) serum levels in patients with AUD and tested whether BDNF levels were related to history of major depression, recent depressive symptoms, AUD severity, and TNF-α and IL-6 levels. Nepalese male AUD inpatients (N=152) abstinent from alcohol for an average of 34 days were administered structured interviews to assess depression symptoms and pattern and extent of alcohol use, and to generate research diagnoses for AUD and MD. AUD severity was assessed by scores on the Alcohol Use Disorder Identification Test. Serum BDNF and cytokines were measured using ELISA and multiplex technology, respectively. Although serum BDNF levels were unrelated to MD history, patients with recent depressive symptoms (n=42) had lower (mean±SD) BDNF serum levels compared to those without (n=110) (21.6±8.1 ng/mL vs. 26.0±9.6 ng/mL; p=0.010), and patients with higher AUD severity and binge-drinking patterns had higher mean serum BDNF levels compared to lower AUD severity and non-binging (25.9±9.7 ng/mL vs. 22.1±8.7 ng/mL; p=0.022 and 25.7±9.3 vs. 21.8±9.7 ng/mL; p=0.029, respectively). Positive correlations were present between BDNF and TNF-α (r=0.39, p<0.001) and IL-6 (r=0.2, p=0.027). In particular, TNF-α levels were predictive of BDNF levels after controlling for confounders (B=0.3 [95% CI=0.2-0.5], p<0.001). These findings show that in alcohol-using populations, peripheral BDNF levels are related to severity of AUD as well as presence of depressive symptoms. The significant associations between inflammatory and neurotrophic factors may have implications for neuroadaptive changes during recovery from AUD.
Collapse
Affiliation(s)
| | - Lars Lien
- SERAF-Norwegian Centre for Addiction Research, University of Oslo, Norway; Innlandet Hospital Trust, Hamar, Norway; Department of Public Health, Hedmark University College, Elverum, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; KG. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Tom Eirik Mollnes
- KG. Jebsen Inflammatory Research Center, University of Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norway; KG. Jebsen Inflammatory Research Center, University of Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway
| | - Jørgen G Bramness
- SERAF-Norwegian Centre for Addiction Research, University of Oslo, Norway
| |
Collapse
|
70
|
Xu R, Duan SR, Zhao JW, Wang CY. Changes in expression of BDNF and its receptors TrkB and p75NTR in the hippocampus of a dog model of chronic alcoholism and abstinence. ACTA ACUST UNITED AC 2015; 48:703-10. [PMID: 26108098 PMCID: PMC4541689 DOI: 10.1590/1414-431x20154412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 01/05/2023]
Abstract
Chronic ethanol consumption can produce learning and memory deficits. Brain-derived
neurotrophic factor (BDNF) and its receptors affect the pathogenesis of alcoholism.
In this study, we examined the expression of BDNF, tropomyosin receptor kinase B
(TrkB) and p75 neurotrophin receptor (p75NTR) in the hippocampus of a dog model of
chronic alcoholism and abstinence. Twenty domestic dogs (9-10 months old, 15-20 kg;
10 males and 10 females) were obtained from Harbin Medical University. A stable
alcoholism model was established through ad libitum feeding, and
anti-alcohol drug treatment (Zhong Yao Jie Jiu Ling, the main ingredient was the
stems of watermelon; developed in our laboratory), at low- and high-doses, was
carried out. The Zhong Yao Jie Jiu Ling was effective for the alcoholism in dogs. The
morphology of hippocampal neurons was evaluated using hematoxylin-eosin staining. The
number and morphological features of BDNF, TrkB and p75NTR-positive neurons in the
dentate gyrus (DG), and the CA1, CA3 and CA4 regions of the hippocampus were observed
using immunohistochemistry. One-way ANOVA was used to determine differences in BDNF,
TrkB and p75NTR expression. BDNF, TrkB and p75NTR-positive cells were mainly
localized in the granular cell layer of the DG and in the pyramidal cell layer of the
CA1, CA3 and CA4 regions (DG>CA1>CA3>CA4). Expression levels of both BDNF
and TrkB were decreased in chronic alcoholism, and increased after abstinence. The
CA4 region appeared to show the greatest differences. Changes in p75NTR expression
were the opposite of those of BDNF and TrkB, with the greatest differences observed
in the DG and CA4 regions.
Collapse
Affiliation(s)
- R Xu
- Neurology Ward of Internal Medicine, Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| | - S R Duan
- Neurology Ward of Internal Medicine, Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| | - J W Zhao
- Neurology Ward of Internal Medicine, Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| | - C Y Wang
- Neurology Ward of Internal Medicine, Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| |
Collapse
|
71
|
Nascimento NF, Carlson KN, Amaral DN, Logan RW, Seggio JA. Alcohol and lithium have opposing effects on the period and phase of the behavioral free-running activity rhythm. Alcohol 2015; 49:367-76. [PMID: 25850902 DOI: 10.1016/j.alcohol.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Bipolar patients have a high prevalence of comorbid alcohol use and abuse disorders, while chronic alcohol drinking may increase the presence and severity of certain symptoms of bipolar disorder. As such, there may be many individuals that are prescribed lithium to alleviate the manic symptoms of bipolar disorder, but also drink alcohol concurrently. In addition, both alcoholics and individuals with bipolar disorder often exhibit disruptions to their sleep-wake cycles and other circadian rhythms. Interestingly, both ethanol and lithium are known to alter both the period and the phase of free-running rhythms in mammals. While lithium is known to lengthen the period, ethanol seems to shorten the period and attenuate the responses to acute light pulses. Therefore, the present study aimed to determine whether ethanol and lithium have opposing effects on the circadian pacemaker when administered together. C57BL/6J mice were provided drinking solutions containing lithium, alcohol, or both, and their free-running rhythms along with their response to photic phase shifts were investigated. Mice treated with lithium displayed period lengthening, which was almost completely negated when ethanol was added. Moreover, ethanol significantly attenuated light-induced phase delays while the addition of lithium partially restored this response. These results indicate that alcohol and lithium have opposing effects on behavioral circadian rhythms. Individuals with bipolar disorder who are prescribed lithium and who drink alcohol might be inadvertently altering their sleep and circadian cycles, which may exacerbate their symptoms.
Collapse
Affiliation(s)
- Nara F Nascimento
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Karen N Carlson
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Danielle N Amaral
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
72
|
Han C, Bae H, Won SD, Roh S, Kim DJ. The relationship between brain-derived neurotrophic factor and cognitive functions in alcohol-dependent patients: a preliminary study. Ann Gen Psychiatry 2015; 14:30. [PMID: 26405456 PMCID: PMC4581104 DOI: 10.1186/s12991-015-0065-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a neurotoxic substance, alcohol can induce neurodegenesis in the brain. Alcohol-dependent patients' cognitive functioning can be affected by chronic alcohol use. In addition, brain-derived neurotrophic factor (BDNF) is known to reflect the status of neuroadaptive changes. The purpose of this study was to investigate the relationship between cognitive functions and BDNF in alcohol-dependent patients. METHODS The subjects were 39 alcohol-dependent patients. BDNF was measured using an enzyme-linked immunosorbent assay kit. We examined clinical features and administered the Korean version of Alcohol Dependence Scale. We also used the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) to measure cognitive functioning. Then, we determined the relationships between BDNF and various parts of the CERAD. RESULTS The performance of alcohol-dependent patients proved stable in most parts of the CERAD. Within the different parts of the CERAD, only Trail Making Test B correlated with BDNF. Trail Making Test specifically assesses executive functions. CONCLUSIONS BDNF might play an important role in the detection of neurocognitive function among individuals with alcohol dependence.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Korea
| | - Hwallip Bae
- Department of Psychiatry, Seonam University, Myongji Hospital, Goyang, Korea
| | - Sung-Doo Won
- Keyo Medical Foundation, Keyo Hospital, Uiwang, Korea
| | - Sungwon Roh
- Department of Mental Health Research, Seoul National Hospital, Seoul, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, 137-701 Korea
| |
Collapse
|
73
|
Gallego X, Cox RJ, Funk E, Foster RA, Ehringer MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav 2014; 138:28-36. [PMID: 25447477 DOI: 10.1016/j.physbeh.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
Adolescence is a period of high vulnerability for alcohol use and abuse. Early alcohol use has been shown to increase the risk for alcohol-related problems later in life; therefore effective preventive treatments targeted toward adolescents would be very valuable. Many epidemiological and longitudinal studies in humans have revealed the beneficial effects of exercise for prevention and treatment of alcohol addiction. Pre-clinical studies have demonstrated that access to a running wheel leads to decreased voluntary alcohol consumption in adult mice, hamsters, and rats. However, age and sex may also influence the effects of exercise on alcohol use. Herein, we studied male and female C57BL/6 adolescent mice using a 24-hour two-bottle choice paradigm to evaluate 21 days of concurrent voluntary exercise on alcohol consumption and preference. Given previously known effects of exercise in increasing the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus and its role in regulating the reward system, BDNF mRNA and protein levels were measured at the end of the behavioral experiment. Our results demonstrate sex differences in the efficacy of voluntary exercise and its effects on decreasing alcohol consumption and preference. We also report increased BDNF expression after 21 days of voluntary exercise in both male and female mice. Interestingly, the distance traveled played an important role in alcohol consumption and preference in female mice but not in male mice. Overall, this study demonstrates sex differences in the effects of voluntary exercise on alcohol consumption in adolescent mice and points out the importance of distance traveled as a limiting factor to the beneficial effects of wheel running in female mice.
Collapse
Affiliation(s)
- X Gallego
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R J Cox
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - E Funk
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R A Foster
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado Boulder, CO 80303, USA.
| |
Collapse
|
74
|
Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:103-13. [PMID: 24842804 PMCID: PMC4134968 DOI: 10.1016/j.pnpbp.2014.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 01/29/2023]
Abstract
Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kimberly Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
75
|
Combined effects of the BDNF rs6265 (Val66Met) polymorphism and environment risk factors on psoriasis vulgaris. Mol Biol Rep 2014; 41:7015-22. [PMID: 25052186 DOI: 10.1007/s11033-014-3589-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
Abstract
Smoking, alcohol consumption and higher body mass index (BMI) are well established risk factors for psoriasis and also associated with the clinical traits of the disease. And the genetic influences on these three risk factors indeed exist. Previously studies have demonstrated these risk factors related genetic variants may also play a role in the development of risk factors-related diseases. Then we performed a hospital-based study in order to evaluate the combined effect of the risk factors and their related polymorphism rs6265 in brain-derived neurotrophic factor (BDNF) gene on psoriasis vulgaris (PV) risk and clinic traits. The case-control study involved 660 subjects including 345 cases and 315 controls in Chinese Han population. The variant of rs6265 was typed by SNaPshot Multiplex Kit (Applied Biosystems Co., USA). We confirmed that higher BMI (≥25), smoking and alcohol consumption were risk factors for PV, and the estimated ORs were 1.63(95 % confidence interval (CI); 1.12-2.37), 2.09(95 % CI; 1.44-3.03) and 1.65(95 % CI; 1.15-2.37) respectively. Genotype and allele distributions did not differ significantly between case and control. However, we found combined effect of rs6265 genotype (GG) and higher BMI (≥25) increased risk of PV (OR = 2.09; 95 % CI, 1.02-4.28; P < 0.05; adjusted OR = 3.19; 95 % CI, 1.37-7.45; P < 0.05) and clinically severity of PV (OR = 2.71; 95 % CI, 1.09-6.72; P < 0.05; adjusted OR = 1.25; 95 % CI, 1.10-1.40; P < 0.05). But none such significant combined effect was observed between others genotype (AA and AG) and other risk factors. In conclusions, the combined effect of BDNF rs6265 genotype (GG) and higher BMI may increases the risk and clinical severity of PV in Chinese Han population.
Collapse
|
76
|
Raivio N, Miettinen P, Kiianmaa K. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats. Brain Res 2014; 1579:74-83. [PMID: 25044407 DOI: 10.1016/j.brainres.2014.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/26/2014] [Accepted: 07/04/2014] [Indexed: 12/20/2022]
Abstract
We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake.
Collapse
Affiliation(s)
- Noora Raivio
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, POB 30, Helsinki 00271, Finland
| | - Pekka Miettinen
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, POB 30, Helsinki 00271, Finland
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, POB 30, Helsinki 00271, Finland.
| |
Collapse
|
77
|
Aberrant Behavioral and Neurobiologic Profiles in Rodents Exposed to Ethanol or Red Wine Early in Development. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Liang J, Lindemeyer AK, Suryanarayanan A, Meyer EM, Marty VN, Ahmad SO, Shao XM, Olsen RW, Spigelman I. Plasticity of GABA(A) receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats. J Neurophysiol 2014; 112:39-50. [PMID: 24694935 DOI: 10.1152/jn.00565.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABA(A)Rs, which mediate the picrotoxin-sensitive tonic current (I(tonic)), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both I(tonic) and mIPSCs was decreased by CIE treatment. The average magnitude of I(tonic) was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABA(A)R subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission.
Collapse
Affiliation(s)
- Jing Liang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Asha Suryanarayanan
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Edward M Meyer
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - Vincent N Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California
| | - S Omar Ahmad
- Doisy College of Health Sciences, Saint Louis University, St. Louis, Missouri; and
| | - Xuesi Max Shao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Igor Spigelman
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California;
| |
Collapse
|
79
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
80
|
Increase in brain-derived neurotrophic factor expression in early crack cocaine withdrawal. Int J Neuropsychopharmacol 2014; 17:33-40. [PMID: 24067327 DOI: 10.1017/s146114571300103x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent reports suggest that brain-derived neurotrophic factor (BDNF) could be a biomarker for relapse, drug craving and withdrawal severity. In particular, elevated BDNF levels among former cocaine users have been associated with higher rates of relapse in 90 d. However, no data are available on BDNF levels at baseline and during crack cocaine withdrawal. This study evaluated BDNF among crack cocaine users during inpatient treatment, before and after withdrawal, vs. healthy controls. Clinical correlates with changes in BDNF levels were also assessed. Serum BDNF was evaluated in 49 male crack users on the first and last days of hospitalization and in 97 healthy controls. Serum BDNF was assayed using a sandwich ELISA kit. BDNF levels were significantly lower upon admission when compared to controls, even after adjustment for age, length of inpatient treatment, number of crack rocks used in the last 30 d, years of crack use and interaction between the latter two variables. At discharge, BDNF levels between patients and controls were similar. Number of crack rocks used in the last 30 d and years of crack use were inversely correlated with the outcome. Our findings show that BDNF levels increase during early crack cocaine withdrawal, at an inverse correlation with number of crack rocks used in the last 30 d and years of crack use.
Collapse
|
81
|
Popa-Wagner A, Furczyk K, Richter J, Irmisch G, Thome J. Neurotrophin levels at admission did not change significantly upon alcohol deprivation and were positively correlated with the BMI and LDL levels. J Mol Psychiatry 2013; 1:20. [PMID: 25408911 PMCID: PMC4223886 DOI: 10.1186/2049-9256-1-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT3) could play a role in addictive behavior. Interactions between BDNF and dopamine transmission influence the alcohol intake. It has been hypothesized that extensive alcohol consumption leads to diminished circulating BDNF levels and impaired BDNF-mediated protective mechanisms. What is more, alcohol dependency causes changes in lipid metabolism which in turn may influence the neurotrophin system. METHODS In this study, we tested the hypothesis that alcohol withdrawal increases the serum levels of BDNF in alcoholic patients and investigated correlations between serum BDNF and NT3 and alcohol in breath as well as with the body-mass-index (BMI), lipoprotein profiles and lifestyle factors in 110 male in-patients diagnosed with alcohol addiction on the first day after admission and at discharge. RESULTS The intoxication level (alcohol in breath at admission) was significantly correlated with liver enzymes and BDNF concentrations (R = .28; p = .004). Patients with positive breath-alcohol test at admission had about 9 times higher NT3 levels and higher liver enzyme concentration levels than nonintoxicated subjects. Alcohol intoxicated patients with pathological aspartate aminase (ASAT) levels had even higher NT3 level (F = 5.41; p = .022). The concentration of NT3 was positively associated with the (BMI) (admission R = .36; p = .004; discharge R = .33; p = .001), and the obese patients had 3 to 5 times higher NT3 concentration than the others. Low-density lipoprotein (LDL) concentration levels were found to positively correlate with NT3 concentration levels (admission R = .025; p = .015 discharge R = .24; p = .23). CONCLUSION Other than expected, the levels of NT3 and to a lesser extent BDNF levels, were found to be significantly increased in acute alcohol abuse. Alcohol deprivation did not significantly change the serum neurotrophin levels at admission. NT3 levels were positively correlated with the BMI and LDL levels. Because of expected difference between genders, we recommend investigating these correlations further in patients of both genders.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Clinic for Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
| | - Karolina Furczyk
- Clinic for Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
| | - Joerg Richter
- Norway Centre for Child and Adolescent Mental Health Eastern and Southern Norway, Oslo, 0405 Norway
| | - Gisela Irmisch
- Clinic for Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
| | - Johannes Thome
- Clinic for Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
| |
Collapse
|
82
|
Darlington TM, McCarthy RD, Cox RJ, Ehringer MA. Mesolimbic transcriptional response to hedonic substitution of voluntary exercise and voluntary ethanol consumption. Behav Brain Res 2013; 259:313-20. [PMID: 24239693 DOI: 10.1016/j.bbr.2013.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/17/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
The mesolimbic dopaminergic pathway has been implicated in many rewarding behaviors, including the consumption of ethanol and voluntary exercise. It has become apparent that different rewarding stimuli activate this pathway, and therefore it is possible for these behaviors to influence each other, i.e. hedonic substitution. Using adult female C57BL/6J mice, we demonstrate that voluntary access to a running wheel substantially reduces the consumption and preference of ethanol. Furthermore, we examined gene expression of several genes involved in regulating the mesolimbic dopaminergic pathway, which we hypothesized to be the main pathway involved in hedonic substitution. In the striatum, we observed a reduction in mRNA expression of Drd1a due to exercise. Hippocampal Bdnf mRNA increased in response to exercise and decreased in response to ethanol. Furthermore, there was an interaction effect of exercise and ethanol on the expression of Slc18a2 in the midbrain. These data suggest an important role for this pathway, and especially for Bdnf and Slc18a2 in regulating hedonic substitution.
Collapse
Affiliation(s)
- Todd M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO 80303, USA
| | - Riley D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO 80303, USA
| | - Ryan J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO 80303, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
83
|
Miki T, Kusaka T, Yokoyama T, Ohta KI, Suzuki S, Warita K, Jamal M, Wang ZY, Ueki M, Liu JQ, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction. J Neural Transm (Vienna) 2013; 121:201-10. [PMID: 24061482 DOI: 10.1007/s00702-013-1085-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kalejaiye O, Bhatti BH, Taylor RE, Tizabi Y. Nicotine Blocks the Depressogenic Effects of Alcohol: Implications for Drinking-Smoking Co-Morbidity. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2013; 2:235709. [PMID: 25309774 PMCID: PMC4193904 DOI: 10.4303/jdar/235709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol and nicotine are two very commonly abused legal substances. Although various hypotheses for such co-dependence have been suggested, it is not known whether the effects of alcohol and nicotine on mood behavior may also contribute to such co-abuse. Chronic exposure to high alcohol levels may lead to various neurochemical changes and precipitate depressive-like behavior. Nicotine, on the other hand, may exert an antidepressant-like effect. Here, we sought to determine whether nicotine may also block or mitigate the "depressogenic" effects of alcohol in a rat model. Moreover, since hippocampal brain-derived neurotrophic factor (BDNF) has been strongly implicated in mood regulation and effectiveness of antidepressants, the level of this neurotrophic factor in the hippocampus was also evaluated. Adult male Wistar rats were injected (i.p.) with alcohol (1.0 g/kg), nicotine (0.3 mg/kg) or their combination once daily for 14 days. Controls received saline. The behavior of these rats in open field locomotor activity (LMA), the forced swim test (FST), a measure of helplessness, and sucrose intake, a measure of anhedonia were evaluated 16-18 h after the last injection. Chronic alcohol did not affect LMA, but increased immobility in FST and decreased sucrose consumption, suggesting a "depressogenic" effect. Nicotine by itself did not affect any of the measured behavior but blocked alcohol-induced changes in FST and sucrose intake. Parallel to the behavioral changes, chronic alcohol resulted in a significant decrease in hippocampal BDNF, which was normalized by nicotine. These findings suggest that the opposing effects of alcohol and nicotine on depressive-like behavior may contribute to their co-abuse.
Collapse
Affiliation(s)
- Olubukola Kalejaiye
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Babur H Bhatti
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
85
|
Bahi A, Dreyer JL. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. Eur J Neurosci 2013; 38:2328-37. [PMID: 23601049 DOI: 10.1111/ejn.12228] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, CMHS, United Arab Emirates University, Al Ain, UAE.
| | | |
Collapse
|
86
|
Balaszczuk V, Bender C, Pereno G, Beltramino CA. Binge alcohol‐induced alterations in BDNF and GDNF expression in central extended amygdala and pyriform cortex on infant rats. Int J Dev Neurosci 2013; 31:287-96. [DOI: 10.1016/j.ijdevneu.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Verónica Balaszczuk
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
- Departamento de Biología Evolutiva Humana, Facultad de PsicologíaUniversidad Nacional de Córdoba5000CórdobaArgentina
| | - Crhistian Bender
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
| | - Germán Pereno
- Departamento de Biología Evolutiva Humana, Facultad de PsicologíaUniversidad Nacional de Córdoba5000CórdobaArgentina
| | - Carlos A. Beltramino
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
| |
Collapse
|
87
|
Boyadjieva NI, Sarkar DK. Cyclic adenosine monophosphate and brain-derived neurotrophic factor decreased oxidative stress and apoptosis in developing hypothalamic neuronal cells: role of microglia. Alcohol Clin Exp Res 2013; 37:1370-9. [PMID: 23550806 DOI: 10.1111/acer.12104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/12/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND We have previously shown that ethanol (EtOH) increases cellular apoptosis to developing neurons via the effects on oxidative stress of neurons directly and via increasing production of microglia-derived factors. To study further the mechanism of EtOH action on neuronal apoptosis, we determined the effects of 2 well-known PKA activators, dibutyryl cAMP (dbcAMP) and brain-derived neurotrophic factor (BDNF), on EtOH-activated oxidative stress and apoptotic processes in the hypothalamic neurons in the presence and absence of microglial cells' influence. METHODS In enriched neuronal cells from fetal rat hypothalami treated with EtOH or with conditioned medium from EtOH-treated microglia, we measured cellular apoptosis by the free nucleosome assay and the levels of cAMP, BDNF, O²⁻, reactive oxygen species (ROS), nitrite, glutathione (GSH), and catalase following treatment with EtOH or EtOH-treated microglial culture conditioned medium. Additionally, we tested the effectiveness of dbcAMP and BDNF in preventing EtOH or EtOH-treated microglial conditioned medium on cellular apoptosis and oxidative stress in enriched hypothalamic neuronal cell in primary cultures. RESULTS Neuronal cell cultures following treatment with EtOH or EtOH-activated microglial conditioned medium showed decreased production levels of cAMP and BDNF. EtOH also increased apoptotic death as well as oxidative status, as demonstrated by higher cellular levels of oxidants but lower levels of antioxidants, in neuronal cells. These effects of EtOH on oxidative stress and cell death were enhanced by the presence of microglia. Treatment with BDNF or dbcAMP decreased EtOH or EtOH-activated microglial conditioned medium-induced changes in the levels of intracellular free radicals, ROS and O²⁻, nitrite, GSH, and catalase. CONCLUSIONS These data support the possibility that EtOH by acting directly and via increasing the production of microglial-derived factors reduces cellular levels of cAMP and BDNF to increase cellular oxidative status and apoptosis in hypothalamic neuronal cells in primary cultures.
Collapse
Affiliation(s)
- Nadka I Boyadjieva
- Endocrine Program, Department of Animal Sciences, Graduate Program of Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
88
|
Nona CN, Guirguis S, Nobrega JN. Susceptibility to ethanol sensitization is differentially associated with changes in pCREB, trkB and BDNF mRNA expression in the mouse brain. Behav Brain Res 2013; 242:25-33. [PMID: 23291223 DOI: 10.1016/j.bbr.2012.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/16/2012] [Accepted: 12/21/2012] [Indexed: 11/30/2022]
Abstract
Repeated exposure to ethanol in mice induces behavioural sensitization, a progressive increase in locomotor activity that is common to drugs of abuse. Not all mice however show sensitization to ethanol. The goal of the present study was to examine whether variability in the sensitization response to ethanol (EtOH) is differentially associated with regional brain changes in specific molecular markers associated with neuroplasticity, namely BDNF and its receptor trkB, and levels of phosphorylated cyclic AMP-regulated element-binding protein (pCREB), 14 days after withdrawal from chronic, intermittent EtOH exposure. Male DBA/2NCrl mice received 7 biweekly EtOH (2.2g/kg, i.p.) or saline (SAL) injections and were classified as Sensitized or Non-sensitized on the basis of final locomotor activity (LMA) scores. Brains were removed two weeks later for immunohistochemical and in situ hybridization analyses. Compared to SAL-treated and Non-sensitized mice, Sensitized animals showed a higher number of pCREB-immunoreactive cells in the nucleus accumbens shell (+68% and +50%, respectively) and in the bed nucleus of the stria terminalis (+61% and 46%, respectively), whereas SAL and Non-sensitized groups did not differ from each other. A different pattern was seen when BDNF and trkB mRNA levels were analyzed in the same groups. Non-sensitized mice displayed lower BDNF mRNA in several brain areas and significantly lower trkB levels throughout the brain when compared to either the Sensitized or to SAL groups, which did not differ from each other. These results indicate that sensitization to EtOH is differentially associated with increased pCREB levels in specific brain areas. The observed decrease in BDNF and trkB mRNA in the Non-sensitized group suggests the possibility that EtOH may have neurotoxic effects in a subpopulation of mice, which might in turn prevent the development of behavioural sensitization. The lack of a difference in BDNF and trkB mRNA expression between Sensitized and SAL mice suggests that EtOH sensitization may be mediated by mechanisms different from those mediating sensitization to other psychostimulants.
Collapse
Affiliation(s)
- Christina N Nona
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
89
|
Köhler S, Klimke S, Hellweg R, Lang UE. Serum brain-derived neurotrophic factor and nerve growth factor concentrations change after alcohol withdrawal: preliminary data of a case-control comparison. Eur Addict Res 2013; 19:98-104. [PMID: 23128606 DOI: 10.1159/000342334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/05/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are involved in neuroadaptation and foster survival of central and peripheral neurons. In this study, we addressed the question whether BDNF and NGF serum concentrations change during subacute alcohol withdrawal in patients with alcohol dependence compared to healthy controls. METHODS Fifteen patients (age 48.6 ± 7 years) and 15 healthy age-matched controls (age 48.8 ± 7 years) participated consecutively in a 2-week withdrawal study. RESULTS Mean BDNF levels (7.8 ng/ml, IQR = 4.4-10.7 vs. 16.5 ng/ml, IQR = 13.9-25.6; Z = -3.8, p < 0.0001) and NGF levels (5.8 pg/ml, IQR = 3.8-13.0 vs. 18.4 pg/ml, IQR = 10.9-25.1; Z = -2.5, p = 0.012) were significantly decreased in alcohol-dependent subjects when compared to healthy matched controls. NGF concentrations decreased significantly from day 3 to day 14 (Z = -2.36; p = 0.019). Mean BDNF concentrations showed a tendency to increase after withdrawal from day 3 to day 14 (Z = 1.7; p = 0.078). CONCLUSION Decreased NGF and BDNF concentrations in patients suffering from alcohol dependence, which stabilize after physical withdrawal, are in line with withdrawal symptoms and neurological risk factors. In turn, increase of BDNF after acute withdrawal might be connected to neurobiological and behavioral stabilization.
Collapse
Affiliation(s)
- Stephan Köhler
- Department of Psychiatry and Psychotherapy, Charité Medicine Berlin, Campus Mitte, Berlin, Germany
| | | | | | | |
Collapse
|
90
|
Lindsley TA, Shah SN, Ruggiero EA. Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcohol Clin Exp Res 2012; 35:1321-30. [PMID: 21676004 DOI: 10.1111/j.1530-0277.2011.01468.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The effects of ethanol on development of postmitotic neurons include altered neurite outgrowth and differentiation, which may contribute to neuropathology associated with fetal alcohol spectrum disorders. We previously reported that ethanol exposure alters axon growth dynamics in dissociated cultures of rat hippocampal pyramidal neurons. Given the important regulatory role of small Rho guanosine triphosphatases (GTPases) in cytoskeletal reorganization associated with axon growth, and reports that ethanol alters whole cell Rho GTPase activity in other cell types, this study explored the hypothesis that ethanol alters Rho GTPase activity specifically in axonal growth cones. METHODS Fetal rat hippocampal pyramidal neurons were maintained in dissociated cultures for 1 day in control medium or medium containing 11 to 43 mM ethanol. Some cultures were also treated with brain-derived neurotrophic factor (BDNF), an activator of Rac1 and Cdc42 GTPases that promotes axon extension. Levels of active Rho GTPases in growth cones were measured using in situ binding assays for GTP-bound Rac1, Cdc42, and RhoA. Axon length, growth cone area, and growth cone surface expression of tyrosine kinase B (TrkB), the receptor for BDNF, were assessed by digital morphometry and immunocytochemistry. RESULTS Although ethanol increased the surface area of growth cones, the levels of active Rho GTPases in axonal growth cones were not affected in the absence of exogenous BDNF. In contrast, ethanol exposure inhibited BDNF-induced Rac1/Cdc42 activation in a dose-dependent manner and increased RhoA activation at the highest concentration tested. Similar TrkB expression was observed on the surface of axonal growth cones of control and ethanol-treated neurons. CONCLUSIONS These results reveal an inhibitory effect of ethanol on growth cone signaling via small Rho GTPases during early stages of hippocampal development in vitro, and suggest a mechanism whereby ethanol may disrupt neurotrophic factor regulation of axon growth and guidance.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology & Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | |
Collapse
|
91
|
Raivio N, Tiraboschi E, Saarikoski ST, Castrén E, Kiianmaa K. Brain-derived neurotrophic factor expression after acute administration of ethanol. Eur J Pharmacol 2012; 687:9-13. [PMID: 22546227 DOI: 10.1016/j.ejphar.2012.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/13/2012] [Indexed: 01/27/2023]
Abstract
Earlier findings suggest that, in addition to its well-known neurotrophic role, brain-derived neurotrophic factor (BDNF) is also involved in the rewarding and reinforcing effects of drugs of abuse. The purpose of the present study was to examine the effects of acute administration of ethanol (1.25 or 2.5 g/kg i.p.) on the expression profile of BDNF in the rat brain by determining the BDNF mRNA expression in the frontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area. Ethanol decreased BDNF mRNA levels dose-dependently in the hippocampus, and after the higher ethanol dose in the frontal cortex, nucleus accumbens and amygdala, while increasing them in the ventral tegmental area. Furthermore, BDNF mRNA expression was found to be regulated in a temporally different manner in all investigated brain areas. These data suggest that BDNF is involved in the acute effects of ethanol, but separate brain areas may be differentially engaged in the mediation of these effects.
Collapse
Affiliation(s)
- Noora Raivio
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | |
Collapse
|
92
|
|
93
|
Abstract
Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development.
Collapse
Affiliation(s)
- Anita E Autry
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
94
|
Adachi N, Numakawa T, Kumamaru E, Itami C, Chiba S, Iijima Y, Richards M, Katoh-Semba R, Kunugi H. Phencyclidine-induced decrease of synaptic connectivity via inhibition of BDNF secretion in cultured cortical neurons. Cereb Cortex 2012; 23:847-58. [PMID: 22467667 DOI: 10.1093/cercor/bhs074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repeated administration of phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor blocker, produces schizophrenia-like behaviors in humans and rodents. Although impairment of synaptic function has been implicated in the effect of PCP, the molecular mechanisms have not yet been elucidated. Considering that brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity, we examined whether exposure to PCP leads to impaired BDNF function in cultured cortical neurons. We found that PCP caused a transient increase in the level of intracellular BDNF within 3 h. Despite the increased intracellular amount of BDNF, activation of Trk receptors and downstream signaling cascades, including MAPK/ERK1/2 and PI3K/Akt pathways, were decreased. The number of synaptic sites and expression of synaptic proteins were decreased 48 h after PCP application without any impact on cell viability. Both electrophysiological and biochemical analyses revealed that PCP diminished glutamatergic neurotransmission. Furthermore, we found that the secretion of BDNF from cortical neurons was suppressed by PCP. We also confirmed that PCP-caused downregulation of Trk signalings and synaptic proteins were restored by exogenous BDNF application. It is possible that impaired secretion of BDNF and subsequent decreases in Trk signaling are responsible for the loss of synaptic connections caused by PCP.
Collapse
Affiliation(s)
- Naoki Adachi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Byars JA, Beglinger LJ, Moser DJ, Gonzalez-Alegre P, Nopoulos P. Substance abuse may be a risk factor for earlier onset of Huntington disease. J Neurol 2012; 259:1824-31. [DOI: 10.1007/s00415-012-6415-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/02/2012] [Accepted: 01/06/2012] [Indexed: 11/24/2022]
|
96
|
Advances in Relationship Between Brain-derived Neurotrophic Factor and Depressive Disorder*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Becker HC. Effects of alcohol dependence and withdrawal on stress responsiveness and alcohol consumption. Alcohol Res 2012; 34:448-58. [PMID: 23584111 PMCID: PMC3860383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A complex relationship exists between alcohol-drinking behavior and stress. Alcohol has anxiety-reducing properties and can relieve stress, while at the same time acting as a stressor and activating the body's stress response systems. In particular, chronic alcohol exposure and withdrawal can profoundly disturb the function of the body's neuroendocrine stress response system, the hypothalamic-pituitary-adrenocortical (HPA) axis. A hormone, corticotropin-releasing factor (CRF), which is produced and released from the hypothalamus and activates the pituitary in response to stress, plays a central role in the relationship between stress and alcohol dependence and withdrawal. Chronic alcohol exposure and withdrawal lead to changes in CRF activity both within the HPA axis and in extrahypothalamic brain sites. This may mediate the emergence of certain withdrawal symptoms, which in turn influence the susceptibility to relapse. Alcohol-related dysregulation of the HPA axis and altered CRF activity within brain stress-reward circuitry also may play a role in the escalation of alcohol consumption in alcohol-dependent individuals. Numerous mechanisms have been suggested to contribute to the relationship between alcohol dependence, stress, and drinking behavior. These include the stress hormones released by the adrenal glands in response to HPA axis activation (i.e., corticosteroids), neuromodulators known as neuroactive steroids, CRF, the neurotransmitter norepinephrine, and other stress-related molecules.
Collapse
|
98
|
BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology 2011; 36:1562-9. [PMID: 21596481 DOI: 10.1016/j.psyneuen.2011.04.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) is a key protein in maintaining neuronal integrity. The BDNF gene is thought to play an important role in the pathophysiology of mood and anxiety disorders. The aim of this study was to investigate, for the first time in a single study, the association between BDNF Val(66)Met polymorphism, anxiety, alcohol consumption, and cortisol stress response. METHOD 98 healthy university students (54 females and 44 males), genotyped for the Val(66)Met polymorphism, participated in a physical-stress procedure (cold pressure test, CPT) after having been informed that they would undergo a painful experience. Indices of anxiety and of stress were collected from repeated measurement of salivary cortisol, blood pressure, and heart rate. RESULTS BDNF Met carriers, were more anxious during the CPT (p<0.001), drank more alcohol per week, (p<0.05), and showed significantly higher anticipatory cortisol response (p<0.05), but not in response to the CPT, than Val/Val homozygotes. The association of BDNF Val(66)Met polymorphism with HPA axis reactivity to stress was not modulated by gender. These results suggest that Met carriers are particularly sensitive in anticipating stressful events, which extends previous findings on the moderating role of the BDNF Val(66)Met polymorphism in the face of stressful life events.
Collapse
|
99
|
Vetreno RP, Hall JM, Savage LM. Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 2011; 96:596-608. [PMID: 21256970 PMCID: PMC3086968 DOI: 10.1016/j.nlm.2011.01.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/09/2010] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
Chronic alcoholism is associated with impaired cognitive functioning. Over 75% of autopsied chronic alcoholics have significant brain damage and over 50% of detoxified alcoholics display some degree of learning and memory impairment. However, the relative contributions of different etiological factors to the development of alcohol-related neuropathology and cognitive impairment are questioned. One reason for this quandary is that both alcohol toxicity and thiamine deficiency result in brain damage and cognitive problems. Two alcohol-related neurological disorders, alcohol-associated dementia and Wernicke-Korsakoff syndrome have been modeled in rodents. These pre-clinical models have elucidated the relative contributions of ethanol toxicity and thiamine deficiency to the development of dementia and amnesia. What is observed in these models--from repeated and chronic ethanol exposure to thiamine deficiency--is a progression of both neural and cognitive dysregulation. Repeated binge exposure to ethanol leads to changes in neural plasticity by reducing GABAergic inhibition and facilitating glutamatergic excitation, long-term chronic ethanol exposure results in hippocampal and cortical cell loss as well as reduced hippocampal neurotrophin protein content critical for neural survival, and thiamine deficiency results in gross pathological lesions in the diencephalon, reduced neurotrophic protein levels, and neurotransmitters levels in the hippocampus and cortex. Behaviorally, after recovery from repeated or chronic ethanol exposure there is impairment in working or episodic memory that can recover with prolonged abstinence. In contrast, after thiamine deficiency there is severe and persistent spatial memory impairments and increased perseverative behavior. The interaction between ethanol and thiamine deficiency does not produce more behavioral or neural pathology, with the exception of reduction of white matter, than long-term thiamine deficiency alone.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Joseph M. Hall
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| |
Collapse
|
100
|
Becker HC, Lopez MF, Doremus-Fitzwater TL. Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology (Berl) 2011; 218:131-56. [PMID: 21850445 PMCID: PMC3247761 DOI: 10.1007/s00213-011-2443-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/02/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE While stress is often proposed to play a significant role in influencing alcohol consumption, the relationship between stress and alcohol is complex and poorly understood. Over several decades, stress effects on alcohol drinking have been studied using a variety of animal models and experimental procedures, yet this large body of literature has generally produced equivocal results. OBJECTIVES This paper reviews results from animal studies in which alcohol consumption is evaluated under conditions of acute/sub-chronic stress exposure or models of chronic stress exposure. Evidence also is presented indicating that chronic intermittent alcohol exposure serves as a stressor that consequently influences drinking. RESULTS The effects of various acute/sub-chronic stress procedures on alcohol consumption have generally been mixed, but most study outcomes suggest either no effect or decreased alcohol consumption. In contrast, most studies indicate that chronic stress, especially when administered early in development, results in elevated drinking later in adulthood. Chronic alcohol exposure constitutes a potent stressor itself, and models of chronic intermittent alcohol exposure reliably produce escalation of voluntary alcohol consumption. CONCLUSIONS A complex and dynamic interplay among a wide array of genetic, biological, and environmental factors govern stress responses, regulation of alcohol drinking, and the circumstances in which stress modulates alcohol consumption. Suggestions for future directions and new approaches are presented that may aid in developing more sensitive and valid animal models that not only better mimic the clinical situation, but also provide greater understanding of mechanisms that underlie the complexity of stress effects on alcohol drinking.
Collapse
Affiliation(s)
- Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| | | | | |
Collapse
|