51
|
Balboni B, Tripathi SK, Veronesi M, Russo D, Penna I, Giabbai B, Bandiera T, Storici P, Girotto S, Cavalli A. Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays. Int J Mol Sci 2022; 23:3856. [PMID: 35409221 PMCID: PMC8998611 DOI: 10.3390/ijms23073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer's disease and cancer. Even though GSK-3β is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3β complete inhibition which translates into the impairment of the plethora of pathways GSK-3β is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3β inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3β in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3β, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3β inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3β activity without leading to its complete inhibition.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Shailesh Kumar Tripathi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
| | - Marina Veronesi
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Debora Russo
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Ilaria Penna
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Barbara Giabbai
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Tiziano Bandiera
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Paola Storici
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
52
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
53
|
Das R, Choithramani A, Shard A. A molecular perspective for the use of type IV tyrosine kinase inhibitors as anticancer therapeutics. Drug Discov Today 2021; 27:808-821. [PMID: 34920095 DOI: 10.1016/j.drudis.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022]
Abstract
Tyrosine kinases are enzymes that can transfer a phosphate group from ATP to a specific protein tyrosine, serine or threonine residue within a cell, operating as a switch that can turn 'on' and 'off' causing different physiological alterations in the body. Mutated kinases have been shown to display an equilibrium shift toward the activated state. Types I-III have been studied intensively leading to drugs like imatinib (type II), cobimetinib (type III), among others. It is the same scenario for types V-VII; however, there is a lacuna in information regarding type IV inhibitors, although recently some advances have surfaced. This review aims to accumulate the knowledge gained so far about type IV inhibitors.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Asmita Choithramani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 380054, India.
| |
Collapse
|
54
|
Axtman AD. Characterizing the role of the dark kinome in neurodegenerative disease - A mini review. Biochim Biophys Acta Gen Subj 2021; 1865:130014. [PMID: 34547390 DOI: 10.1016/j.bbagen.2021.130014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drugs that modulate previously unexplored targets could potentially slow or halt the progression of neurodegenerative diseases. Several candidate proteins lie within the dark kinome, those human kinases that have not been well characterized. Much of the kinome (~80%) remains poorly studied, and these targets likely harbor untapped biological potential. SCOPE OF REVIEW This review highlights the significance of kinases as mediators of aberrant pathways in neurodegeneration and provides examples of published high-quality small molecules that modulate some of these kinases. MAJOR CONCLUSIONS There is a need for continued efforts to develop high-quality chemical tools to illuminate the function of understudied kinases in the brain. Potent and selective small molecules enable accurate pairing of an observed phenotype with a protein target. GENERAL SIGNIFICANCE The examples discussed herein support the premise that validation of therapeutic hypotheses surrounding kinase targets can be accomplished via small molecules and they can serve as the basis for disease-focused drug development campaigns.
Collapse
Affiliation(s)
- Alison D Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC, USA.
| |
Collapse
|
55
|
Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duan Ni
- College of Pharmacy Ningxia Medical University Yinchuan China
- The Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China
| | - Ying Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Mingyu Li
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
| | | | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shaoyong Lu
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jian Zhang
- College of Pharmacy Ningxia Medical University Yinchuan China
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai China
- Medicinal Chemistry and Bioinformatics Center Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| |
Collapse
|
56
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
57
|
Abstract
RORγt is a nuclear receptor associated with several diseases. Various synthetic ligands have been developed that target the canonical orthosteric or a second, allosteric pocket of RORγt. We show that orthosteric and allosteric ligands can simultaneously bind to RORγt and that their potency is positively influenced by the other ligand, a phenomenon called cooperative dual ligand binding. The mechanism behind cooperative binding in proteins is poorly understood, primarily due to the lack of structural data. We solved 12 crystal structures of RORγt, simultaneously bound to various orthosteric and allosteric ligands. In combination with molecular dynamics, we reveal a mechanism responsible for the cooperative binding behavior. Our comprehensive structural studies provide unique insights into how cooperative binding occurs in proteins. Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.
Collapse
|
58
|
Maguire WF, Schmitz JC, Scemama J, Czambel K, Lin Y, Green AG, Wu S, Lin H, Puhalla S, Rhee J, Stoller R, Tawbi H, Lee JJ, Wright JJ, Beumer JH, Chu E, Appleman LJ. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:643-654. [PMID: 34164713 DOI: 10.1007/s00280-021-04317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody. METHODS Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120-360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin. RESULTS Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin. CONCLUSIONS The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression. TRIAL REGISTRATION NCT01749384 (First posted 12/13/2012).
Collapse
Affiliation(s)
- William F Maguire
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Schmitz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Ken Czambel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center Biostatistics Facility, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony G Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Shaoyu Wu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Huang Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Roche Product Development, Roche (China) Holding Ltd., Shanghai, China
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Rhee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Stoller
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Department of Melanoma and Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
59
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021; 42:551-565. [PMID: 33958239 DOI: 10.1016/j.tips.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
60
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
61
|
Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
62
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
63
|
Lopreiato M, Di Cristofano S, Cocchiola R, Mariano A, Guerrizio L, Scandurra R, Mosca L, Raimondo D, d’Abusco AS. Biochemical and Computational Studies of the Interaction between a Glucosamine Derivative, NAPA, and the IKK α Kinase. Int J Mol Sci 2021; 22:ijms22041643. [PMID: 33562013 PMCID: PMC7915277 DOI: 10.3390/ijms22041643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The glucosamine derivative 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA), was shown to inhibit the kinase activity of IKKα, one of the two catalytic subunits of IKK complex, decreasing the inflammatory status in osteoarthritis chondrocytes. In the present work we have investigated the inhibition mechanism of IKKα by NAPA by combining computational simulations, in vitro assays and Mass Spectrometry (MS) technique. The kinase in vitro assay was conducted using a recombinant IKKα and IKKtide, a 20 amino acid peptide substrate derived from IkBα kinase protein and containing the serine residues Ser32 and Ser36. Phosphorylated peptide production was measured by Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS), and the atomic interaction between IKKα and NAPA has been studied by molecular docking and Molecular Dynamics (MD) approaches. Here we report that NAPA was able to inhibit the IKKα kinase activity with an IC50 of 0.5 mM, to decrease the Km value from 0.337 mM to 0.402 mM and the Vmax from 0.0257 mM·min−1 to 0.0076 mM·min−1. The computational analyses indicate the region between the KD, ULD and SDD domains of IKKα as the optimal binding site explored by NAPA. Biochemical data indicate that there is a non-significant difference between Km and Ki whereas there is a statistically significant difference between the two Vmax values. This evidence, combined with computational results, consistently indicates that the inhibition is non-competitive, and that the NAPA binding site is different than that of ATP or IKKtide.
Collapse
Affiliation(s)
- Mariangela Lopreiato
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
- Department of Medicina Sperimentale, Università Magna Graecia, Campus S. Venuta, 88100 Catanzaro, Italy
| | - Samuele Di Cristofano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
- Clinical Trial Unit, Bambino Gesù Children’s Hospital, IRCSS, P. Sant’Onofrio 4, 00165 Rome, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
| | - Libera Guerrizio
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
| | - Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: (D.R.); (A.S.d.)
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro 5, 00185 Rome, Italy; (M.L.); (R.C.); (A.M.); (L.G.); (R.S.); (L.M.)
- Correspondence: (D.R.); (A.S.d.)
| |
Collapse
|
64
|
Kumar M, Joshi G, Chatterjee J, Kumar R. Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer. Curr Top Med Chem 2021; 20:1105-1123. [PMID: 32031073 DOI: 10.2174/1568026620666200207100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance. OBJECTIVE The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs. METHODS AND RESULTS This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy. CONCLUSION The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
65
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
66
|
Carli M, Sormani G, Rodriguez A, Laio A. Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations. J Phys Chem Lett 2021; 12:65-72. [PMID: 33306377 PMCID: PMC7755075 DOI: 10.1021/acs.jpclett.0c03182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 05/20/2023]
Abstract
We analyzed a 100 μs MD trajectory of the SARS-CoV-2 main protease by a non-parametric data analysis approach which allows characterizing a free energy landscape as a simultaneous function of hundreds of variables. We identified several conformations that, when visited by the dynamics, are stable for several hundred nanoseconds. We explicitly characterize and describe these metastable states. In some of these configurations, the catalytic dyad is less accessible. Stabilizing them by a suitable binder could lead to an inhibition of the enzymatic activity. In our analysis we keep track of relevant contacts between residues which are selectively broken or formed in the states. Some of these contacts are formed by residues which are far from the catalytic dyad and are accessible to the solvent. Based on this analysis we propose some relevant contact patterns and three possible binding sites which could be targeted to achieve allosteric inhibition.
Collapse
Affiliation(s)
- Matteo Carli
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Giulia Sormani
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Alex Rodriguez
- The
Abdus Salam International Centre for Theoretical Physics (ICTP), Str. Costiera, 11, 34151 Trieste, Italy
| | - Alessandro Laio
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
67
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
68
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
69
|
The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2020; 13:117-141. [PMID: 33295810 DOI: 10.4155/fmc-2020-0240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.
Collapse
|
70
|
Wang M, Du Q, Zuo L, Xue P, Lan C, Sun Z. Metabolism and Distribution of Novel Tumor Targeting Drugs In Vivo. Curr Drug Metab 2020; 21:996-1008. [PMID: 33183197 DOI: 10.2174/1389200221666201112110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. METHODS A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. RESULTS In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. CONCLUSION According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Lan
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
71
|
Brear P, Ball D, Stott K, D'Arcy S, Hyvönen M. Proposed Allosteric Inhibitors Bind to the ATP Site of CK2α. J Med Chem 2020; 63:12786-12798. [PMID: 33119282 DOI: 10.1021/acs.jmedchem.0c01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CK2α is a ubiquitous, well-studied kinase that is a target for small-molecule inhibition, for treatment of cancers. While many different classes of adenosine 5'-triphosphate (ATP)-competitive inhibitors have been described for CK2α, they tend to suffer from significant off-target activity and new approaches are needed. A series of inhibitors of CK2α has recently been described as allosteric, acting at a previously unidentified binding site. Given the similarity of these inhibitors to known ATP-competitive inhibitors, we have investigated them further. In our thorough structural and biophysical analyses, we have found no evidence that these inhibitors bind to the proposed allosteric site. Rather, we report crystal structures, competitive isothermal titration calorimetry (ITC) and NMR, hydrogen-deuterium exchange (HDX) mass spectrometry, and chemoinformatic analyses that all point to these compounds binding in the ATP pocket. Comparisons of our results and experimental approach with the data presented in the original report suggest that the primary reason for the disparity is nonspecific inhibition by aggregation.
Collapse
Affiliation(s)
- Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
72
|
Silva SF, Klippel AH, Ramos PZ, Santiago ADS, Valentini SR, Bengtson MH, Massirer KB, Bilsland E, Couñago RM, Zanelli CF. Structural features and development of an assay platform of the parasite target deoxyhypusine synthase of Brugia malayi and Leishmania major. PLoS Negl Trop Dis 2020; 14:e0008762. [PMID: 33044977 PMCID: PMC7581365 DOI: 10.1371/journal.pntd.0008762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023] Open
Abstract
Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively. To enable B. malayi (Bm)DHS for future target-based drug discovery programs, we determined its crystal structure bound to cofactor NAD+. We also reported an in vitro biochemical assay for this enzyme that is amenable to a high-throughput screening format. The L. major genome encodes two DHS paralogs, and attempts to produce them recombinantly in bacterial cells were not successful. Nevertheless, we showed that ectopic expression of both LmDHS paralogs can rescue yeast cells lacking the endogenous DHS-encoding gene (dys1). Thus, functionally complemented dys1Δ yeast mutants can be used to screen for new inhibitors of the L. major enzyme. We used the known human DHS inhibitor GC7 to validate both in vitro and yeast-based DHS assays. Our results show that BmDHS is a homotetrameric enzyme that shares many features with its human homologue, whereas LmDHS paralogs are likely to form a heterotetrameric complex and have a distinct regulatory mechanism. We expect our work to facilitate the identification and development of new DHS inhibitors that can be used to validate these enzymes as vulnerable targets for therapeutic interventions against B. malayi and L. major infections. Target-based drug discovery strategies hold the promise to discover safer and more effective treatments for Neglected Tropical Diseases (NTDs). Genetic manipulation techniques have been used to successfully identify essential genes in eukaryotic parasites. Unfortunately, the fact that a gene is essential under controlled laboratory conditions does not automatically make the corresponding gene-product vulnerable to pharmacological intervention in a clinical setting within the human host. To allow the discovery and development of small molecule tool compounds that can be used to validate pharmacologically vulnerable targets, one must first establish compound screening assays and obtain structural information for the candidate target. Eukaryotic cells lacking deoxyhypusine synthase (DHS) function are not viable. DHS catalyzes the first step in a post-translational modification that is critical for the function of eIF5A. Presence of mature eIF5A is also essential for eukaryotic cell viability. Here we reported compound screening assays (yeast-based for Brugia malayi and Leishmania major; in vitro for B. malayi only) and provided further regulatory and structural insights we hope will aid in the identification and development of inhibitors for the DHS enzymes from two NTD-causing organisms—B. malayi, the causative agent of lymphatic filariasis and L. major, the causative agent of cutaneous leishmaniasis.
Collapse
Affiliation(s)
| | | | - Priscila Zonzini Ramos
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - André da Silva Santiago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Mario Henrique Bengtson
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Rafael Miguez Couñago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- * E-mail: (RMC); (CFZ)
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara, SP, Brazil
- * E-mail: (RMC); (CFZ)
| |
Collapse
|
73
|
Ma P, Yue L, Zhang S, Hao D, Wu Z, Xu L, Du G, Xiao P. Target RNA modification for epigenetic drug repositioning in neuroblastoma: computational omics proximity between repurposing drug and disease. Aging (Albany NY) 2020; 12:19022-19044. [PMID: 33044945 PMCID: PMC7732279 DOI: 10.18632/aging.103671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
RNA modifications modulate most steps of gene expression. However, little is known about its role in neuroblastoma (NBL) and the inhibitors targeting it. We analyzed the RNA-seq (n=122) and CNV data (n=78) from NBL patients in Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The NBL sub-clusters (cluster1/2) were identified via consensus clustering for expression of RNA modification regulators (RNA-MRs). Cox regression, principle component analysis and chi-square analysis were used to compare differences of survival, transcriptome, and clinicopathology between clusters. Cluster1 showed significantly poor prognosis, of which RNA-MRs' expression and CNV alteration were closely related to pathologic stage. RNA-MRs and functional related prognostic genes were obtained using spearman correlation analysis, and queried in CMap and L1000 FWD database to obtain 88 inhibitors. The effects of 5 inhibitors on RNA-MRs were confirmed in SH-SY5Y cells. The RNA-MRs exhibited two complementary regulation functions: one conducted by TET2 and related to translation and glycolysis; another conducted by ALYREF, NSUN2 and ADARB1 and related to cell cycle and DNA repair. The perturbed proteomic profile of HDAC inhibitors was different from that of others, thus drug combination overcame drug resistance and was potential for NBL therapy with RNA-MRs as therapeutic targets.
Collapse
Affiliation(s)
- Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lifeng Yue
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dacheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116021, China
| | - Zhihong Wu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
74
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
75
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
76
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
77
|
Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. NEXT GENERATION KINASE INHIBITORS 2020. [PMCID: PMC7359047 DOI: 10.1007/978-3-030-48283-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As described in the previous chapter, most kinase inhibitors that have been developed for use in the clinic act by blocking ATP binding; however, there is growing interest in identifying compounds that target kinase activities and functions without interfering with the conserved features of the ATP-binding site. This chapter will highlight alternative approaches that exploit unique kinase structural features that are being targeted to identify more selective and potent inhibitors. The figure below, adapted from (Sammons et al., Molecular Carcinogenesis 58:1551–1570, 2019), provides a graphical description of the various approaches to manipulate kinase activity. In addition to the type I and II inhibitors, type III kinase inhibitors have been identified to target sites adjacent to the ATP-binding site in the catalytic domain. New information on kinase structure and substrate-binding sites has enabled the identification of type IV kinase inhibitor compounds that target regions outside the catalytic domain. The combination of targeting unique allosteric sites outside the catalytic domain with ATP-targeted compounds has yielded a number of novel bivalent type V kinase inhibitors. Finally, emerging interest in the development of irreversible compounds that form selective covalent interactions with key amino acids involved in kinase functions comprise the class of type VI kinase inhibitors.
Collapse
|
78
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
79
|
Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 2020; 48:D394-D401. [PMID: 31665428 PMCID: PMC7145546 DOI: 10.1093/nar/gkz958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Allosteric regulation is one of the most direct and efficient ways to fine-tune protein function; it is induced by the binding of a ligand at an allosteric site that is topographically distinct from an orthosteric site. The Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) was developed ten years ago to provide comprehensive information related to allosteric regulation. In recent years, allosteric regulation has received great attention in biological research, bioengineering, and drug discovery, leading to the emergence of entire allosteric landscapes as allosteromes. To facilitate research from the perspective of the allosterome, in ASD 2019, novel features were curated as follows: (i) >10 000 potential allosteric sites of human proteins were deposited for allosteric drug discovery; (ii) 7 human allosterome maps, including protease and ion channel maps, were built to reveal allosteric evolution within families; (iii) 1312 somatic missense mutations at allosteric sites were collected from patient samples from 33 cancer types and (iv) 1493 pharmacophores extracted from allosteric sites were provided for modulator screening. Over the past ten years, the ASD has become a central resource for studying allosteric regulation and will play more important roles in both target identification and allosteric drug discovery in the future.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Xinheng He
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hao Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qi Wang
- China National Pharmaceutical Industry Information Center, Shanghai, 200040, China
| | - Yingyi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jing Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yaqin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
80
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
81
|
Coban MA, Fraga S, Caulfield TR. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 2020; 18:365-378. [PMID: 32160847 DOI: 10.2174/1570163817666200311114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be "master regulators". For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as "undruggable", is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.
Collapse
Affiliation(s)
- Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Sarah Fraga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| |
Collapse
|
82
|
Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. Eur J Med Chem 2020; 190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
83
|
Yue Y, Qian W, Li J, Wu S, Zhang M, Wu Z, Ma Q, Wang Z. 2'-Hydroxyflavanone inhibits the progression of pancreatic cancer cells and sensitizes the chemosensitivity of EGFR inhibitors via repressing STAT3 signaling. Cancer Lett 2020; 471:135-146. [PMID: 31811906 DOI: 10.1016/j.canlet.2019.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/09/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and chemotherapy is still an important treatment. It is urgent to develop new medicines because of the limitation and side effects of chemotherapy. 2'-Hydroxyflavanone (2HF) is a citrus-bioflavonoid that is considered to have anti-cancer efficacy. Compared to human pancreatic ductal epithelial cells hTERT-HPNE, more significant growth-inhibitory effects were seen in PDAC cells BxPC-3 and MIA PaCa-2. We showed that apoptosis was induced and that the cell cycle was arrested when cells were treated with 2HF. The expression of the molecular proteins cleaved PARP, cleaved Caspase3, Bax, Bcl-2, CyclinD1, and p27 changed correspondingly. Also, we observed anti-metastatic effects and changes in MMP9, E-cadherin, N-cadherin and Vimentin when cells were treated with a low dose of 2HF. Suppression of STAT3 and EGFR phosphorylation was also identified as a result of treatment with a combination of 2HF and EGFR inhibitors. The in vivo antitumor effects in KPC mice were consistent with those observed in vitro. 2HF has impactful anti-cancer efficacy and sensitizes human pancreatic cancer cells to EGFR inhibitors through the inhibition of STAT3.
Collapse
Affiliation(s)
- Yangyang Yue
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Shiqi Wu
- Department of Urology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Mengzhao Zhang
- Department of Urology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China.
| |
Collapse
|
84
|
Malarz K, Mularski J, Pacholczyk M, Musiol R. The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Cancers (Basel) 2020; 12:cancers12030536. [PMID: 32110969 PMCID: PMC7139656 DOI: 10.3390/cancers12030536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022] Open
Abstract
Isocitrate dehydrogenases constitute a class of enzymes that are crucial for cellular metabolism. The overexpression or mutation of isocitrate dehydrogenases are often found in leukemias, glioblastomas, lung cancers, and ductal pancreatic cancer among others. Mutation R132H, which changes the functionality of an enzyme to produce mutagenic 2-hydroxyglutarate instead of a normal product, is particularly important in this field. A series of inhibitors were described for these enzymes of which ivosidenib was the first to be approved for treating leukemia and bile duct cancers in 2018. Here, we investigated the polypharmacological landscape of the activity for known sulfamoyl derivatives that are inhibitors, which are selective towards IDH1 R132H. These compounds appeared to be effective inhibitors of several non-receptor kinases at a similar level as imatinib and axitinib. The antiproliferative activity of these compounds against a panel of cancer cells was tested and is explained based on the relative expression levels of the investigated proteins. The multitargeted activity of these compounds makes them valuable agents against a wide range of cancers, regardless of the status of IDH1.
Collapse
Affiliation(s)
- Katarzyna Malarz
- August Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Correspondence: (K.M.); (R.M.)
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
| | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
- Correspondence: (K.M.); (R.M.)
| |
Collapse
|
85
|
Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: Lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 2020; 68:82-91. [PMID: 32067263 DOI: 10.1002/bab.1896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3β). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.
Collapse
Affiliation(s)
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ganesan Nalini
- Department of Chemistry, Pachaiyappas College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
86
|
Large-Scale Virtual Screening Against the MET Kinase Domain Identifies a New Putative Inhibitor Type. Molecules 2020; 25:molecules25040938. [PMID: 32093126 PMCID: PMC7070486 DOI: 10.3390/molecules25040938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
By using an ensemble-docking strategy, we undertook a large-scale virtual screening campaign in order to identify new putative hits against the MET kinase target. Following a large molecular dynamics sampling of its conformational space, a set of 45 conformers of the kinase was retained as docking targets to take into account the flexibility of the binding site moieties. Our screening funnel started from about 80,000 chemical compounds to be tested in silico for their potential affinities towards the kinase binding site. The top 100 molecules selected—thanks to the molecular docking results—were further analyzed for their interactions, and 25 of the most promising ligands were tested for their ability to inhibit MET activity in cells. F0514-4011 compound was the most efficient and impaired this scattering response to HGF (Hepatocyte Growth Factor) with an IC50 of 7.2 μM. Interestingly, careful docking analysis of this molecule with MET suggests a possible conformation halfway between classical type-I and type-II MET inhibitors, with an additional region of interaction. This compound could therefore be an innovative seed to be repositioned from its initial antiviral purpose towards the field of MET inhibitors. Altogether, these results validate our ensemble docking strategy as a cost-effective functional method for drug development.
Collapse
|
87
|
Chen X, Li C, Wang D, Chen Y, Zhang N. Recent Advances in the Discovery of CK2 Allosteric Inhibitors: From Traditional Screening to Structure-Based Design. Molecules 2020; 25:molecules25040870. [PMID: 32079098 PMCID: PMC7070378 DOI: 10.3390/molecules25040870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Protein kinase (CK2) has emerged as an attractive cancer therapeutic target and recent efforts have been made to develop its inhibitors. However, the development of selective inhibitors remains challenging because of the highly conserved ATP-binding pocket (orthosteric site) of kinase family. As an alternative strategy, allosteric inhibitors, by targeting the much more diversified allosteric site relative to the conserved ATP-binding site, achieve better pharmacological advantages than orthosteric inhibitors. Traditional serendipitous screening and structure-based design are robust tools for the discovery of CK2 allosteric inhibitors. In this review, we summarize the recent advances in the identification of CK2 allosteric inhibitors. Firstly, we briefly present the CK2 allosteric sites. Then, the allosteric inhibitors targeting the well-elucidated allosteric sites (α/β interface, αD pocket and interface between the Glycine-rich loop and αC-helix) are highlighted in the discovery process and possible binding modes with the allosteric sites are described. This study is expected to provide valuable clues for the design of CK2 allosteric inhibitors.
Collapse
Affiliation(s)
- Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; (D.W.); (Y.C.)
- Correspondence: (X.C.); (N.Z.); Tel.: +86-0523-86158081 (X.C.)
| | - Chunqiong Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China;
| | - Dada Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; (D.W.); (Y.C.)
| | - Yu Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; (D.W.); (Y.C.)
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China;
- Correspondence: (X.C.); (N.Z.); Tel.: +86-0523-86158081 (X.C.)
| |
Collapse
|
88
|
Sarukhanyan E, Shityakov S, Dandekar T. Rational Drug Design of Axl Tyrosine Kinase Type I Inhibitors as Promising Candidates Against Cancer. Front Chem 2020; 7:920. [PMID: 32117858 PMCID: PMC7010640 DOI: 10.3389/fchem.2019.00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sergey Shityakov
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Anesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
89
|
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2020; 7:873. [PMID: 31970149 PMCID: PMC6960140 DOI: 10.3389/fchem.2019.00873] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.
Collapse
Affiliation(s)
- Zarko Gagic
- Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
90
|
Röhm S, Krämer A, Knapp S. Function, Structure and Topology of Protein Kinases. PROTEINKINASE INHIBITORS 2020. [DOI: 10.1007/7355_2020_97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Wu X, Li Q, Wan S, Zhang J. Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with TrkA kinase. J Biomol Struct Dyn 2019; 39:202-208. [DOI: 10.1080/07391102.2019.1708798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyun Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Qinlan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
92
|
De Clercq DJH, Heppner DE, To C, Jang J, Park E, Yun CH, Mushajiang M, Shin BH, Gero TW, Scott DA, Jänne PA, Eck MJ, Gray NS. Discovery and Optimization of Dibenzodiazepinones as Allosteric Mutant-Selective EGFR Inhibitors. ACS Med Chem Lett 2019; 10:1549-1553. [PMID: 31749909 DOI: 10.1021/acsmedchemlett.9b00381] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Allosteric kinase inhibitors represent a promising new therapeutic strategy for targeting kinases harboring oncogenic driver mutations in cancers. Here, we report the discovery, optimization, and structural characterization of allosteric mutant-selective EGFR inhibitors comprising a 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one scaffold. Our structure-based medicinal chemistry effort yielded an inhibitor (3) of the EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) mutants with an IC50 of ∼10 nM and high selectivity, as assessed by kinome profiling. Further efforts to develop allosteric dibenzodiazepinone inhibitors may serve as the basis for new therapeutic options for targeting drug-resistant EGFR mutations.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David E. Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ciric To
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jaebong Jang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Cai-Hong Yun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing 100191, China
| | - Mierzhati Mushajiang
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bo Hee Shin
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Thomas W. Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Belfer Center for Applied Cancer Science, Boston, Massachusetts 02215, United States
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
93
|
Kanev GK, de Graaf C, de Esch IJP, Leurs R, Würdinger T, Westerman BA, Kooistra AJ. The Landscape of Atypical and Eukaryotic Protein Kinases. Trends Pharmacol Sci 2019; 40:818-832. [PMID: 31677919 DOI: 10.1016/j.tips.2019.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Kinases are attractive anticancer targets due to their central role in the growth, survival, and therapy resistance of tumor cells. This review explores the two primary kinase classes, the eukaryotic protein kinases (ePKs) and the atypical protein kinases (aPKs), and provides a structure-centered comparison of their sequences, structures, hydrophobic spines, mutation and SNP hotspots, and inhibitor interaction patterns. Despite the limited sequence similarity between these two classes, atypical kinases commonly share the archetypical kinase fold but lack conserved eukaryotic kinase motifs and possess altered hydrophobic spines. Furthermore, atypical kinase inhibitors explore only a limited number of binding modes both inside and outside the orthosteric binding site. The distribution of genetic variations in both classes shows multiple ways they can interfere with kinase inhibitor binding. This multilayered review provides a research framework bridging the eukaryotic and atypical kinase classes.
Collapse
Affiliation(s)
- Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
94
|
Xi D, Niu Y, Li H, Noha SM, Temml V, Schuster D, Wang C, Xu F, Xu P. Discovery of carbazole derivatives as novel allosteric MEK inhibitors by pharmacophore modeling and virtual screening. Eur J Med Chem 2019; 178:802-817. [PMID: 31252285 DOI: 10.1016/j.ejmech.2019.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023]
Abstract
We report in this work the discovery of novel allosteric MEK inhibitors by pharmacophore modeling and virtual screening. Two out of 13 virtual hit compounds were identified as MEK kinase inhibitors using a MEK1 binding assay. Structural derivations on the hit compound M100 (IC50 = 27.2 ± 4.5 μM in RAF-MEK cascading assay) by substituent transformation and bioisosterism replacement have led to the synthesis of a small library of carbazoles. The enzymatic studies revealed the preliminary structure-activity relationships and the derivative 22k (IC50 = 12.8 ± 0.5 μM) showed the most potent inhibitory effect against Raf-MEK cascading. Compound 7 was discovered as toxic as M100 to tumor cells whereas safer to HEK293 cells (IC50 > 100 μM) than M100 (IC50 = 8.9 ± 2.0 μM). It suggests that carbazole is a good scaffold for the design of novel MEK inhibitors for therapeutic uses. More importantly, the developed pharmacophore model can serve as a reliable criterion in novel MEK inhibitor discovery.
Collapse
Affiliation(s)
- Dandan Xi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Hongyue Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Stefan M Noha
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria.
| | - Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
95
|
Miao L, Tian H. Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations. J Drug Target 2019; 28:154-165. [PMID: 31340679 DOI: 10.1080/1061186x.2019.1648477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylate a variety of substrates that play key roles in promoting cell survival and proliferation. Many inhibitors, acting on upstream of the ERK pathway, exhibit excellent antitumor activity. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be effective against cancers with altered MAPK upstream pathway and may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. In this review, we describe the mechanism and types of ERK1/2 inhibitors, summarise the current development status of small-molecule ERK1/2 inhibitors, including the preclinical data and clinical study progress, and discuss the future research directions for the application of ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
96
|
Bhatt AB, Gupta M, Hoang VT, Chakrabarty S, Wright TD, Elliot S, Chopra IK, Monlish D, Anna K, Burow ME, Cavanaugh JE, Flaherty PT. Novel Diphenylamine Analogs Induce Mesenchymal to Epithelial Transition in Triple Negative Breast Cancer. Front Oncol 2019; 9:672. [PMID: 31417863 PMCID: PMC6682674 DOI: 10.3389/fonc.2019.00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular program that converts non-motile epithelial cells into invasive mesenchymal cells. EMT is implicated in cancer metastasis, chemo-resistance, cancer progression, and generation of cancer stem cells (CSCs). Inducing mesenchymal to epithelial transition (MET), the reverse phenomenon of EMT, is proposed as a novel strategy to target triple negative and tamoxifen-resistant breast cancer. Triple negative breast cancer (TNBC) is characterized by the loss of hormone receptors, a highly invasive mesenchymal phenotype, and a lack of targeted therapy. Estrogen receptor-positive breast cancer can be targeted by tamoxifen, an ER antagonist. However, these cells undergo EMT over the course of treatment and develop resistance. Thus, there is an urgent need to develop therapeutic interventions to target these aggressive cancers. In this study, we examined the role of novel diphenylamine analogs in converting the mesenchymal phenotype of MDA-MB-231 TNBC cells to a lesser aggressive epithelial phenotype. Using analog-based drug design, a series of diphenylamine analogs were synthesized and initially evaluated for their effect on E-cadherin protein expression and changes incell morphology, which was quantified by measuring the spindle index (SI) value. Selected compound 1 from this series increases the expression of E-cadherin, a primary marker for epithelial cells, and decreases the mesenchymal markers SOX2, ZEB1, Snail, and vimentin. The increase in epithelial markers and the decrease in mesenchymal markers are consistent with a phenotypic switch from spindle-like morphology to cobblestone-like morphology. Furthermore, Compound 1 decreases spheroid viability, cell migration, and cell proliferation in triple negative BT-549 and tamoxifen-resistant MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Akshita B Bhatt
- Division of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Mohit Gupta
- Division of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Suravi Chakrabarty
- Division of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Thomas D Wright
- Division of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Steven Elliot
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Ishveen K Chopra
- Division of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Darlene Monlish
- Division of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Katie Anna
- Division of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Jane E Cavanaugh
- Division of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Patrick T Flaherty
- Division of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
97
|
Subramanian G, Johnson PD, Zachary T, Roush N, Zhu Y, Bowen SJ, Janssen A, Duclos BA, Williams T, Javens C, Shalaly ND, Molina DM, Wittwer AJ, Hirsch JL. Deciphering the Allosteric Binding Mechanism of the Human Tropomyosin Receptor Kinase A ( hTrkA) Inhibitors. ACS Chem Biol 2019; 14:1205-1216. [PMID: 31059222 DOI: 10.1021/acschembio.9b00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Access to cryptic binding pockets or allosteric sites on a kinase that present themselves when the enzyme is in a specific conformational state offers a paradigm shift in designing the next generation small molecule kinase inhibitors. The current work showcases an extensive and exhaustive array of in vitro biochemical and biophysical tools and techniques deployed along with structural biology efforts of inhibitor-bound kinase complexes to characterize and confirm the cryptic allosteric binding pocket and docking mode of the small molecule actives identified for hTrkA. Specifically, assays were designed and implemented to lock the kinase in a predominantly active or inactive conformation and the effect of the kinase inhibitor probed to understand the hTrkA binding and hTrkB selectivity. The current outcome suggests that inhibitors with a fast association rate take advantage of the inactive protein conformation and lock the kinase state by also exhibiting a slow off-rate. This in turn shifts the inactive/active state protein conformational equilibrium cycle, affecting the subsequent downstream signaling.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Nicole Roush
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Ann Janssen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Brian A. Duclos
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | | | | | - Arthur J. Wittwer
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| | - Jeffrey L. Hirsch
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| |
Collapse
|
98
|
Wang K, Wang X, Hou Y, Zhou H, Mai K, He G. Apoptosis of cancer cells is triggered by selective crosslinking and inhibition of receptor tyrosine kinases. Commun Biol 2019; 2:231. [PMID: 31263775 PMCID: PMC6588694 DOI: 10.1038/s42003-019-0484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases (RTK) have been the most prevalent therapeutic targets in anti-cancer drug development. However, the emergence of drug resistance toward single target RTK inhibitors remains a major challenge to achieve long-term remissions. Development of alternative RTK inhibitory strategies that bypass drug resistance is much wanted. In the present study, we found that selected cell surface RTKs were inhibited and crosslinked into detergent resistant complexes by oligomeric but not monomeric concanavalin A (ConA). The inhibition of RTKs by ConA led to suppression of pro-survival pathways and induction of apoptosis in multiple cancer cell lines, while overexpression of constitutively activated protein kinase B (AKT) reversed the apoptotic effect. However, major cell stress sensing checkpoints were not influenced by ConA. To our knowledge, selective crosslinking and inhibition of cell surface receptors by ConA-like molecules might represent a previously unidentified mechanism that could be potentially exploited for therapeutic development.
Collapse
Affiliation(s)
- Kaidi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yiying Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
99
|
Jenardhanan P, Panneerselvam M, Mathur PP. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Curr Top Med Chem 2019; 19:467-485. [PMID: 31184298 DOI: 10.2174/1568026619666190304155711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Kinases are key modulators in regulating diverse range of cellular activities and are an essential part of the protein-protein interactome. Understanding the interaction of kinases with different substrates and other proteins is vital to decode the cell signaling machinery as well as causative mechanism for disease onset and progression. OBJECTIVE The objective of this review is to present all studies on the structure and function of few important kinases and highlight the protein-protein interaction (PPI) mechanism of kinases and the kinase specific interactome databases and how such studies could be utilized to develop anticancer drugs. METHODS The article is a review of the detailed description of the various domains in kinases that are involved in protein-protein interactions and specific inhibitors developed targeting these PPI domains. RESULTS The review has surfaced in depth the interacting domains in key kinases and their features and the roles of PPI in the human kinome and the various signaling cascades that are involved in certain types of cancer. CONCLUSION The insight availed into the mechanism of existing peptide inhibitors and peptidomimetics against kinases will pave way for the design and generation of domain specific peptide inhibitors with better productivity and efficiency and the various software and servers available can be of great use for the identification and analysis of protein-protein interactions.
Collapse
Affiliation(s)
| | - Manivel Panneerselvam
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Premendu P Mathur
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
100
|
Abstract
Kinase inhibitors (KIs) have had a huge impact on clinical treatment of various cancers, but they are far from perfect medicines. In particular, their efficacies are limited to certain cancer types and, in many cases, provide only temporary remission. This paper explores the possibility of covalently binding a fluorophore for in vivo optical imaging to the KI dasatinib where the particular fluorophore chosen for this study, a heptamethine cyanine (Cy) derivative, tends to accumulate in tumors. Thus, we hypothesized that the dasatinib-fluorophore conjugate might target tumor cells more effectively than the parent KI, give enhanced suppression of viability, and simultaneously serve as a probe for optical imaging. As far as we are aware, the dasatinib conjugate (1) is the first reported to contain this KI and a probe for near-IR imaging, and it is certainly the first conjugate of a tumor-targeting near-IR dye and a KI of any kind. Conjugate 1 suppressed the viability of liver cancer cells (HepG2) more effectively than dasatinib at the same concentration. In scratch assays, 1 prevented regrowth of the tumor cells. Conjugate 1 is cell permeable, and confocal imaging indicates the fluorescence of those cells is concentrated in the mitochondria than lysosomes. In general, this study suggests there is untapped potential for conjugates of KIs with tumor-targeting near-IR dyes in the development of theranostics for optical imaging and treatment of cancer.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Bosheng Zhao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|