51
|
Qin CX, May LT, Sexton PM, DeBono AJ, Baell JB, Christopoulos A, Ritchie RH. Correspondence: Reply to 'Compound 17b and formyl peptide receptor biased agonism in relation to cardioprotective effects in ischaemia-reperfusion injury'. Nat Commun 2018; 9:530. [PMID: 29416022 PMCID: PMC5803272 DOI: 10.1038/s41467-017-02656-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cheng Xue Qin
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lauren T May
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Aaron J DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Diabetes (Central Clinical School), Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
52
|
Endogenous Annexin-A1 Regulates Haematopoietic Stem Cell Mobilisation and Inflammatory Response Post Myocardial Infarction in Mice In Vivo. Sci Rep 2017; 7:16615. [PMID: 29192208 PMCID: PMC5709412 DOI: 10.1038/s41598-017-16317-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Endogenous anti-inflammatory annexin-A1 (ANX-A1) plays an important role in preserving left ventricular (LV) viability and function after ischaemic insults in vitro, but its long-term cardioprotective actions in vivo are largely unknown. We tested the hypothesis that ANX-A1-deficiency exaggerates inflammation, haematopoietic stem progenitor cell (HSPC) activity and LV remodelling in response to myocardial ischaemia in vivo. Adult ANX-A1−/− mice subjected to coronary artery occlusion exhibited increased infarct size and LV macrophage content after 24–48 h reperfusion compared with wildtype (WT) counterparts. In addition, ANX-A1−/− mice exhibited greater expansion of HSPCs and altered pattern of HSPC mobilisation 8 days post-myocardial infarction, with increased circulating neutrophils and platelets, consistent with increased cardiac inflammation as a result of increased myeloid invading injured myocardium in response to MI. Furthermore, ANX-A1−/− mice exhibited significantly increased expression of LV pro-inflammatory and pro-fibrotic genes and collagen deposition after MI compared to WT counterparts. ANX-A1-deficiency increased cardiac necrosis, inflammation, hypertrophy and fibrosis following MI, accompanied by exaggerated HSPC activity and impaired macrophage phenotype. These findings suggest that endogenous ANX-A1 regulates mobilisation and differentiation of HSPCs. Limiting excessive monocyte/neutrophil production may limit LV damage in vivo. Our findings support further development of novel ANX-A1-based therapies to improve cardiac outcomes after MI.
Collapse
|
53
|
Expression and Role of the Calcium-Sensing Receptor in Rat Peripheral Blood Polymorphonuclear Neutrophils. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3869561. [PMID: 29081886 PMCID: PMC5610836 DOI: 10.1155/2017/3869561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
The calcium-sensing receptors (CaSRs) play an important role in many tissues and organs that are involved in inflammatory reactions. Peripheral blood polymorphonuclear neutrophils (PMNs) are important inflammatory cells. However, the expression and functions of CaSR in peripheral blood PMNs are still not reported. In this study, we collected rat peripheral blood PMNs to observe the relationship between CaSR and PMNs. From the results, we found first that the CaSR protein was expressed in PMNs, and it increased after PMNs were activated with fMLP. In addition, CaSR activator cincalcet promoted the expression of CaSR and P-p65 (NF-κB signaling pathway protein) and Bcl-xl (antiapoptosis protein), and it increased the secretion of interleukin-6 (IL-6) and myeloperoxidase (MPO); meanwhile, it decreased proapoptosis protein Bax expression and the production of IL-10 and reactive oxygen species (ROS). At the same time, cincalcet also decreased the PMN apoptosis rate analyzed by flow cytometry. However, CaSR inhibitor NPS-2143 and NF-κB signaling pathway inhibitor PDTC reverse the results cited earlier. All of these results indicated that CaSR can regulate PMN functions and status to play a role in inflammation, which is probably through the NF-κB signaling pathway.
Collapse
|
54
|
Zhang Z, Ma Q, Shah B, Mackensen GB, Lo DC, Mathew JP, Podgoreanu MV, Terrando N. Neuroprotective Effects of Annexin A1 Tripeptide after Deep Hypothermic Circulatory Arrest in Rats. Front Immunol 2017; 8:1050. [PMID: 28912778 PMCID: PMC5582068 DOI: 10.3389/fimmu.2017.01050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Resolution agonists, including lipid mediators and peptides such as annexin A1 (ANXA1), are providing novel approaches to treat inflammatory conditions. Surgical trauma exerts a significant burden on the immune system that can affect and impair multiple organs. Perioperative cerebral injury after cardiac surgery is associated with significant adverse neurological outcomes such as delirium and postoperative cognitive dysfunction. Using a clinically relevant rat model of cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest (DHCA), we tested the pro-resolving effects of a novel bioactive ANXA1 tripeptide (ANXA1sp) on neuroinflammation and cognition. Male rats underwent 2 h CPB with 1 h DHCA at 18°C, and received vehicle or ANXA1sp followed by timed reperfusion up to postoperative day 7. Immortalized murine microglial cell line BV2 were treated with vehicle or ANXA1sp and subjected to 2 h oxygen-glucose deprivation followed by timed reoxygenation. Microglial activation, cell death, neuroinflammation, and NF-κB activation were assessed in tissue samples and cell cultures. Rats exposed to CPB and DHCA had evident neuroinflammation in various brain areas. However, in ANXA1sp-treated rats, microglial activation and cell death (apoptosis and necrosis) were reduced at 24 h and 7 days after surgery. This was associated with a reduction in key pro-inflammatory cytokines due to inhibition of NF-κB activation in the brain and systemically. Treated rats also had improved neurologic scores and shorter latency in the Morris water maze. In BV2 cells treated with ANXA1sp, similar protective effects were observed including decreased pro-inflammatory cytokines and cell death. Notably, we also found increased expression of ANXA1, which binds to NF-κB p65 and thereby inhibits its transcriptional activity. Our findings provide evidence that treatment with a novel pro-resolving ANXA1 tripeptide is neuroprotective after cardiac surgery in rats by attenuating neuroinflammation and may prevent postoperative neurologic complications.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Bijal Shah
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - G. Burkhard Mackensen
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, United States
| | - Donald C. Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Mihai V. Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
55
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
56
|
Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem 2017; 397:981-93. [PMID: 27447237 DOI: 10.1515/hsz-2016-0200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
Inflammation is essential to protect the host from exogenous and endogenous dangers that ultimately lead to tissue injury. The consequent tissue repair is intimately associated with the fate of the inflammatory response. Restoration of tissue homeostasis is achieved through a balance between pro-inflammatory and anti-inflammatory/pro-resolving mediators. In chronic inflammatory diseases such balance is compromised, resulting in persistent inflammation and impaired healing. During the last two decades the glucocorticoid-regulated protein Annexin A1 (AnxA1) has emerged as a potent pro-resolving mediator acting on several facets of the innate immune system. Here, we review the therapeutic effects of AnxA1 on tissue healing and repairing together with the molecular targets responsible for these complex biological properties.
Collapse
|
57
|
Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun 2017; 8:14232. [PMID: 28169296 PMCID: PMC5309721 DOI: 10.1038/ncomms14232] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. G Protein-Coupled Receptors (GPCRs) can adopt different conformations, each linked to distinct cellular outcomes. Here the authors show that compound 17b, a novel agonist of the GPCR family member FPR, robustly activates cardioprotective but not detrimental FPR signalling, showing beneficial therapeutic effect in a mouse model of cardiac infarction.
Collapse
|
58
|
Recio C, Maione F, Iqbal AJ, Mascolo N, De Feo V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Front Pharmacol 2017; 7:526. [PMID: 28111551 PMCID: PMC5216031 DOI: 10.3389/fphar.2016.00526] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment.
Collapse
Affiliation(s)
- Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Asif J Iqbal
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Nicola Mascolo
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno Salerno, Italy
| |
Collapse
|
59
|
Torres LS, Okumura JV, Silva DGH, Mimura KKO, Belini-Júnior É, Oliveira RG, Lobo CLC, Oliani SM, Bonini-Domingos CR. Inflammation in Sickle Cell Disease: Differential and Down-Expressed Plasma Levels of Annexin A1 Protein. PLoS One 2016; 11:e0165833. [PMID: 27802331 PMCID: PMC5089686 DOI: 10.1371/journal.pone.0165833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemolytic anemia whose pathophysiology is driven by polymerization of the hemoglobin S (Hb S), leading to hemolysis and vaso-occlusive events. Inflammation is a fundamental component in these processes and a continuous inflammatory stimulus can lead to tissue damages. Thus, pro-resolving pathways emerge in order to restore the homeostasis. For example there is the annexin A1 (ANXA1), an endogenous anti-inflammatory protein involved in reducing neutrophil-endothelial interactions, accelerating neutrophil apoptosis and stimulating macrophage efferocytosis. We investigated the expression of ANXA1 in plasma of SCD patients and its relation with anemic, hemolytic and inflammatory parameters of the disease. Three SCD genotypes were considered: the homozygous inheritance for Hb S (Hb SS) and the association between Hb S and the hemoglobin variants D-Punjab (Hb SD) and C (Hb SC). ANXA1 and proinflammatory cytokines were quantified by ELISA in plasma of SCD patients and control individuals without hemoglobinopathies. Hematological and biochemical parameters were analyzed by flow cytometry and spectrophotometer. The plasma levels of ANXA1 were about three-fold lesser in SCD patients compared to the control group, and within the SCD genotypes the most elevated levels were found in Hb SS individuals (approximately three-fold higher). Proinflammatory cytokines were higher in SCD groups than in the control individuals. Anemic and hemolytic markers were higher in Hb SS and Hb SD genotypes compared to Hb SC patients. White blood cells and platelets count were higher in Hb SS genotype and were positively correlated to ANXA1 levels. We found that ANXA1 is down-regulated and differentially expressed within the SCD genotypes. Its expression seems to depend on the inflammatory, hemolytic and vaso-occlusive characteristics of the diseased. These data may lead to new biological targets for therapeutic intervention in SCD.
Collapse
Affiliation(s)
- Lidiane S. Torres
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (LST); (SMO)
| | - Jéssika V. Okumura
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Danilo G. H. Silva
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Kallyne K. O. Mimura
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Édis Belini-Júnior
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renan G. Oliveira
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Clarisse L. C. Lobo
- Institute of Hematology Arthur de Siqueira Cavalcanti (HEMORIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia M. Oliani
- Laboratory of Immunomorphology, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (LST); (SMO)
| | - Claudia R. Bonini-Domingos
- Laboratory of Hemoglobin and Hematologic Genetic Diseases, Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
60
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
61
|
|
62
|
Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016; 15:249-74. [PMID: 26794269 DOI: 10.1038/nrd.2015.3] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease - the most common chronic liver disease - encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Over the next decade, NASH is projected to be the most common indication for liver transplantation. The absence of an effective pharmacological therapy for NASH is a major incentive for research into novel therapeutic approaches for this condition. The current focus areas for research include the modulation of nuclear transcription factors; agents that target lipotoxicity and oxidative stress; and the modulation of cellular energy homeostasis, metabolism and the inflammatory response. Strategies to enhance resolution of inflammation and fibrosis also show promise to reverse the advanced stages of liver disease.
Collapse
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Corso Regina Margherita 8, 10132 Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|