51
|
Palmitoylation of STREX domain confers cerebroside sensitivity to the BKCa channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2451-9. [DOI: 10.1016/j.bbamem.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022]
|
52
|
Ochi R, Chettimada S, Gupte SA. Poly(ethylene glycol)-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells. PLoS One 2014; 9:e107049. [PMID: 25197984 PMCID: PMC4157810 DOI: 10.1371/journal.pone.0107049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol) cholesteryl ether (PEG-cholesterol) is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca2+ channel currents (ICa,L) recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD) is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD)) caused inhibition of ICa,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased ICa,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased ICa,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window ICa,L more strongly as compared with cholesterol (MβCD). Poly(ethylene glycol) conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of ICa,L.
Collapse
Affiliation(s)
- Rikuo Ochi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| | - Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sachin A. Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| |
Collapse
|
53
|
Dopico AM, Bukiya AN. Lipid regulation of BK channel function. Front Physiol 2014; 5:312. [PMID: 25202277 PMCID: PMC4141547 DOI: 10.3389/fphys.2014.00312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
This mini-review focuses on lipid modulation of BK (MaxiK, BKCa) current by a direct interaction between lipid and the BK subunits and/or their immediate lipid environment. Direct lipid-BK protein interactions have been proposed for fatty and epoxyeicosatrienoic acids, phosphoinositides and cholesterol, evidence for such action being less clear for other lipids. BK α (slo1) subunits are sufficient to support current perturbation by fatty and epoxyeicosatrienoic acids, glycerophospholipids and cholesterol, while distinct BK β subunits seem necessary for current modulation by most steroids. Subunit domains or amino acids that participate in lipid action have been identified in a few cases: hslo1 Y318, cerebral artery smooth muscle (cbv1) R334,K335,K336, cbv1 seven cytosolic CRAC domains, slo1 STREX and β1 T169,L172,L173 for docosahexaenoic acid, PIP2, cholesterol, sulfatides, and cholane steroids, respectively. Whether these protein motifs directly bind lipids or rather transmit the energy of lipid binding to other areas and trigger protein conformation change remains unresolved. The impact of direct lipid-BK interaction on physiology is briefly discussed.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
54
|
An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proc Natl Acad Sci U S A 2014; 111:9313-8. [PMID: 24927535 DOI: 10.1073/pnas.1317363111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.
Collapse
|
55
|
Poveda J, Giudici A, Renart M, Molina M, Montoya E, Fernández-Carvajal A, Fernández-Ballester G, Encinar J, González-Ros J. Lipid modulation of ion channels through specific binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1560-7. [DOI: 10.1016/j.bbamem.2013.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 01/08/2023]
|
56
|
Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1839-50. [PMID: 24769209 DOI: 10.1016/j.bbamcr.2014.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/20/2022]
Abstract
Cholesterol has been shown to promote cell proliferation/migration in many cells; however the mechanism(s) have not yet been fully identified. Here we demonstrate that cholesterol increases Ca(2+) entry via the TRPM7 channel, which promoted proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol mediated Ca(2+) entry induced calpain activity that showed a decrease in E-cadherin expression, which together could lead to migration of prostate cancer cells. An overexpression of TRPM7 significantly facilitated cholesterol dependent Ca(2+) entry, cell proliferation and tumor growth. Whereas, TRPM7 silencing or inhibition of cholesterol synthesis by statin showed a significant decrease in cholesterol-mediated activation of TRPM7, cell proliferation, and migration of prostate cancer cells. Consistent with these results, statin intake was inversely correlated with prostate cancer patients and increase in TRPM7 expression was observed in samples obtained from prostate cancer patients. Altogether, we provide evidence that cholesterol-mediated activation of TRPM7 is important for prostate cancer and have identified that TRPM7 could be essential for initiation and/or progression of prostate cancer.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Pramod Sukumaran
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Archana Varma
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Susan Derry
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Abe E Sahmoun
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Brij B Singh
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA.
| |
Collapse
|
57
|
Prendergast C, Quayle J, Burdyga T, Wray S. Atherosclerosis affects calcium signalling in endothelial cells from apolipoprotein E knockout mice before plaque formation. Cell Calcium 2014; 55:146-54. [PMID: 24630173 PMCID: PMC4024193 DOI: 10.1016/j.ceca.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 12/21/2022]
Abstract
Little is known about how hypercholesterolaemia affects Ca2+ signalling in the vasculature of ApoE−/− mice, a model of atherosclerosis. Our objectives were therefore to determine (i) if hypercholesterolaemia alters Ca2+ signalling in aortic endothelial cells before overt atherosclerotic lesions occur, (ii) how Ca2+ signals are affected in older plaque-containing mice, and (iii) whether Ca2+ signalling changes were translated into contractility differences. Using confocal microscopy we found agonist-specific Ca2+ changes in endothelial cells. ATP responses were unchanged in ApoE−/− cells and methyl-β-cyclodextrin, which lowers cholesterol, was without effect. In contrast, Ca2+ signals to carbachol were significantly increased in ApoE−/− cells, an effect methyl-β-cyclodextrin reversed. Ca2+ signals were more oscillatory and store-operated Ca2+ entry decreased as mice aged and plaques formed. Despite clearly increased Ca2+ signals, aortic rings pre-contracted with phenylephrine had impaired relaxation to carbachol. This functional deficit increased with age, was not related to ROS generation, and could be partially rescued by methyl-β-cyclodextrin. In conclusion, carbachol-induced calcium signalling and handling are significantly altered in endothelial cells of ApoE−/− mice before plaque development. We speculate that reduction in store-operated Ca2+ entry may result in less efficient activation of eNOS and thus explain the reduced relaxatory response to CCh, despite the enhanced Ca2+ response.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - John Quayle
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Theodor Burdyga
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Susan Wray
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
58
|
Siewert B, Csuk R. Membrane damaging activity of a maslinic acid analog. Eur J Med Chem 2014; 74:1-6. [PMID: 24440377 DOI: 10.1016/j.ejmech.2013.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/28/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
Close inspection of human ovarian cancer cells A2780 in the course of an antitumor screening using maslinic acid analogs revealed for one of the compounds, 4-oxa-4-phenyl-butyl 2,3-dihydroxy-olean-12-en-28-oate (1), an unusual behavior. During the incubation of the cells with 1, at the perimeter of the cells or close by crystals were formed consisting of cholesterol and excess 1. Compound 1 was incorporated into the cell's membrane followed by an extrusion of cholesterol from the lipid rafts. As a consequence of the alterations of the cell membrane, a volume decrease was initiated that triggered apoptosis; this extends previous models on apoptosis initiating mechanisms.
Collapse
Affiliation(s)
- Bianka Siewert
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
59
|
Wu W, Wang Y, Deng XL, Sun HY, Li GR. Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 2013; 8:e79952. [PMID: 24260325 PMCID: PMC3832390 DOI: 10.1371/journal.pone.0079952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|
60
|
Braun CJ, Lachnit C, Becker P, Henkes LM, Arrigoni C, Kast SM, Moroni A, Thiel G, Schroeder I. Viral potassium channels as a robust model system for studies of membrane-protein interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1096-103. [PMID: 23791706 DOI: 10.1016/j.bbamem.2013.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 11/15/2022]
Abstract
The viral channel KcvNTS belongs to the smallest K(+) channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80pS), high open-probability (>50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.
Collapse
Affiliation(s)
- Christian J Braun
- Membrane Biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Christine Lachnit
- Membrane Biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Patrick Becker
- Membrane Biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Leonhard M Henkes
- Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Cristina Arrigoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; CNR-IBF, Via Celoria 26, 20133 Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Indra Schroeder
- Membrane Biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| |
Collapse
|
61
|
Liu J, Bukiya AN, Kuntamallappanavar G, Singh AK, Dopico AM. Distinct sensitivity of slo1 channel proteins to ethanol. Mol Pharmacol 2013; 83:235-44. [PMID: 23093494 PMCID: PMC3533469 DOI: 10.1124/mol.112.081240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/23/2012] [Indexed: 12/14/2022] Open
Abstract
Ethanol levels reached in circulation during moderate-to-heavy alcohol intoxication (50-100 mM) modify Ca(2+)- and voltage-gated K(+) (BK) channel steady-state activity, eventually altering both physiology and behavior. Ethanol action on BK steady-state activity solely requires the channel-forming subunit slo1 within a bare lipid environment. To identify the protein regions that confer ethanol sensitivity to slo1, we tested the ethanol sensitivity of heterologously expressed slo1 and structurally related channels. Ethanol (50 mM) increased the steady-state activities of mslo1 and Ca(2+)-gated MthK, the latter after channel reconstitution into phospholipid bilayers. In contrast, 50-100 mM ethanol failed to alter the steady-state activities of Na(+)/Cl(-)-gated rslo2, H(+)-gated mslo3, and an mslo1/3 chimera engineered by joining the mslo1 region encompassing the N terminus to S6 with the mslo3 cytosolic tail domain (CTD). Collectively, data indicate that the slo family canonical design, which combines a transmembrane 6 (TM6) voltage-gated K(+) channel (K(V)) core with CTDs that empower the channel with ion-sensing, does not necessarily render ethanol sensitivity. In addition, the region encompassing the N terminus to the S0-S1 cytosolic loop (missing in MthK) is not necessary for ethanol action. Moreover, incorporation of both this region and an ion-sensing CTD to TM6 K(V) cores (a design common to mslo1, mslo3, and the mslo1/mslo3 chimera) is not sufficient for ethanol sensitivity. Rather, a CTD containing Ca(2+)-sensing regulator of conductance for K(+) domains seems to be critical to bestow K(V) structures, whether of TM2 (MthK) or TM6 (slo1), with sensitivity to intoxicating ethanol levels.
Collapse
Affiliation(s)
- Jianxi Liu
- University of Tennessee Health Science Center, College of Medicine, Department of Pharmacology, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
62
|
Bukiya AN, Patil S, Li W, Miller D, Dopico AM. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain. ChemMedChem 2012; 7:1784-92. [PMID: 22945504 PMCID: PMC4193543 DOI: 10.1002/cmdc.201200290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 02/07/2023]
Abstract
Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. We performed a structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the accessory BK β1 subunit. The latter protein is highly abundant in smooth muscle but scarce in most other tissues. Modifications to the LCA lateral chain length and functional group yielded two novel smooth muscle BK channel activators in which the substituent at C24 has a small volume and a net negative charge. Our data provide detailed structural information that will be useful to advance a pharmacophore in search of β1 subunit-selective BK channel activators. These compounds are expected to evoke smooth muscle relaxation, which would be beneficial in the pharmacotherapy of prevalent human disorders associated with increased smooth muscle contraction, such as systemic hypertension, cerebral or coronary vasospasm, bronchial asthma, bladder hyperactivity, and erectile dysfunction.
Collapse
Affiliation(s)
- Anna N. Bukiya
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| | - Shivaputra Patil
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Wei Li
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Duane Miller
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Alex M. Dopico
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| |
Collapse
|