51
|
Zhang Y, Zhang J, Wang C, Qin X, Zhang Y, Liu J, Pan Z. Effective Quality Breeding Directions-Comparison and Conservative Analysis of Hepatic Super-Enhancers between Chinese and Western Pig Breeds. BIOLOGY 2022; 11:1631. [PMID: 36358332 PMCID: PMC9687233 DOI: 10.3390/biology11111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 10/24/2023]
Abstract
The transcriptional initiation of genes is closely bound to the functions of cis-regulatory elements, including promoters, typical enhancers (TEs), and recently-identified super-enhancers (SEs). In this study, we identified these cis-regulatory elements in the livers of two Chinese (Meishan and Enshi Black) and two Western (Duroc and Large White) pig breeds using ChIP-seq data, then explored their similarities and differences. In addition, we analyzed the conservation of SEs among different tissues and species (pig, human, and mouse). We observed that SEs were more significantly enriched by transcriptional initiation regions, TF binding sites, and SNPs than other cis-elements. Western breeds included fewer SEs in number, while more growth-related QTLs were associated with these SEs. Additionally, the SEs were highly tissue-specific, and were conserved in the liver among humans, pigs, and mice. We concluded that intense selection could concentrate functional SEs; thus, SEs could be applied as effective detection regions in genomic selection breeding.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Caixia Wang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Qin
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuge Zhang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingge Liu
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Zengxiang Pan
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
52
|
Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis. Cell Death Dis 2022; 13:912. [PMID: 36309482 PMCID: PMC9617950 DOI: 10.1038/s41419-022-05344-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Reprogramming lipid metabolism is considered a fundamental step in tumourigenesis that influences ferroptosis. However, molecular mechanisms between lipid metabolism and ferroptosis remain largely unknown. Results from the drug screening of 464 inhibitors (for 164 targets) applied to ferroptosis cells indicated that 4 inhibitors targeted bromodomain-containing protein 4 (BRD4) significantly inhibiting erastin-induced ferroptosis. Functional studies proved that the loss of BRD4 weakened oxidative catabolism in mitochondria, protecting cells from the excessive accumulation of lipid peroxides. Mechanism research revealed that the transcriptional levels of fatty acid metabolism-related genes (HADH, ACSL1 and ACAA2) participating in the β-oxidation of fatty acids (FAO) and polyunsaturated fatty acids (PUFAs) synthesis depended on the activity of super-enhancers (SEs) formed by BRD4 and HMGB2 in their promoter regions. Conclusively, this study demonstrated that BRD4 was indispensable for fatty acid metabolism based on its epigenetic regulatory mechanisms and affecting erastin-induced ferroptosis, providing a new theoretical reference for understanding the relationship between lipid metabolism and ferroptosis deeply.
Collapse
|
53
|
Li M, Han Y, Wang C, Kang W, Jiang W, Zhang L, Tang Y. Dissecting super-enhancer driven transcriptional dependencies reveals novel therapeutic strategies and targets for group 3 subtype medulloblastoma. J Exp Clin Cancer Res 2022; 41:311. [PMID: 36273157 PMCID: PMC9587669 DOI: 10.1186/s13046-022-02506-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant pediatric brain tumor and group 3 subtype medulloblastoma (G3-MB) exhibits the worst prognosis. Super enhancers (SEs) are large clusters of enhancers that play important roles in cancer through transcriptional control of cell identity genes, oncogenes and tumor-dependent genes. Dissecting SE-driven transcriptional dependencies of cancer leads to identification of novel oncogenic mechanisms, therapeutic strategies and targets. METHODS Integrative SE analyses of primary tissues and patient-derived tumor cell lines of G3-MB were performed to extract the conserved SE-associated gene signatures and their oncogenic potentials were evaluated by gene expression, tumor-dependency and patient prognosis analyses. SE-associated subtype-specific upregulated tumor-dependent genes, which were revealed as members of SE-driven core transcriptional regulatory network of G3-MB, were then subjected to functional validation and mechanistic investigation. SE-associated therapeutic potential was further explored by genetic or pharmaceutical targeting of SE complex components or SE-associated subtype-specific upregulated tumor-dependent genes individually or in combination, and the underlying therapeutic mechanisms were also examined. RESULTS The identified conserved SE-associated transcripts of G3-MB tissues and cell lines were enriched of subtype-specifically upregulated tumor-dependent genes and MB patients harboring enrichment of those transcripts exhibited worse prognosis. Fourteen such conserved SE-associated G3-MB-specific upregulated tumor-dependent genes were identified to be members of SE-driven core transcriptional regulatory network of G3-MB, including three well-recognized TFs (MYC, OTX2 and CRX) and eleven newly identified downstream effector genes (ARL4D, AUTS2, BMF, IGF2BP3, KIF21B, KLHL29, LRP8, MARS1, PSMB5, SDK2 and SSBP3). An OTX2-SE-ARL4D regulatory axis was further revealed to represent a subtype-specific tumor dependency and therapeutic target of G3-MB via contributing to maintaining cell cycle progression and inhibiting neural differentiation of tumor cells. Moreover, BET inhibition with CDK7 inhibition or proteasome inhibition, two combinatory strategies of targeting SE complex components (BRD4, CDK7) or SE-associated effector gene (PSMB5), were shown to exhibit synergistic therapeutic effects against G3-MB via stronger suppression of SE-associated transcription or higher induction of ER stress, respectively. CONCLUSIONS Our study verifies the oncogenic role and therapeutic potential of SE-driven transcriptional dependencies of G3-MB, resulting in better understanding of its tumor biology and identification of novel SE-associated therapeutic strategies and targets.
Collapse
Affiliation(s)
- Meng Li
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Yujie Han
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Chaochen Wang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, People’s Republic of China
| | - Wenfeng Kang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Wenyan Jiang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Lei Zhang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China
| | - Yujie Tang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, 200025 Shanghai, People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
54
|
Song X, Zhang T, Ding H, Feng Y, Yang W, Yin X, Chen B, Liang Y, Mao Q, Xia W, Yu G, Xu L, Dong G, Jiang F. Non-genetic stratification reveals epigenetic heterogeneity and identifies vulnerabilities of glycolysis addiction in lung adenocarcinoma subtype. Oncogenesis 2022; 11:61. [PMID: 36216804 PMCID: PMC9550819 DOI: 10.1038/s41389-022-00436-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) exhibits high heterogeneity and is well known for its high genetic variation. Recently, the understanding of non-genetic variation provides a new perspective to study the heterogeneity of LUAD. Little is known about whether super-enhancers (SEs) may be primarily responsible for the inter-tumor heterogeneity of LUAD. We used super-enhancer RNA (seRNA) levels of a large-scale clinical well-annotated LUAD cohort to stratify patients into three clusters with different prognosis and other malignant characteristics. Mechanistically, estrogen-related receptor alpha (ERRα) in cluster 3-like cell lines acts as a cofactor of BRD4 to assist SE-promoter loops to activate glycolysis-related target gene expression, thereby promoting glycolysis and malignant progression, which confers a therapeutic vulnerability to glycolytic inhibitors. Our study identified three groups of patients according to seRNA levels, among which patients in cluster 3 have the worst prognosis and vulnerability of glycolysis dependency. We also proposed a 3-TF index model to stratify patients with glycolysis-addicted tumors according to tumor SE stratification.
Collapse
Affiliation(s)
- Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Hanlin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Xuewen Yin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China
| | - Bing Chen
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The affiliated Jiangyin Hospital of Southeast University Medical College, 214400, Jiangyin, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China. .,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, P. R. China.
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China. .,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China.
| |
Collapse
|
55
|
Cysteinyl-tRNA Synthetase 1 Promotes Ferroptosis-Induced Cell Death via Regulating GPX4 Expression. JOURNAL OF ONCOLOGY 2022; 2022:4849174. [PMID: 36213827 PMCID: PMC9534673 DOI: 10.1155/2022/4849174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) has still been considered to be the most common malignant tumors in China. Emerging evidence indicates that cysteinyl-tRNA synthetase 1 (CARS1) has been considered as a ferroptosis-related gene in ESCC. However, the roles and molecular mechanisms of CARS1 in ferroptosis-induced cell death of ESCC are still largely unknown. In our study, we investigated an aberrantly upregulated gene in ESCC tumor tissues CARS1 significantly inhibited cell proliferation, and the ability of migration and invasion promoted the relative level of MDA and ROS and decreased GPX4 expression level in two ESCC cell lines. Mechanistically, both the ferroptosis inhibitor ferrostatin-1 and its inducer erastin were further used and indicated that CARS1 participated in the ferroptosis-induced cell death. Together, these results revealed that CARS1 has a critical function in the progression of ESCC by promoting ferroptosis-induced cell death.
Collapse
|
56
|
Liu K, Du Y, Li H, Lin X. Identification of super-enhancer-associated transcription factors regulating glucose metabolism in poorly differentiated thyroid carcinoma. Genet Mol Biol 2022; 45:e20210370. [PMID: 36121916 PMCID: PMC9495016 DOI: 10.1590/1678-4685-gmb-2021-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs. normal control tissues were located in key steps in TCA cycle and pyruvate metabolism. A total of 23 upregulated genes localized in TCA cycle and pyruvate metabolism were identified as super-enhancer-controlled genes. Transcription factor analysis of these 23 super-enhancer-controlled genes related to glucose metabolism was performed, and 20 transcription factors were obtained, of which KLF12, ZNF281 and RELA had a significant prognostic impact. Regulatory network of KLF12, ZNF281 and RELA controlled the expression of these four prognostic target genes (LDHA, ACLY, ME2 and IDH2). In vitro validation showed that silencing of KLF12, ZNF281 and RELA suppressed proliferation, glucose uptake, lactate production and ATP level, but increased ADP/ATP ratio in PDTC cells. In conclusion, KLF12, ZNF281 and RELA were identified as the key transcription factors that regulate super-enhancer-controlled genes related to glucose metabolism in PDTC. Our findings contribute to a deeper understanding of the regulatory mechanisms associated with glucose metabolism in PDTC, and advance the theoretical development of PDTC-targeted therapies.
Collapse
Affiliation(s)
- Kun Liu
- Tianjin Hospital, Endocrinology Department, Tianjin, P. R. China
| | - Yongrui Du
- 80th Group Military Hospital, Chinese Peoples Liberation Army, Endocrinology Department, Weifang, Shandong, P. R. China
| | - Hui Li
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| | - Xuexia Lin
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| |
Collapse
|
57
|
Xu Z, Xu C, Wang Q, Ma S, Li Y, Liu S, Peng S, Tan J, Zhao X, Han D, Zhang K, Yang L. An enhancer RNA-based risk model for prediction of bladder cancer prognosis. Front Med (Lausanne) 2022; 9:979542. [PMID: 36186809 PMCID: PMC9515318 DOI: 10.3389/fmed.2022.979542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundBladder cancer patients have a high recurrence and poor survival rates worldwide. Early diagnosis and intervention are the cornerstones for favorable prognosis. However, commonly used predictive tools cannot meet clinical needs because of their insufficient accuracy.MethodsWe have developed an enhancer RNA (eRNA)-based signature to improve the prediction for bladder cancer prognosis. First, we analyzed differentially expressed eRNAs in gene expression profiles and clinical data for bladder cancer from The Cancer Genome Atlas database. Then, we constructed a risk model for prognosis of bladder cancer patients, and analyzed the correlation between this model and tumor microenvironment (TME). Finally, regulatory network of downstream genes of eRNA in the model was constructed by WGCNA and enrichment analysis, then Real-time quantitative PCR verified the differentiation of related genes between tumor and adjacent tissue.ResultsWe first constructed a risk model composed of eight eRNAs, and found the risk model could be an independent risk factor to predict the prognosis of bladder cancer. Then, the log-rank test and time-dependent ROC curve analysis shown the model has a favorable ability to predict prognosis. The eight risk eRNAs may participate in disease progression by regulating cell adhesion and invasion, and up-regulating immune checkpoints to suppress the immunity in TME. mRNA level change in related genes further validated regulatory roles of eRNAs in bladder cancer. In summary, we constructed an eRNA-based risk model and confirmed that the model could predict the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Zhicheng Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qionghan Wang
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Shanjin Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiyuan Peng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jidong Tan
- 96607 Army Hospital of People’s Liberation Army, Baoji, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Donghui Han,
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Keying Zhang,
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Lijun Yang,
| |
Collapse
|
58
|
Chen C, Fu G, Guo Q, Xue S, Luo SZ. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Int J Biol Macromol 2022; 222:207-216. [PMID: 36108750 DOI: 10.1016/j.ijbiomac.2022.09.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Liquid-liquid phase separation (LLPS) drives the formation of extensive membrane-less compartments to regulate various cellular biological activities both physiologically and pathologically. It has been widely accepted that LLPS is closely related to amyloid diseases and increasing reports have linked this phenomenon to cancers. Mutations of tumor suppressor protein p53 exist in more than half of malignant tumors, making the protein vitally important in cancer research. Recently, p53 was reported to undergo phase separation, which may regulate the function of p53. The molecular mechanism of p53 phase separation and how this process relates to cancer remains largely unclear. Herein, we find that the disordered unstructured basic region (UBR) plays a crucial role in p53 LLPS, driven by electrostatic and hydrophobic interactions. Mutations in the tetramerization domain (TD) disrupt p53 phase separation by preventing the tetramer formation. Furthermore, our results have revealed that, in response to DNA damage in cell, the wild type (WT) p53 undergoes LLPS, while LLPS in oncogenic mutations is diminished or eliminated. The expression of the target gene of p53 decreased significantly with the mutations and cell survival increased with the mutations. Thus, we propose a novel mechanism of p53 carcinogenesis, whereby oncogenic mutations in TD impair the formation of p53 condensates, decreasing the activation of target genes and promoting cancer progression. This study helps to understand the behavior and function of p53 in a different aspect and may provide insights into cancer therapies targeting p53.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gaohong Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
59
|
Typical Enhancers, Super-Enhancers, and Cancers. Cancers (Basel) 2022; 14:cancers14184375. [PMID: 36139535 PMCID: PMC9496678 DOI: 10.3390/cancers14184375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The cancer genome has been exhaustively studied upon the advent of Next-Generation Sequencing technologies. Coding and non-coding sequences have been defined as hotspots of genomic variations that affect the naïve gene expression programs established in normal cells, thus working as endogenous drivers of carcinogenesis. In this review, we comprehensively summarize fundamental aspects of gene expression regulation, with emphasis on the impact of sequence and structural variations mapped across non-coding cis-acting elements of genes encoding for tumor-related transcription factors. Chromatin architecture, epigenome reprogramming, transcriptional enhancers and Super-enhancers, oncogene regulation, cutting-edge technologies, and pharmacological treatment are substantially highlighted. Abstract Non-coding segments of the human genome are enriched in cis-regulatory modules that constitute functional elements, such as transcriptional enhancers and Super-enhancers. A hallmark of cancer pathogenesis is the dramatic dysregulation of the “archetype” gene expression profiles of normal human cells. Genomic variations can promote such deficiencies when occurring across enhancers and Super-enhancers, since they affect their mechanistic principles, their functional capacity and specificity, and the epigenomic features of the chromatin microenvironment across which these regulatory elements reside. Here, we comprehensively describe: fundamental mechanisms of gene expression dysregulation in cancers that involve genomic abnormalities within enhancers’ and Super-enhancers’ (SEs) sequences, which alter the expression of oncogenic transcription factors (TFs); cutting-edge technologies applied for the analysis of variation-enriched hotspots of the cancer genome; and pharmacological approaches for the treatment of Super-enhancers’ aberrant function. Finally, we provide an intratumor meta-analysis, which highlights that genomic variations in transcription-factor-driven tumors are accompanied overexpression of genes, a portion of which encodes for additional cancer-related transcription factors.
Collapse
|
60
|
Zhang T, Xia W, Song X, Mao Q, Huang X, Chen B, Liang Y, Wang H, Chen Y, Yu X, Zhang Z, Yang W, Xu L, Dong G, Jiang F. Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway. J Hematol Oncol 2022; 15:114. [PMID: 35982471 PMCID: PMC9389757 DOI: 10.1186/s13045-022-01331-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the leading cause of death worldwide. However, the roles of long noncoding RNAs (lncRNAs) hijacked by super-enhancers (SEs), vital regulatory elements of the epigenome, remain elusive in the progression of LUAD metastasis. METHODS SE-associated lncRNA microarrays were used to identify the dysregulated lncRNAs in LUAD. ChIP-seq, Hi-C data analysis, and luciferase reporter assays were utilized to confirm the hijacking of LINC01977 by SE. The functions and mechanisms of LINC01977 in LUAD were explored by a series of in vitro and in vivo assays. RESULTS We found that LINC01977, a cancer-testis lncRNA, was hijacked by SE, which promoted proliferation and invasion both in vitro and in vivo. LINC01977 interacted with SMAD3 to induce its nuclear transport, which facilitated the interaction between SMAD3 and CBP/P300, thereby regulating the downstream target gene ZEB1. Additionally, SMAD3 up-regulated LINC09177 transcription by simultaneously binding the promoter and SE, which was induced by the infiltration of M2-like tumor-associated macrophages (TAM2), subsequently activating the TGF-β/SMAD3 pathway. Moreover, LINC01977 expression was positively correlated with TAM2 infiltration and SMAD3 expression, especially in early-stage LUAD. Higher chromatin accessibility in the SE region of LINC01977 was observed with high expression of TGF-β. Early-stage LUAD patients with high LIN01977 expression had a shorter disease-free survival. CONCLUSIONS TAM2 infiltration induced a rich TGF-β microenvironment, activating SMAD3 to bind the promoter and the SE of LINC01977, which up-regulated LINC01977 expression. LINC01977 also promoted malignancy via the canonical TGF-β/SMAD3 pathway. LINC01977 hijacked by SE could be a valuable therapeutic target, especially for the treatment of early-stage LUAD.
Collapse
Affiliation(s)
- Te Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Xuming Song
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Qixing Mao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Xing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Bing Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Yuzhong Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Xinnian Yu
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Zeyu Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Wenmin Yang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Gaochao Dong
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing, 210009, China.
| |
Collapse
|
61
|
Rico D, Kent D, Karataraki N, Mikulasova A, Berlinguer-Palmini R, Walker BA, Javierre BM, Russell LJ, Brackley CA. High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation. Genome Res 2022; 32:1355-1366. [PMID: 35863900 PMCID: PMC9341513 DOI: 10.1101/gr.276028.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.
Collapse
Affiliation(s)
- Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Kent
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nefeli Karataraki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Badalona, Barcelona, Spain
| | - Lisa J Russell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
62
|
Kelly MR, Wisniewska K, Regner MJ, Lewis MW, Perreault AA, Davis ES, Phanstiel DH, Parker JS, Franco HL. A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer. Nat Commun 2022; 13:4247. [PMID: 35869079 PMCID: PMC9307778 DOI: 10.1038/s41467-022-31919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers, using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to nominate two salient super-enhancers that drive proliferation and migration of cancer cells. Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct target genes for these super-enhancers and confirm their activity specifically within the cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-omic approach examines a number of fundamental questions about how regulatory information encoded into super-enhancers drives gene expression networks that underlie the biology of ovarian cancer.
Collapse
Affiliation(s)
- Michael R Kelly
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael W Lewis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea A Perreault
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S Davis
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
63
|
Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
|
64
|
Jiang X, Qin N, Hua T, Wei X, Li Y, Chen C, Gong L, Liu S, Wang C, Yin R, Jiang Y, Dai J, Xu L, Shen H, Ma H. Functional characterization and clinical significance of super-enhancers in lung adenocarcinoma. Mol Carcinog 2022; 61:776-786. [PMID: 35596703 DOI: 10.1002/mc.23419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Super-enhancers (SEs) are important transcriptional regulators in tumorigenesis; however, the functional characterization and clinical significance of SEs in lung adenocarcinoma (LUAD) remain unclear. By using H3K27ac ChIP-seq data of two LUAD cell lines and eight lung tissues, we detected 1045 cancer-specific and 5032 normal-specific SEs. Compared to normal-specific SEs, cancer-specific SEs have different regulatory mechanisms where associated target genes were enriched in critical tumor-related pathways and tended to be regulated by transcription factors of Fos Proto-Oncogene, AP-1 Transcription Factor Subunit and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit families. By using expression data of 513 LUAD and 57 adjacent samples from The Cancer Genome Atlas and 80 tumor-normal paired LUAD samples from the Nanjing Lung Cancer Cohort study, we performed differential expression analysis of target genes for SEs and defined 243 crucial SEs. Unsupervised clustering of crucial SEs revealed two subtypes with different levels of genomic aberrations (i.e., mutation and copy number alteration) and clinical outcomes (progression-free interval: p = 0.030; disease-free interval: p = 0.047). In addition, patients with adverse clinical outcomes were more sensitive to three small molecule inhibitors (bortezomib, doxorubicin, and etoposide), and their targets (PSMB5 and TOP2A) also have elevated expression levels among these patients. Taken together, our findings provided a comprehensive characterization of SEs in LUAD and emphasized their clinical significance in LUAD therapy.
Collapse
Affiliation(s)
- Xiangxiang Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Hua
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Su Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
65
|
Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers. Cells 2022; 11:cells11091560. [PMID: 35563864 PMCID: PMC9101175 DOI: 10.3390/cells11091560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional genome organization represents an additional layer in the epigenetic regulation of gene expression. Active transcription controlled by enhancers or super-enhancers has been extensively studied. Enhancers or super-enhancers can recruit activators or co-activators to activate target gene expression through long-range chromatin interactions. Chromatin interactions and phase separation play important roles in terms of enhancer or super-enhancer functioning. Silencers are another major type of cis-regulatory element that can mediate gene regulation by turning off or reducing gene expression. However, compared to active transcription, silencer studies are still in their infancy. This review covers the current knowledge of human silencers, especially the roles of chromatin interactions and phase separation in silencers. This review also proposes future directions for human silencer studies.
Collapse
|
66
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
67
|
BRD4 inhibitor GNE987 exerts anti-cancer effects by targeting super-enhancers in neuroblastoma. Cell Biosci 2022; 12:33. [PMID: 35303940 PMCID: PMC8932231 DOI: 10.1186/s13578-022-00769-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. Results In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. Conclusion GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00769-8.
Collapse
|
68
|
Liu Q, Guo L, Lou Z, Xiang X, Shao J. Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death Dis 2022; 13:228. [PMID: 35277481 PMCID: PMC8917125 DOI: 10.1038/s41419-022-04673-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Transcription factors, cofactors, chromatin regulators, and transcription apparatuses interact with transcriptional regulatory elements, including promoters, enhancers, and super-enhancers (SEs), to coordinately regulate the transcription of target genes and thereby control cell behaviors. Among these transcriptional regulatory components and related elements, SEs often play a central role in determining cell identity and tumor initiation and progression. Therefore, oncogenic SEs, which are generated within cancer cells in oncogenes and other genes important in tumor pathogenesis, have emerged as attractive targets for novel cancer therapeutic strategies in recent years. Herein, we review the identification, formation and activation modes, and regulatory mechanisms for downstream genes and pathways of oncogenic SEs. We also review the therapeutic strategies and compounds targeting oncogenic SEs in colorectal cancer and other malignancies.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
69
|
Tian W, Chen K, Yan G, Han X, Liu Y, Zhang Q, Liu M. A Novel Prognostic Tool for Glioma Based on Enhancer RNA-Regulated Immune Genes. Front Cell Dev Biol 2022; 9:798445. [PMID: 35127714 PMCID: PMC8811171 DOI: 10.3389/fcell.2021.798445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Gliomas are the most malignant tumors of the nervous system. Even though their survival outcome is closely affected by immune-related genes (IRGs) in the tumor microenvironment (TME), the corresponding regulatory mechanism remains poorly characterized. Methods: Specific enhancer RNAs (eRNAs) can be found in tumors, where they control downstream genes. The present study aimed to identify eRNA-regulated IRGs, evaluate their influence on the TME, and use them to construct a novel prognostic model for gliomas. Results: Thirteen target genes (ADCYAP1R1, BMP2, BMPR1A, CD4, DDX17, ELN, FGF13, MAPT, PDIA2, PSMB8, PTPN6, SEMA6C, and SSTR5) were identified and integrated into a comprehensive risk signature, which distinguished two risk subclasses. Discrepancies between these subclasses were compared to explore potential mechanisms attributed to eRNA-regulated genes, including immune cell infiltration, clinicopathological features, survival outcomes, and chemotherapeutic drug sensitivity. Furthermore, the risk signature was used to construct a prognostic tool that was evaluated by calibration curve, clinical utility, Harrell’s concordance index (0.87; 95% CI: 0.84–0.90), and time-dependent receiver operator characteristic curves (AUCs: 0.93 and 0.89 at 3 and 5 years, respectively). The strong reliability and robustness of the established prognostic tool were validated in another independent cohort. Finally, potential subtypes were explored in patients with grade III tumors. Conclusion: Overall, eRNAs were associated with immune-related dysfunctions in the TME. Targeting of IRGs regulated by eRNAs could improve immunotherapeutic/therapeutic outcomes.
Collapse
Affiliation(s)
- Wei Tian
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Kegong Chen
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangcan Yan
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinhao Han
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qiuju Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
70
|
Yuan J, Li X, Yu S. CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochim Biophys Acta Rev Cancer 2022; 1877:188680. [PMID: 35051528 DOI: 10.1016/j.bbcan.2022.188680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Cancer arises from genetic alterations that invariably contribute to dysregulated transcriptional programs. These dysregulated programs establish and maintain specific cancer cell states, leading to an intensive dependence on a set of certain regulators of gene expression. The CDK7 functions as the core of transcription, and governs RNA polymerase II and the downstream oncogenes expression in cancers. CDK7 inhibition leads to reduced recruitment of super-enhancers-driven oncogenic transcription factors, and the depression of these associated oncogenes expression, which indicates the dependence of transcriptional addiction of cancers on CDK7. Given that specified oncoproteins of sarcomas commonly function at oncogenic transcription, targeting CDK7-denpendent transcriptional addiction may be of guiding significance for the treatment of sarcomas. In this review, we summarize the advances in mechanism of targeted CDK7-dependent transcriptional addiction and discuss the path ahead to potential application discovery in bone and soft tissue sarcomas, providing theoretical considerations for bio-orthogonal therapeutic strategies.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
71
|
Liang Y, Li L, Xin T, Li B, Zhang D. Superenhancer-transcription factor regulatory network in malignant tumors. Open Med (Wars) 2021; 16:1564-1582. [PMID: 34722892 PMCID: PMC8525661 DOI: 10.1515/med-2021-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
Objective This study aims to identify superenhancer (SE)-transcriptional factor (TF) regulatory network related to eight common malignant tumors based on ChIP-seq data modified by histone H3K27ac in the enhancer region of the SRA database. Methods H3K27ac ChIP-seq data of eight common malignant tumor samples were downloaded from the SRA database and subjected to comparison with the human reference genome hg19. TFs regulated by SEs were screened with HOMER software. Core regulatory circuitry (CRC) in malignant tumor samples was defined through CRCmapper software and validated by RNA-seq data in TCGA. The findings were substantiated in bladder cancer cell experiments. Results Different malignant tumors could be distinguished through the H3K27ac signal. After SE identification in eight common malignant tumor samples, 35 SE-regulated genes were defined as malignant tumor-specific. SE-regulated specific TFs effectively distinguished the types of malignant tumors. Finally, we obtained 60 CRC TFs, and SMAD3 exhibited a strong H3K27ac signal in eight common malignant tumor samples. In vitro experimental data verified the presence of a SE-TF regulatory network in bladder cancer, and SE-TF regulatory network enhanced the malignant phenotype of bladder cancer cells. Conclusion The SE-TF regulatory network with SMAD3 as the core TF may participate in the carcinogenesis of malignant tumors.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Linlin Li
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Tian Xin
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Binru Li
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Dalin Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110001, Liaoning Province, People's Republic of China
| |
Collapse
|
72
|
Zhang G, Yu T, Zhang Q, Zhang H, Xiao M, Cui S, Zhao Y, Lu X. Malignant transformation of human bronchial epithelial cells induced by benzo [a] pyrene suggests a negative feedback of TP53 to PPP1R13L via binding a possible enhancer element. Chem Biol Interact 2021; 349:109683. [PMID: 34610339 DOI: 10.1016/j.cbi.2021.109683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that PPP1R13L as an inhibitor of apoptosis protease TP53 can lead to abnormal cell proliferation and carcinogenesis, however, the function of PPP1R13L was complicated and the interaction between TP53 and PPP1R13L needs to be further explored. In the present study, a malignant transformation model of human bronchial epithelial cells induced by benzo (a) pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) was established to observe the regulatory patterns between TP53 and PPP1R13L during carcinogenesis. In vitro experiments including CRISPR-Cas9 editing, RNA silence, Co-Immunoprecipitation and Chromatin Immunoprecipitation were applied to discuss their interactive effects. Additionally, TCGA data profile and our clinical samples of lung cancer were also used to analyze their relationship at the transcriptome level. Interestingly, we found that the mRNA and protein level of TP53 and PPP1R13L fluctuated as a wave in BPDE-induced malignant transformation under wild-type TP53 genetic background. Our results have also demonstrated that PPP1R13L acts as an inhibitor of TP53, while TP53 can regulate PPP1R13L via binding a possible enhancer of the first intron of PPP1R13L gene. Likewise, TCGA data and clinical samples have identified that in the case of TP53 mutation, TP53 expression was negatively correlated with PPP1R13L, while in the case of TP53 wild-type, TP53 expression was not correlated with PPP1R13L. It suggested that there existed a negative feedback of wild-type TP53 to PPP1R13L, which reminded a unique implication during chemical carcinogenesis.
Collapse
Affiliation(s)
- Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tao Yu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Hongchao Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Su Cui
- Dept. of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yue Zhao
- Dept. of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
73
|
Zhang L, Li H, Qiu Y, Liu Y, Liu X, Wang W. Screening and cellular validation of prognostic genes regulated by super enhancers in oral squamous cell carcinoma. Bioengineered 2021; 12:10073-10088. [PMID: 34709988 PMCID: PMC8810015 DOI: 10.1080/21655979.2021.1997089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the leading cause of death in patients with head and neck cancer. Reliable biomarkers to guide treatment decisions for OSCC remain scarce. The purpose of this study was to identify novel prognostic markers regulated by super enhancers in OSCC. Eight modules were obtained by weighted gene co-expression network analysis (WGCNA), among which MEblue module had the highest correlation with tumor stage, alcohol consumption and smoking. There were 41 genes regulated by super enhancers in MEblue module. Functional analysis showed that 41 super enhancer-regulated genes were involved in cancer progression. A total of twenty transcription factors of the 41 genes were predicted. Prognostic analysis of the 41 genes and the top 5 transcription factors showed that patients with high expression of AHCY, KCMF1, MANBAL and TFDP1 had a poor prognosis. Immunohistochemical analysis showed that AHCY, KCMF1 and MANBAL were highly expressed in OSCC tissue. Cellular experiment demonstrated that TFDP1 promoted AHCY, KCMF1 and MANBAL expression by binding to the super enhancers of these genes. Knockdown of TFDP1, AHCY, KCMF1 and MANBAL inhibited the proliferation of OSCC cells. In conclusion, AHCY, KCMF1 and MANBAL were recognized as super enhancer-regulated prognostic biomarkers regulated by TFDP1 in OSCC.
Collapse
Affiliation(s)
- Liru Zhang
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China
| | - Huanju Li
- Department of Surgery, Gucheng County Hospital, Hengshui, Hebei 253800, China
| | - Yongle Qiu
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yuanhang Liu
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China
| | - Xin Liu
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wenjing Wang
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
74
|
Li M, Yang B, Li X, Ren H, Zhang L, Li L, Li W, Wang X, Zhou H, Zhang W. Identification of Prognostic Factors Related to Super Enhancer-Regulated ceRNA Network in Metastatic Lung Adenocarcinoma. Int J Gen Med 2021; 14:6261-6275. [PMID: 34629892 PMCID: PMC8493278 DOI: 10.2147/ijgm.s332317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction The regulatory mechanisms of super enhancers (SEs) and ceRNA networks in LUAD progression are not well understood. We aimed to discover the prognostic-related ceRNA network regulated by SEs in metastatic LUAD. Methods RNA-seq data were extracted from The Cancer Genome Atlas (TCGA) database. Differentially expressed (DE) RNAs were identified by edgeR. CeRNA network was predicted and visualized using starBase and Cytoscape. H3K27ac ChIP-seq data were derived from the Gene Expression Omnibus (GEO) database, and used for SE identification. Kaplan–Meier curve and multivariate Cox model were applied for prognostic analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) network were performed for functional analysis. SEs of AC074117.1 were verified by ChIP-qPCR in A549 and H1299 cells. MTT assay was performed to analyze cell proliferation. Luciferase activity assay was carried out to validate the target targeting relationships of ceRNA network. Results A total of 2355 DEmRNA, 483 DElncRNA and 155 DEmiRNA were identified between metastatic LUAD and adjacent normal tissues. CeRNA network consisting of 7 DElncRNAs, 18 DEmiRNAs and 15 DEmRNAs was constructed. Among the seven DElncRNAs in ceRNA network, only AC074117.1 was regulated by SEs. SE-regulated prognostic ceRNA sub-network consisting of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p was screened and verified. The overlapping co-expressed mRNAs of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p were mainly related to cell division and Fanconi anemia pathway. Genes in the ceRNA sub-network were correlated with DNA mismatch repair markers. Functional experiments proved that AC074117.1 was highly expressed in LUAD cells. AC074117.1 silencing notably inhibited proliferation of A549 and H1299 cells. Luciferase activity assay confirmed the direct relationship in AC074117.1-hsa-let-7c-5p-FKBP3/E2F2 network. Conclusion A novel prognostic ceRNA sub-network regulated by SEs was identified in metastatic LUAD. This study provided potential therapeutic targets and prognostic markers for further study of metastatic LUAD.
Collapse
Affiliation(s)
- Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xuhui Wang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Honggang Zhou
- College of Pharmacy, Nankai University, State Key Laboratory of Medicinal Chemical Biology, Tianjin, People's Republic of China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| |
Collapse
|
75
|
Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021; 134:272045. [PMID: 34357401 DOI: 10.1242/jcs.258578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Izzy Owen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Debra Yee
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Hala Wyne
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Victoria Johnson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeremy Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Robert Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Frank Shewmaker
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
76
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
77
|
Chen B, Ma Y, Bi J, Wang W, He A, Su G, Zhao Z, Shi J, Zhang L. Regulation Network of Colorectal-Cancer-Specific Enhancers in the Progression of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22158337. [PMID: 34361106 PMCID: PMC8348541 DOI: 10.3390/ijms22158337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer-promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zhang
- Correspondence: ; Tel./Fax: +86-(22)-23503617
| |
Collapse
|
78
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
79
|
Yang Y, Jiang D, Zhou Z, Xiong H, Yang X, Peng G, Xia W, Wang S, Lei H, Zhao J, Qian Z, Wu S, Pang J. CDK7 blockade suppresses super-enhancer-associated oncogenes in bladder cancer. Cell Oncol (Dordr) 2021; 44:871-887. [PMID: 33905040 DOI: 10.1007/s13402-021-00608-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Transcriptional addiction plays a pivotal role in maintaining the hallmarks of cancer cells. Thus, targeting super-enhancers (SEs), which modulate the transcriptional activity of oncogenes, has become an attractive strategy for cancer therapy. As yet, however, the molecular mechanisms of this process in bladder cancer (BC) remain to be elucidated. Here, we aimed to provide detailed information regarding the SE landscape in BC and to investigate new potential pharmaceutical targets for BC therapy. METHODS We employed THZ1 as a potent and specific CDK7 inhibitor. In vitro and in vivo studies were carried out to investigate the anticancer and apoptosis-inducing effects of THZ1 on BC cells. Whole-transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to investigate the mechanism and function of SE-linked oncogenic transcription in BC cells. RESULTS We found that THZ1 serves as an effective and potent inhibitor with suppressive activity against BC cells. An integrative analysis of THZ1-sensitive and SE-associated oncogenes yielded potential new pharmaceutical targets, including DDIT4, B4GALT5, PSRC1 and MED22. Combination treatment with THZ1 and the DDIT4 inhibitor rapamycin effectively suppressed BC cell growth. In addition, we found that THZ1 and rapamycin sensitized BC cells to conventional chemotherapy. CONCLUSIONS Our data indicate that exploring BC gene regulatory mechanisms associated with SEs through integrating RNA-seq and ChIP-seq data improves our understanding of BC biology and provides a basis for innovative therapies.
Collapse
Affiliation(s)
- Yafei Yang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Donggen Jiang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ziyu Zhou
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangwei Yang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Guoyu Peng
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Wuchao Xia
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Shang Wang
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhirong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Song Wu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China.
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
80
|
Histone H3K4me1 strongly activates the DNase I hypersensitive sites in super-enhancers than those in typical enhancers. Biosci Rep 2021; 41:229109. [PMID: 34195788 PMCID: PMC8264496 DOI: 10.1042/bsr20210691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Super-enhancers (SEs), which consist of multiple enhancer elements, are occupied by master transcription factors and co-activators, such as Mediator, and are highly acetylated at histone H3K27. Here, we have characterized the SEs in terms of DNase I hypersensitive sites (DHSs) by analyzing publicly available chromatin immunoprecipitation (ChIP)-seq and DNase-seq data of K562 cells and compared with the DHSs in typical enhancers (TEs). DHSs in the SEs were highly marked by histone H3K4me1 than DHSs in TEs. Loss of H3K4me1 by the deletion of catalytic domains in histone methyltransferases MLL3 and MLL4 remarkably decreased histone H3K27ac and histone H3 depletion at SE DHSs than at TE DHSs. The levels of enhancer RNA (eRNA) transcripts and mRNA transcripts from the putative target genes were notably reduced at and near SE DHSs than TE DHSs following H3K4me1 loss. These results indicate that histone H3K4me1 is a marker for DHSs in SEs and that this modification has a more significant impact on the activation of SE DHSs than TE DHSs.
Collapse
|
81
|
BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther 2021; 29:3011-3026. [PMID: 34058385 PMCID: PMC8531146 DOI: 10.1016/j.ymthe.2021.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.
Collapse
|
82
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
83
|
Orlova NN, Bogatova OV, Orlov AV. High-performance method for identification of super enhancers from ChIP-Seq data with configurable cloud virtual machines. MethodsX 2021; 7:101165. [PMID: 33665151 PMCID: PMC7897706 DOI: 10.1016/j.mex.2020.101165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
A universal method for rapid identifying super-enhancers which are large domains of multiple closely-spaced enhancers is proposed. The method applies configurable cloud virtual machines (cVMs) and the rank-ordering of super-enhancers (ROSE) algorithm. To identify super-enhancers a сVM-based analysis of the ChIP-seq binding patterns of the active enhancer-associated mark is employed. The use of the proposed method is described step-by-step: configuration of cVM; ChIP-seq data alignment; peak calling; ROSE algorithm; interpretation of the results on a client machine. The method was validated for the search of super-enhancers using the H3K27ac mark in the sample datasets of a cell line (human MCF-7), mouse tissue (heart), and human tissue (adrenal gland). The total analysis cycle time of raw ChIP-seq data ranges from 15 to 48 min, depending on the number of initial short reads. Depending on the data processing step and availability of multi-threading, a cVM can be scaled up to a multi-CPU configuration with large amount of RAM. An important feature of the method is that it can run on a client machine that has low-performance with virtually any OS. The proposed method allows for simultaneous and independent processing of different sample datasets on multiple clones of a single cVM.Cloud VMs were used for rapid processing of ChIP-seq data to identify super-enhancers. The method can use a low-performance computer with virtually any OS on it. It can be scaled up for parallel processing of individual sample datasets on their own VMs for rapid high-throughput processing.
Collapse
Affiliation(s)
- Natalia N Orlova
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Olga V Bogatova
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Alexey V Orlov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
84
|
Yan L, Chen H, Tang L, Jiang P, Yan F. Super-enhancer-associated long noncoding RNA AC005592.2 promotes tumor progression by regulating OLFM4 in colorectal cancer. BMC Cancer 2021; 21:187. [PMID: 33622275 PMCID: PMC7903608 DOI: 10.1186/s12885-021-07900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Background Super-enhancer-associated long noncoding RNAs (SE-lncRNAs) have been reported to play essential roles in tumorigenesis, but the fundamental mechanism of SE-lncRNAs in colorectal cancer (CRC) remains largely unknown. Methods A microarray was performed to identify the differentially expressed SE-lncRNAs between CRC tissues and peritumoral tissues. A novel SE-lncRNA, AC005592.2, was selected from these differentially expressed SE-lncRNAs to explore its effects on CRC development. Fluorescence quantitative real-time PCR (qRT-PCR) was used to assay the expression of AC005592.2 in CRC tissues and cell lines. Functional assays were applied to identify the biological effects of AC005592.2 in CRC cells. Furthermore, RNA-seq was employed to predict potential targets of AC005592.2. Results AC005592.2 was significantly increased in CRC tissues and cells. High expression of AC005592.2 was significantly associated with TNM stage and tumor differentiation in CRC patients. Knockdown of AC005592.2 suppressed CRC cell proliferation, invasion and migration but promoted apoptosis, while AC005592.2 overexpression exerted the opposite effects on CRC cells. In addition, AC005592.2 positively regulated the expression of olfactomedin 4 (OLFM4), which was also upregulated in CRC tissues. Conclusion The findings suggested that AC005592.2 is a crucial promoter of CRC progression and may serve as an attractive therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07900-x.
Collapse
Affiliation(s)
- Linping Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Huanhuan Chen
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Li Tang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Pan Jiang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China.
| |
Collapse
|
85
|
Lee Z, Raabe M, Hu WS. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells. Biotechnol Bioeng 2021; 118:1851-1861. [PMID: 33521928 DOI: 10.1002/bit.27701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super-enhancers have been recently described as strong regulatory elements that shape cell identity. Super-enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq). Genes near super-enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super-enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super-enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production.
Collapse
Affiliation(s)
- Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marina Raabe
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
86
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
87
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
88
|
Bruter AV, Rodionova MD, Varlamova EA, Shtil AA. Super-Enhancers in the Regulation of Gene Transcription: General Aspects and Antitumor Targets. Acta Naturae 2021; 13:4-15. [PMID: 33959383 PMCID: PMC8084300 DOI: 10.32607/actanaturae.11067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
Super-enhancers (genome elements that activate gene transcription) are DNA regions with an elevated concentration of transcriptional complexes. These multiprotein structures contain, among other components, the cyclin-dependent kinases 8 and 19. These and other transcriptional protein kinases are regarded as novel targets for pharmacological inhibition by antitumor drug candidates.
Collapse
Affiliation(s)
- A. V. Bruter
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | | | - E. A. Varlamova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. A. Shtil
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
89
|
Wang J, Lin B, Zhang Y, Ni L, Hu L, Yang J, Xu L, Shi D, Chen YH. The Regulatory Role of Histone Modification on Gene Expression in the Early Stage of Myocardial Infarction. Front Cardiovasc Med 2020; 7:594325. [PMID: 33330655 PMCID: PMC7734124 DOI: 10.3389/fcvm.2020.594325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarction (MI) is a fatal heart disease with high morbidity and mortality. Various studies have demonstrated that a series of relatively specific biological events occur within 24 h of MI. However, the roles of histone modifications in this pathological process are still poorly understood. To investigate the regulation of histone modifications on gene expression in early MI, we performed RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) on myocardial tissues 24 h after the onset of MI. The genome-wide profiles of five histone marks (H3K27ac, H3K9ac, H3K4me3, H3K9me3, and H3K27me3) were explored through ChIP-seq. RNA-seq identified 1,032 differentially expressed genes (DEGs) between the MI and sham groups. ChIP-seq analysis found that 195 upregulated DEGs were modified by change of at least one of the three active histone marks (H3K27ac, H3K9ac, and H3K4me3), and the biological processes and pathways analysis showed that these DEGs were significantly enriched in cardiomyocyte differentiation and development, inflammation, angiogenesis, and metabolism. In the transcriptional regulatory network, Ets1, Etv1, and Etv2 were predicted to be involved in gene expression regulation. In addition, by integrating super-enhancers (SEs) with RNA-seq data, 76 DEGs were associated with H3K27ac-enriched SEs in the MI group, and the functions of these SE-associated DEGs were mainly related to angiogenesis. Our results suggest that histone modifications may play important roles in the regulation of gene expression in the early stage of MI, and the early angiogenesis response may be initiated by SEs.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanping Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Han Chen
- Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
90
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
91
|
Qu J, Ouyang Z, Wu W, Li G, Wang J, Lu Q, Li Z. Functions and Clinical Significance of Super-Enhancers in Bone-Related Diseases. Front Cell Dev Biol 2020; 8:534. [PMID: 32714929 PMCID: PMC7344144 DOI: 10.3389/fcell.2020.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are a large cluster of cis-regulatory DNA elements that contain many binding motifs, which master transcription factors and cofactors bind to with high density. SEs usually regulate the expression of genes that can control the cell identity and fate, and SEs can be used to explain the patterns of the expression of cell-specific genes. Hence, it shows great potential for application in the treatment of diseases like cancer. At present, the clinical treatments for osteosarcoma, Ewing sarcoma, and other bone-related diseases remain challenging. The poor prognosis and difficult treatment of these diseases imposes heavy economic burden on patients and society. In recent years, research on SEs with respect to bone-related diseases has attracted increasing attention. In this paper, we first review the identification and functional mechanisms of SEs. Then, we integrate the findings of the emerging studies on SEs in bone-related diseases. Finally, we summarize recent strategies for targeting SEs for the treatment of bone-related diseases. This review aims to provide comprehensive insights into the roles of SEs in bone-related diseases.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqiang Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
92
|
Tang F, Zhang Y, Huang QQ, Qian MM, Li ZX, Li YJ, Li BP, Qiu ZL, Yue JJ, Guo ZY. Genome-Wide Identification and Analysis of Enhancer-Regulated microRNAs Across 31 Human Cancers. Front Genet 2020; 11:644. [PMID: 32714372 PMCID: PMC7344161 DOI: 10.3389/fgene.2020.00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2023] Open
Abstract
Enhancers are cis-regulatory DNA elements that positively regulate the transcription of target genes in a tissue-specific manner, and dysregulation of target genes could lead to various diseases, such as cancer. Recent studies have shown that enhancers can regulate microRNAs (miRNAs) and participate in their biological synthesis. However, the network of enhancer-regulated miRNAs across multiple cancers is still unclear. Here, a total of 2,418 proximal enhancer-miRNA interactions and 1,280 distal enhancer-miRNA interactions were identified through the integration of genomic distance, co-expression, and 3D genome data in 31 cancers. The results showed that both proximal and distal interactions exhibited a significant cancer type-specific feature trend at the tissue level rather than at the single-cell level, and there was a noteworthy positive correlation between the expression of the miRNA and the number of enhancers regulating the same miRNA in most cancers. Furthermore, we found that there was a high correlation between the formation of enhancer-miRNA pairs and the expression of enhancer RNAs (eRNAs) whether in distal or proximal regulation. The characteristics analysis showed that miRes (enhancers that regulated miRNAs) and non-miRes presented significant differences in sequence conservation, guanine-cytosine (GC) content, and histone modification signatures. Notably, GC content, H3K4me1, and H3K36me3 were present differently between distal and proximal regulation, suggesting that they might participate in chromosome looping of enhancer-miRNA interactions. Finally, we introduced a case study, enhancer: chr1:1186391-1186507 ∼ miR-200a was highly relevant to the survival of thyroid cancer patients and a cis-eQTL SNP on the enhancer affected the expression of the TNFRSF18 gene as a tumor suppressor.
Collapse
Affiliation(s)
- Fei Tang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yin Zhang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qing-Qing Huang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming-Ming Qian
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhi-Xue Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yan-Jing Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Bei-Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Zheng-Liang Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Jun-Jie Yue
- Beijing Institute of Biotechnology, Beijing, China
- Xinxiang Key Laboratory of Pathogenic Microbiology, Xinxiang, China
| | - Zhi-Yun Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
93
|
Portugal J. Insights into DNA-drug interactions in the era of omics. Biopolymers 2020; 112:e23385. [PMID: 32542701 DOI: 10.1002/bip.23385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Despite the rise of sophisticated new targeting strategies in cancer chemotherapy, many classic DNA-binding drugs remain on the front line of the therapy against cancer. Based on examples primarily from the author's laboratory, this article reviews the capabilities of several DNA-binding drugs to alter gene expression. Research is ongoing about the molecular bases of the inhibition of gene expression and how alteration of the cellular transcriptome can commit cancer cells to die. The development of a variety of omic techniques allows us to gain insights into the effect of antitumor drugs. Genome-wide approaches provide unbiased genomic data that can facilitate a deeper understanding of the cellular response to DNA-binding drugs. Moreover, the results of large-scale genomic studies are gathered in publicly available databases that can be used in developing precision medicine in cancer treatment.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, Barcelona, Spain
| |
Collapse
|
94
|
Tan Y, Li Y, Tang F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol Cancer 2020; 19:74. [PMID: 32278350 PMCID: PMC7149907 DOI: 10.1186/s12943-020-01195-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA’s characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
95
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
96
|
Ma H, Qu J, Luo J, Qi T, Tan H, Jiang Z, Zhang H, Qu Q. Super-Enhancer-Associated Hub Genes In Chronic Myeloid Leukemia Identified Using Weighted Gene Co-Expression Network Analysis. Cancer Manag Res 2019; 11:10705-10718. [PMID: 31920381 PMCID: PMC6934127 DOI: 10.2147/cmar.s214614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Super-enhancer (SE)-associated oncogenes extensively potentiate the uncontrolled proliferation capacity of cancer cells. In this study, we aimed to identify the SE-associated hub genes associated with the clinical characteristics of chronic myeloid leukemia (CML). Methods Eigengenes from CML clinical modules were determined using weighted gene co-expression network analysis (WGCNA). Overlapping genes between eigengenes and SE-associated genes were used to construct protein–protein interaction (PPI) networks and annotate for pathway enrichment analysis. Expression patterns of the top-ranked SE-associated hub genes were further determined in CML patients and healthy controls via real-time PCR. After treatment of K562 cells with the BRD4 inhibitor, JQ1, for 24 hrs, mRNA and protein levels of SE-associated hub genes were evaluated using real-time PCR and Western blotting, respectively. H3K27ac, H3K4me1 and BRD4 ChIP-seq signal peaks were used to predict and identify SEs visualized by the Integrative Genomics Viewer. Results The yellow module was significantly related to the status and pathological phase of CML. SE-associated hub candidate genes were mainly enriched in the cell cycle pathway. Based on the PPI networks of hub genes and the top rank of degree, five SE-associated genes were identified: specifically, BUB1, CENPO, KIF2C, ORC1, and RRM2. Elevated expression of these five genes was not only related to CML status and phase but also positively regulated by SE and suppressed by the BRD4 inhibitor, JQ1, in K562 cells. Strong signal peaks of H3K27ac, H3K4me1 and BRD4 ChIP-seq of the five genes were additionally observed close to the predicted SE regions. Conclusion This is the first study to characterize SE-associated genes linked to clinical characteristics of CML via weighted gene co-expression network analysis. Our results support a novel mechanism involving aberrant expression of hub SE-associated genes in CML patients and K562 cells, and these genes will be potential new therapeutic targets for human leukemia.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Huanmiao Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Zhaohui Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Haiwen Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
97
|
Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019; 20:890-911. [PMID: 31606941 DOI: 10.1111/tra.12704] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Collapse
Affiliation(s)
- Stephanie Spannl
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean J Ihn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Canada Research Chairs Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|