51
|
Guo S, Qiu S, Cai Y, Wang Z, Yang Q, Tang S, Xie Y, Zhang A. Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Front Chem 2023; 11:1142287. [PMID: 37065828 PMCID: PMC10102349 DOI: 10.3389/fchem.2023.1142287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed.
Collapse
Affiliation(s)
- Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibo Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| |
Collapse
|
52
|
Wang Y, Yang L, Zhang X, Sun Y, Sun H, Yan G, Zhao Q, Han Y, Wang X. Quality marker discovery of Danggui Jianzhong decoction for treating primary dysmenorrhoea based on chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154724. [PMID: 37087788 DOI: 10.1016/j.phymed.2023.154724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Danggui Jianzhong Decoction (DGJZD) has been proven as an effective classical prescription for clinically treating primary dysmenorrhoea (PD). However, the industrialisation development and drug innovation of DGJZD remain limited due to its undefined effective constituents and quality markers (Q-markers). PURPOSE Elucidating the Q-markers of DGJZD, which is related to clinical efficacy. METHODS In accordance with chinmedomics strategy, we evaluated the therapeutic efficacy of DGJZD on the basis of the metabolomic profile and biomarker of a PD rat model to further identify the constituents of DGJZD in vivo that originated from the formula under the acting condition of DGJZD. The potential effective constituents and Q-markers were identified by mining the dynamic relation between the constituents in vivo and the biomarkers. RESULTS Subsequently, 29 serum metabolites were characterized as biomarkers for PD, and DGJZD adjusted the levels of the primary biomarkers involved in arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism as well as the synthesis of steroid hormones. Under the active condition of DGJZD, 20 prototype ingredients and 4 metabolites of DGJZD were found in vivo, five of which were mostly related with the efficacy of PD, namely, ferulic acid, zizyphusin, cinnamic acid, protocatechuic acid-3-glucoside, and azelaic acid. They were the potential pharmacodynamic constituents for treating PD, and they could be regarded as the Q-markers of DGJZD. CONCLUSION Taken together, the Q-markers of DGJZD identified in this research are credible and assist in solving problems related to quality control and drug innovation, accelerating industrialisation development. Besides, the efficacy, mechanism and active ingredients of DGJZD for the treatment of PD were innovatively elucidated for the first time on the basis of the chinmedomics strategy for uncovering the Q-markers of drugs from the system perspective.
Collapse
Affiliation(s)
- Ying Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Xiwu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
53
|
Ren JL, Yang L, Qiu S, Zhang AH, Wang XJ. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends Endocrinol Metab 2023; 34:146-157. [PMID: 36710216 DOI: 10.1016/j.tem.2023.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023]
Abstract
Evidence shows that herbal medicine (HM) could be beneficial for the treatment of various diseases. However, complexities present in HM due to the unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, and nonspecific features for metabolism, are currently an obstacle for the progression of novel drug discovery. Metabolomics could be a potential tool to overcome these issues and for the understanding of HM from a small-molecule metabolism level. The chinmedomics-based metabolomics method assesses the overall metabolism of organisms with a holistic view and shows great potential for understanding metabolic pathways, evaluating curative effects, clarifying mechanisms, discovering active ingredients, and precision medicine. This review focuses on the efficacy evaluation, active ingredient discovery, and target exploration of HM based on metabolomics and chinmedomics.
Collapse
Affiliation(s)
- Jun-Ling Ren
- National Chinmedomics Research Center, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Ai-Hua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
54
|
Tong QL, Luo D, Xiang ZN, Zhang YL, He JX, Hu ZF, Xia RF, Wu JL, Fu XN, Li Q, Peng HM, Huang R, Wan LS, Chen JC, Fang JB. Metabolic profiling integrated with pharmacokinetics to reveal the material basis of Xiaokeyinshui extract combination in the treatment of type 2 diabetes in rats. J Pharm Biomed Anal 2023; 225:115224. [PMID: 36603394 DOI: 10.1016/j.jpba.2022.115224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Xiaokeyinshui extract combination (XEC), originating from a traditional Chinese formula Xiaokeyinshui (XKYS) recorded in ancient Bencao, has been reported to exert significant hypoglycemic effects. However, the chemical profiles, metabolic transformation and pharmacokinetic behavior of XEC in vivo were unclear. The research was to investigate the chemical constituents, metabolic profiles and pharmacokinetic behavior of XEC. A UPLC-QE-Orbitrap-HRMS qualification method was developed to identify the chemical constituents in XEC and xenobiotics of XEC in plasma, urine, feces and bile of rats after oral administration. A LC-MS quantification method was established and applied for the pharmacokinetic studies of major active compounds of XEC in normal and T2DM rats and Coptidis Rhizoma extracts (CRE) in T2DM rats. Fifty eight compounds in XEC and a total of 152 xenobiotics were identified in T2DM rats, including 28 prototypes and 124 metabolites. The metabolic pathways were demethylation, demethyleneization, reduction, hydroxylation, hydrolysis and subsequent binding reactions, including glucuronidation, sulfation and methylation. According to the results of chemical constituents and metabolites, 7 ingredients, including berberine, palmatine, coptisine, epiberberine, berberrubine, magnoflorine and aurantio-obtusin were suggested for markers to comparative pharmacokinetics study in normal rats and T2DM rats. Compared with normal rats, the Tmax of berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine was significantly longer. The value of Cmax for palmatine, coptisine, epiberberine and berberrubine was significantly decreased in XEC T2DM group. The value of AUC for alkaloids was higher in diabetic rats. After oral CRE, alkaloids including berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine could be detected in vivo. Compared with T2DM rats after oral administration of CRE, the value of Tmax and Cmax for berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine exhibited significant differences in XEC T2DM group. This research provided an overview of the chemical profiles and metabolic profiling of XEC and elucidated the effect of diabetic state and compatibility on pharmacokinetic behaviors of active components in XEC. This research also can provide the material basis of XEC for subsequent quality control research.
Collapse
Affiliation(s)
- Qi-Lin Tong
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dan Luo
- Shimadzu Enterprise Management (China) Co., Ltd., Wuhan Branch, Wuhan 430030, China.
| | - Zhi-Nan Xiang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ya-Li Zhang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jia-Xin He
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuo-Fan Hu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ru-Feng Xia
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jia-Le Wu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiao-Na Fu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qiang Li
- Shimadzu Enterprise Management (China) Co., Ltd., Wuhan Branch, Wuhan 430030, China.
| | - Hui-Ming Peng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Rong Huang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, Hubei, China.
| | - Luo-Shen Wan
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jia-Chun Chen
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
55
|
Wan C, Wang X, Liu H, Zhang Q, Yan G, Li Z, Fang H, Sun H. Characterization of effective constituents in Acanthopanax senticosus fruit for blood deficiency syndrome based on the chinmedomics strategy. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Abstract
The fruit of Acanthopanax senticosus (Rupr. and Maxim.) has been newly developed for the treatment of blood deficiency syndrome clinically, but the effective constituents are still unclear, restricting its quality control and the new medicinal development based on it. This study elucidated the efficacy of A. senticosus fruit (ASF) for treating blood deficiency syndrome and accurately characterize the constituents. Chinmedomics strategy was used to identify the metabolic biomarkers of the model and the overall effect of ASF was evaluated based on the biomarker when it showed intervention effects for blood deficiency syndrome. ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the components in the blood absorbed from A. senticosus fruit, and the components highly relevant to the biomarker are regarded as potential effective constituents for blood deficiency syndrome. Twenty-two of the 28 urine metabolites of blood deficiency syndrome were significantly regulated by A. senticosus fruit, 97 compounds included 20 prototype components, and 77 metabolites were found in vivo under the acting condition. The highly relevant constituents were isofraxidin, eleutheroside B, eleutheroside B1, eleutheroside E, and caffeic acid, which might be the effective constituents of A. senticosus fruit. It is a promising new medicinal resource that can be used for treating blood deficiency syndrome.
Collapse
Affiliation(s)
- Chunlei Wan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Avenida Wai Long , Taipa , Macau
| | - Hongda Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Qingyu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Zhineng Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Heng Fang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| |
Collapse
|
56
|
Hu Y, Sun H, Yan G, Zhang X, Guan Y, Li D, Wang X. Combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and network pharmacology to reveal the mechanism of Shengyu Decoction for treating anemia. J Sep Sci 2023; 46:e2200678. [PMID: 36437813 PMCID: PMC10107194 DOI: 10.1002/jssc.202200678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Anemia is a common clinical hematological disease with a high incidence, which seriously affects human health. Shengyu Decoction is often used in the treatment of anemia. However, the pharmacodynamic substance basis and therapeutic mechanism are still unclear, which hinders the comprehensive development and utilization of Shengyu Decoction. In this study, 143 compounds were identified in Shengyu Decoction using high-throughput ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, 24 of which were absorbed into the blood. Taking these blood-entering ingredients as the research object, we found through network pharmacology research that ferulic acid, calycosin, and astragaloside A can act on AKT1, MAPK1, and MAPK14, and play a role in treating anemia through PI3K-Akt signaling pathway and Pathways in anemia. Finally, it was demonstrated that the active compound could bind to the core target with good affinity by molecular docking. The research shows that Shengyu Decoction has multi-component, multi-target, and multi-channel effects in the treatment of anemia, which provides a basis for the development and clinical application of Shengyu Decoction.
Collapse
Affiliation(s)
- Yu Hu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Xiwu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Yu Guan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Dan Li
- Shenwei Pharmaceutical Group Co. Ltd.ShijiazhuangP. R. China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauP. R. China
| |
Collapse
|
57
|
Li C, Xiao N, Deng N, Li D, Tan Z, Peng M. Dose of sucrose affects the efficacy of Qiweibaizhu powder on antibiotic-associated diarrhea: Association with intestinal mucosal microbiota, short-chain fatty acids, IL-17, and MUC2. Front Microbiol 2023; 14:1108398. [PMID: 36744095 PMCID: PMC9893413 DOI: 10.3389/fmicb.2023.1108398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Due to the poor taste of Qiweibaizhu powder (QWBZP), patients have difficulty taking medicine, which leads to poor compliance and limits clinical use to a certain extent. In the trend of restricting sugar intake, sweeteners have gained massive popularity, among which sucrose is a commonly used sweetener in preparations. This study aimed to investigate the effect of different sucrose dose addition with antibiotic-associated diarrhea (AAD) by intervened QWBZP on intestinal mucosal microbiota. METHODS Thirty specific-pathogen-free (SPF) Kunming (KM) male mice were randomly divided into normal group (N), natural recovery group (M), QWBZP group (Q), low dose sucrose group (LQ), medium dose sucrose group (MQ), and high dose sucrose group (HQ). Subsequently, 16S rRNA amplicon sequencing and GC-MS techniques were used to analyze the intestinal mucosal microbiota and short-chain fatty acid (SCFAs) in intestinal contents, respectively, and enzyme-linked immunosorbent assay was used to determine mucin 2 (MUC2) and interleukin 17 (IL-17). RESULTS Compared with the Q group, the results showed that with the increase of sucrose dose, the intestinal microbial structure of mice was significantly altered, and the intestinal microbial diversity was elevated, with the poor restoration of the intestinal biological barrier, decreased content of SCFAs, high expression of inflammatory factor IL-17 and decreased content of mucosal protective factor MUC2. In conclusion, we found that the addition of sucrose had an effect on the efficacy of the AAD intervented by QWBZP, which was less effective than QWBZP, showing a certain dose-response relationship. In this experiment, it was concluded that the addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. DISCUSSION The addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. However, these findings still need to be verified in a more extensive study. The effect of adding the sweetener sucrose on the efficacy of Chinese herbal medicine in treating diseases also still needs more research.
Collapse
Affiliation(s)
- Cuiru Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dandan Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
58
|
Chen Y, Gan Y, Yu J, Ye X, Yu W. Key ingredients in Verbena officinalis and determination of their anti-atherosclerotic effect using a computer-aided drug design approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1154266. [PMID: 37077636 PMCID: PMC10106644 DOI: 10.3389/fpls.2023.1154266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Lipid metabolism disorders may considerably contribute to the formation and development of atherosclerosis (AS). Traditional Chinese medicine has received considerable attention in recent years owing to its ability to treat lipid metabolism disorders using multiple components and targets. Verbena officinalis (VO), a Chinese herbal medicine, exhibits anti-inflammatory, analgesic, immunomodulatory, and neuroprotective effects. Evidence suggests that VO regulates lipid metabolism; however, its role in AS remains unclear. In the present study, an integrated network pharmacology approach, molecular docking, and molecular dynamics simulation (MDS) were applied to examine the mechanism of VO against AS. Analysis revealed 209 potential targets for the 11 main ingredients in VO. Further, 2698 mechanistic targets for AS were identified, including 147 intersection targets between VO and AS. Quercetin, luteolin, and kaempferol were considered key ingredients for the treatment of AS based on a potential ingredient target-AS target network. GO analysis revealed that biological processes were primarily associated with responses to xenobiotic stimuli, cellular responses to lipids, and responses to hormones. Cell components were predominantly focused on the membrane microdomain, membrane raft, and caveola nucleus. Molecular functions were mainly focused on DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and transcription factor binding. KEGG pathway enrichment analysis identified pathways in cancer, fluid shear stress, and atherosclerosis, with lipid and atherosclerosis being the most significantly enriched pathways. Molecular docking revealed that three key ingredients in VO (i.e., quercetin, luteolin, and kaempferol) strongly interacted with three potential targets (i.e., AKT1, IL-6, and TNF-α). Further, MDS revealed that quercetin had a stronger binding affinity for AKT1. These findings suggest that VO has beneficial effects on AS via these potential targets that are closely related to the lipid and atherosclerosis pathways. Our study utilized a new computer-aided drug design to identify key ingredients, potential targets, various biological processes, and multiple pathways associated with the clinical roles of VO in AS, which provides a comprehensive and systemic pharmacological explanation for the anti-atherosclerotic activity of VO.
Collapse
Affiliation(s)
- Yuting Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jingxuan Yu
- Clinical Medical College, Changsha Medical University, Changsha, Hunan, China
| | - Xiao Ye
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, Hubei, China
- *Correspondence: Wei Yu,
| |
Collapse
|
59
|
Tan Z, Chen S, Zhang M, Qu X, Li T, Zhang A, He Y, Ou M, Long L, Chen L, Wu F. An ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry identification and characterization of the active constituents from Abrus mollis Hance. J Sep Sci 2023; 46:e2200311. [PMID: 36349515 DOI: 10.1002/jssc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Abrus mollis Hance is a traditional Chinese medicine that is widely used to treat acute and chronic hepatitis, steatosis, and fibrosis. Its therapeutic qualities of it have long been acknowledged, although the active ingredients responsible for its efficacy and the mechanisms of its action are unknown. In this study, the chemical constituents absorbed into the blood from Abrus mollis Hance were assessed by using liquid chromatography-quadrupole-time-of-flight mass spectrometry and the data was analyzed with the UNIFI screening platform. The results obtained were compared to existing chromatographic-mass spectrometry information, including retention times and molecular weights as well as known reference compounds. 41 chemical constituents were found in Abrus mollis Hance, and these included 16 flavonoids, 13 triterpenoids, five organic acids, and two alkaloids. Experimentally it was found that Abrus mollis Hance had a therapeutic benefit when treating α-naphthalene isothiocyanate-induced acute liver injury in rats. In addition, 11 blood prototypical constituents, including six flavonoids, three triterpenoids, and two alkaloids, were found in serum samples following intragastric administration of Abrus mollis Hance extracts to rats. This novel study can be used for the quality control and pharmacodynamic assessment of Abrus mollis Hance in order to assess its efficacy in the therapeutic treatment of patients.
Collapse
Affiliation(s)
- Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Shimin Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Xiaosheng Qu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lu Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| |
Collapse
|
60
|
Xiao J, Chen C, Li Y, Fan J, Yan Z, Cai Y. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Indigowoad Leaves with Preconcentration by Cholesterol-Decorated Nickel Foam (NF) Dispersive Solid-Phase Extraction (DSPE) and Determination by Gas Chromatography–Mass Spectrometry (GC-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jing Xiao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chan Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahua Fan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhihong Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Cai
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
61
|
Chu YJ, Wang ML, Wang XB, Zhang XY, Liu LW, Shi YY, Zuo LH, Du SZ, Kang J, Li B, Cheng WB, Sun Z, Zhang XJ. Identifying quality markers of Mailuoshutong pill against thromboangiitis obliterans based on chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154313. [PMID: 35810519 DOI: 10.1016/j.phymed.2022.154313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mailuoshutong pill (MLSTP) is a traditional Chinese medicine (TCM) for the treatment of Thromboangiitis obliterans (TAO, Buerger's disease) which is a segmental non-atherosclerotic inflammatory occlusive disorder. However, the mechanism and quality standards of MLSTP have not been sufficiently studied. PURPOSE This work aims to investigate the potential mechanisms and quality markers (Q-markers) of MLSTP treating TAO based on the chinmedomics strategy. METHODS The therapeutical effect of MLSTP on TAO rats was evaluated by changes in body weight and clinical score, regional blood flow velocity and perfused blood vessel distribution, hematoxylin-eosin (H&E) staining, serum metabolic profile. Moreover, both endogenous metabolites and exogenous components were simultaneously detected in serum based on ultra-high performance liquid chromatography coupled with a Q Exactive hybrid quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), and multivariate analysis was applied to identify the biomarkers, as well as the dynamic changes of metabolites were observed to explore the mechanism of action of MLSTP. In addition, the pharmacodynamic material basis were identified by correlation analysis between biomarkers and absorbed constituents. Finally, the Q-markers of MLSTP were determined according to the screening principles of Q-marker and validated the measurability. RESULTS MLSTP treatment alleviated disease severity of TAO, reduced inflammatory infiltration, and ameliorated vascular function. 26 potential biomarkers associated with glutamate metabolism, linoleic acid metabolism, arachidonic acid metabolism and so on were identified. Besides, 27 prototypical components were identified in serum, 16 of which were highly correlated with efficacy and could serve as the pharmacodynamic material basis of MLSTP against TAO. In addition, 7 compounds, namely, sweroside, chlorogenic acid, calycosin-7-glucoside, formononetin, paeoniflorin, liquiritigenin and 3-butylidenephthalide, were considered as potential Q-markers of MLSTP. Ultimately, the measurability of the seven Q-markers was validated by rapid identifcation and quantifcation. CONCLUSION This study successfully clarified the therapeutic effect and Q-markers of MLSTP by chinmedomics strategy, which is of great significance for the establishment of quality standards. Furthermore, it provides a certain reference for the screening of Q-markers in TCM prescriptions.
Collapse
Affiliation(s)
- Yao-Juan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Meng-Li Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiao-Bao Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiang-Yu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Ying-Ying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Hua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Shu-Zhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wen-Bo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Xiao-Jian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| |
Collapse
|
62
|
Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ. Application of chloroplast genome in the identification of Traditional Chinese Medicine Viola philippica. BMC Genomics 2022; 23:540. [PMID: 35896957 PMCID: PMC9327190 DOI: 10.1186/s12864-022-08727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.
Collapse
Affiliation(s)
- Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shao-Qiu Xie
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
63
|
Gong X, Liu W, Cao Y, Wang R, Liang N, Cao L, Li J, Tu P, Song Y. Integrated strategy for widely targeted metabolome characterization of Peucedani Radix. J Chromatogr A 2022; 1678:463360. [PMID: 35908514 DOI: 10.1016/j.chroma.2022.463360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Herbal medicines (HMs) are widely recognized as extremely complicated matrices, resulting in a great challenge for the existing analytical approaches to characterize the widely targeted metabolome. The primary obstacles include high-level structural diversity, broad concentration range, large polarity span, insufficient authentic compounds and frequent occurrences of isomers, even enantiomers. Here, we aimed to propose an integrated strategy being able to circumvent the technical barriers, and a well-known HM namely Peucedani Radix was employed to illustrate and justify the applicability. Regarding qualitative analysis, the hydrophilic metabolites were detected with HILIC-predictive multiple-reaction monitoring mode, and structurally identified by matching predefined identities with authentic compounds or information archived in relevant databases. After RPLC-MS/MS measurement, full collision energy ramp-MS2 spectrum in combination with quantum structural calculation was applied to confirmatively identify those less polar components, mainly angular-type pyranocoumarins (APs). For quantitative analysis, achiral-chiral RPLC/HILIC was configured for chromatographic separations because the analytes spanned a large polarity range and involved many enantiomers. A quasi-content concept was employed for comprehensively relative quantitation through constructing a so-called universal metabolome standard (UMS) sample and building calibration curves by assaying serial diluted UMS solutions. Consequently, high-confidence structural annotation and relatively quantitative analysis were achieved for 103 compounds, in total. After multivariate statistical analysis, some APs, e.g., (3'S)-praeruptorin A, (3'S)-praeruptorin B, (3'S)-praeruptorin E, as well as several primary metabolites were screened out as the prominent contributors for inter-batch variations. Together, current study shows a promising strategy enabling widely targeted metabolomics of, but not limited to, HMs.
Collapse
Affiliation(s)
- Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongye Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Naiyun Liang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
64
|
Chen Z, Yan G, Yang Y, Sun H, Zhang A, Han Y, Wang S, Wang X. Rapid characterization of chemical constituents in Naoling Pian by LC-MS combined with data processing techniques. J Sep Sci 2022; 45:3431-3442. [PMID: 35855656 DOI: 10.1002/jssc.202200244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Naoling Pian is a prescription composed of 15 herbs, which is mainly used for the treatment of insomnia in clinical practice. However, the chemical constituents in Naoling Pian are numerous and unclear, which hinders the interpretation of its bioactive constituents and the subsequent research on the material basis for pharmacodynamics. The purpose of this study is to develop a rapid method for identifying the chemical constituents of Naoling Pian using high-throughput ultra-performance liquid chromatography quadrupole time of flight coupled with mass spectrometry combined with a software platform for data processing. The whole composition of Naoling Pian was characterized in positive and negative ion modes. In this experiment, an overall total of 201 constituents were identified by using reference standards, online and self-built databases matching, fragmentation rules analysis of mass spectrometry peaks with a software platform. Meanwhile, Naoling Pian was analyzed for the first time using LC-MS method, the constituents could be identified in a quick and accurate manner, and the results could provide a scientific basis for the follow-up research on the pharmacodynamic material basis and quality control of Naoling Pian. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Shugui Wang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| |
Collapse
|
65
|
Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4301033. [PMID: 35855861 PMCID: PMC9288302 DOI: 10.1155/2022/4301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) and one of the leading causes of death. An alternative effective treatment to ameliorate and relieve LN and delay the process of renal tissue fibrosis is urgently needed in the clinical setting. Jieduquyuziyin prescription (JP) has been successfully used to treat SLE, but its potential mechanisms are not sufficiently understood. In this study, we treated MRL/lpr mice with JP for 8 weeks and treated human renal tubular epithelial cells (human kidney 2 (HK-2)) with drug-containing serum to observe the antagonistic effects of JP on inflammation and fibrosis, as well as to investigate the possible mechanisms. Results demonstrated that JP significantly reduced urinary protein and significantly improved pathological abnormalities. Metabolomics combined with ingenuity pathway analysis illustrated that the process of kidney injury in lupus mice may be closely related to farnesoid X receptor (FXR) pathway abnormalities. Microarray biomimetic analysis and LN patients indicated that FXR may play a protective role as an effective therapeutic target for LN and renal fibrosis. JP significantly increased the expression of FXR and inhibited the expression of its downstream targets, namely, nuclear transcription factor κB (NF-κB) and α-smooth muscle actin (α-SMA), in the kidney of MRL/lpr mice and HK-2 cells, as confirmed by in vitro and in vivo experiments. In conclusion, JP may mediate the activation of renal FXR expression and inhibit NF-κB and α-SMA expression to exert anti-inflammatory and antifibrotic effects for LN prevention and treatment.
Collapse
|
66
|
ZHANG H, XIA H, LIU H, LIU Y, JIU X, ZHANG M, HE C, WANG H. [Rapid analysis of serum components and metabolites of Sanzi San by high performance liguid chromatography-quadrupole/ electrostatic field orbitrap high resolution mass spectrometry]. Se Pu 2022; 40:653-660. [PMID: 35791604 PMCID: PMC9404152 DOI: 10.3724/sp.j.1123.2021.09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Sanzi San, a Mongolian medicine, comprises three herbs: Terminalia chebula, Melia toosendan, and Gardenia jasminoides. Clinically, Sanzi San is administered orally and distributed via blood to the action site, which implies that the absorption, distribution, metabolism, and excretion (ADME) are closely related to the pharmacological action and curative effect. Therefore, possible explanations for the material basis of Sanzi San were explored in this study preliminarily. A strategy based on serum pharmacochemistry was first applied to explore the absorbed bioactive components and metabolites of Sanzi San. Wistar rats were randomly divided into normal and dosing groups, which were provided with the Sanzi San's water extract for three days. Then, the rat's blood samples were obtained from their abdomiral aorta using a sterile blood collection tube after administering the medicine. The blood samples were then centrifuged at 3500 r/min for 10 min to obtain the serum samples. A practical method based on high performance liquid chromatography coupled with quadrupole and electrostatic field orbitrap high resolution mass spectrometry (HPLC-Q/Orbitrap HRMS) was developed to screen and analyze numerous bioactive components and metabolites adsorbed in the serum of the dosing rats after oral administration of the Sanzi San's water extract. Chromatographic separation was achieved on a SHIMADZU GIST C18 chromatographic column (150 mm×4.6 mm, 5 μm). The temperature of the column was maintained at 30 ℃. The flow rate was 0.5 mL/min, and the injection volume was 10 μL. The mobile phase comprised an aqueous solution of 0.1% formic acid and methanol under gradient elution. A heated electrospray ion (HESI) source was used with positive and negative ion scanning modes. To rapidly screen out and identify the absorbed bioactive components and metabolites of Sanzi San in the rat serum samples, a simple three-step approach was developed. First, the known components in Sanzi San were listed systematically by exploring various databases, such as the Web of Science, PubMed, and Chinese National Knowledge Infrastructure. In addition, relevant information on drug biotransformation and the characteristic fragmentation patterns of parent compounds were summarized. Second, the absorbed components and metabolites were ascertained using the Xcalibur 3.0 software. Based on the information related to the parent compound's structure, the software could be used to identify the unique peaks by comparing the chromatograms of the normal and dosing samples. Consequently, the total ion chromatograms of serum samples were established. Finally, the Compound Discover 3.0 software was used to predict the metabolic pathways and fragmentation of the absorbed compounds. Using this approach, 55 compounds were characterized, including 41 prototype components and 14 metabolites. The main prototype components in the serum sample were tannins, iridoids, and phenolic acids. The details of these compounds have been summarized and presented. Regarding the absorbed bioactive components and metabolites in the serum samples of rats administered with Sanzi San, phase Ⅰ and phase Ⅱ biochemical reactions were involved in the biotransformation pathways. The phase Ⅰ reaction modified the components and created sites for the phase Ⅱ reaction, involving reduction and hydrolysis. The phase Ⅱ reaction coupled groups to existing conjugation sites, including glucuronide to glucuronic acid, sulfate, and methyl. MS/MS spectra indicated that methylation, demethylation, and dehydroxylation are the metabolic pathways of procyanidins. Additionally, glucuronidation, deglucosidation, hydration, and demethylation are the metabolic pathways of iridoids in Sanzi San. This study comprehensively analyzed the components of the Sanzi San's water extract absorbed in the rat's serum. Our results revealed information regarding the pharmacodynamic substances and the major pathways involved in the ADME of Sanzi San. Further, potential medicinal ingredients for the pharmacological effects and clinical use of Sanzi San were explored at the serum pharmacochemistry level.
Collapse
|
67
|
Zhang Q, Zhang A, Wu F, Wang X. UPLC-G2Si-HDMS Untargeted Metabolomics for Identification of Yunnan Baiyao's Metabolic Target in Promoting Blood Circulation and Removing Blood Stasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103208. [PMID: 35630682 PMCID: PMC9143197 DOI: 10.3390/molecules27103208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese patent medicine in Yunnan Province. However, its mechanism for promoting blood circulation and removing blood stasis is not fully explained. Our study used metabonomics technology to reveal the regulatory effect of Yunnan Baiyao on small molecular metabolites in promoting blood circulation and removing blood stasis, and exploring the related urine biomarkers. The coagulation function, blood rheology, and pathological results demonstrated that after Yunnan Baiyao treatment, the pathological indexes in rats with epinephrine hydrochloride-induced blood stasis syndrome improved and returned to normal levels. This is the basis for the effectiveness of Yunnan Baiyao. UPLC-G2Si-HDMS was used in combination with multivariate statistical analysis to conduct metabonomic analysis of urine samples. Finally, using mass spectrometry technology, 28 urine biomarkers were identified, clarifying the relevant metabolic pathways that play a vital role in the Yunnan Baiyao treatment. These were used as the target for Yunnan Baiyao to promote blood circulation and remove blood stasis. This study showed that metabolomics strategies provide opportunities and conditions for a deep and systematic understanding of the mechanism of action of prescriptions.
Collapse
Affiliation(s)
- Qingyu Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
- Correspondence: ; Tel.: +86-0451-82110818
| |
Collapse
|
68
|
Li T, Wu F, Zhang A, Dong H, Ullah I, Lin H, Miao J, Sun H, Han Y, He Y, Wang X. High-Throughput Chinmedomics Strategy Discovers the Quality Markers and Mechanisms of Wutou Decoction Therapeutic for Rheumatoid Arthritis. Front Pharmacol 2022; 13:854087. [PMID: 35496313 PMCID: PMC9039025 DOI: 10.3389/fphar.2022.854087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Wutou decoction (WTD) is a traditional Chinese medicine prescription for the treatment of rheumatoid arthritis (RA), and this study systematically analyzed the metabolic mechanism and key pharmacodynamic components of WTD in RA rats by combining untargeted metabolomics and serum pharmacochemistry of traditional Chinese medicine to enrich the evidence of WTD quality markers (Q-markers) studies. WTD prevented synovial edema in RA rats and reduced tumor necrosis factor-alpha and interleukin 6 levels in rat serum, according to the results of an enzyme-linked immunosorbent examination and histopathological inspection. In model rats, pattern recognition and multivariate statistical analysis revealed 24 aberrant metabolites that disrupted linoleic acid metabolism, arachidonic acid metabolism, arginine and proline metabolism, etc. However, continued dosing of WTD for 28 days reversed 13 abnormal metabolites, which may be an important therapeutic mechanism from a metabolomic perspective. Importantly, 12 prototypical components and 16 metabolites from WTD were characterized in RA rat serum. The results of Pearson correlation analysis showed that aconitine, L-ephedrine, L-methylephedrine, quercetin, albiflorin, paeoniflorigenone, astragaline A, astragaloside II, glycyrrhetic acid, glycyrrhizic acid, licurazide, and isoliquiritigenin are the key pharmacological components that regulate the metabolism of RA rats, and they are identified as Q-markers. In sum, utilizing metabolomics and serum pharmacochemistry of traditional Chinese medicine, the metabolic mechanisms and Q-markers of WTD therapy in RA rats were revealed, providing a theoretical basis for the quality control investigation of WTD.
Collapse
Affiliation(s)
- Taiping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Dong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Lin
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
69
|
Chemical Characterization and Metabolic Profiling of the Compounds in the Chinese Herbal Formula Li Chang Decoction by UPLC-QTOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322751. [PMID: 35463075 PMCID: PMC9020952 DOI: 10.1155/2022/1322751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Background Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
Collapse
|
70
|
Wei WF, Sun H, Liu SB, Lu SW, Zhang AH, Wang WY, Chai WJ, Wu FF, Yan GL, Guan Y, Wang XJ. Targets and Effective Constituents of ZhiziBaipi Decoction for Treating Damp-Heat Jaundice Syndrome Based on Chinmedomics Coupled with UPLC-MS/MS. Front Pharmacol 2022; 13:857361. [PMID: 35450037 PMCID: PMC9016223 DOI: 10.3389/fphar.2022.857361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Damp-heat jaundice syndrome (DHJS) is a diagnostic model of traditional Chinese medicine (TCM) that refers to jaundice caused by damp-heat pathogen invasion. DHJS is the most common clinical manifestation of TCM, with yellow skin, yellow eyes and anorexia. ZhiziBaipi Decoction (ZBD) is a classic TCM formula that is effective at treating DHJS and various liver diseases. However, the effective components of ZBD in the context of DHJS and the underlying mechanism are unclear. Purpose: This study of ZBD using the DHJS rat model aimed to elucidate the pathobiology of DHJS and the metabolic targets of therapeutic ZBD, construct the network relationship between the components of ZBD and endogenous biomarkers, and clarify the underlying mechanism of ZBD in preventing and treating DHJS. Methods: Using chinmedomics as the core strategy, an animal model was generated, and the therapeutic effect of ZBD was evaluated based on behavioral, histopathological and biochemical indicators. Metabonomics tools were used to identify biomarkers of DHJS, TCM-based serum pharmacochemistry was used to analyze the effective constituents of ZBD, and chinmedomics technology was used to identify ZBD components highly related to DHJS biomarkers. Results: A total of 42 biomarkers were preliminarily identified, and ZBD significantly affected the levels of 29 of these biomarkers. A total of 59 compounds in ZBD were characterized in vivo. According to chinmedomics analysis, the highly correlated components found in blood were isoformononetin, 3-O-feruloylquinic acid, glycyrrhizic acid, oxyberberine, obaculactone and five metabolites. Conclusions: Chinmedomics combined with UPLC-MS/MS was used to study the targets and effective constituents of ZBD for the treatment of DHJS.
Collapse
Affiliation(s)
- Wen-Feng Wei
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Bo Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wen Lu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wen-Jun Chai
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Guang-Li Yan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Guan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China.,National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
71
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
72
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
73
|
Metabonomics Study on Naotaifang Extract Alleviating Neuronal Apoptosis after Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2112433. [PMID: 35321499 PMCID: PMC8938065 DOI: 10.1155/2022/2112433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 02/12/2022] [Indexed: 01/07/2023]
Abstract
Naotaifang extract (NTE) is a clinically effective traditional Chinese medicine compound for cerebral ischemia-reperfusion injury. Although NTE can achieve neuroprotective function through different mechanisms, the pharmacodynamic substances of NTE corresponding to these mechanisms have rarely been reported. Alleviating or inhibiting neuronal apoptosis is an important way to achieve neuroprotection. Accordingly, this study has evaluated the effects of NTE on alleviating neuronal apoptosis after cerebral ischemia-reperfusion injury from two levels of cells and tissues. Meanwhile, the serum pharmacochemistry of NTE was analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with the guidance of Chinmedomics. The results included three aspects: (1) NTE could significantly alleviate neuronal apoptosis caused by in vitro cellular models and in vivo animal models; (2) a total of 21 serum differential metabolites was discovered, including adenosine, inosine, ferulic acid, calycosin, salidroside, 6-gingerol, 2-methoxycinnamaldehyde, and so on; (3) the metabolic pathway regulated by NTE was mainly purine metabolism. From these results, it can be concluded that alleviating neuronal apoptosis by NTE after cerebral ischemia-reperfusion injury is one of the important mechanisms to achieve neuroprotection. The pharmacodynamic substances of NTE for alleviating neuronal apoptosis on the one hand are related to components directly absorbed into blood, such as ferulic acid, calycosin, salidroside, 6-gingerol, and 2-methoxycinnamaldehyde and on the other hand are also closely linked to its indirect regulation of purine metabolism in the body to produce adenosine and inosine. Therefore, our research not only identified the main pharmacodynamic substances of NTE that alleviated neuronal apoptosis but also provided a methodological reference for studying other neuroprotective effects of NTE.
Collapse
|
74
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
75
|
Yamashita H, Ohbuchi K, Nagino M, Ebata T, Tsuchiya K, Kushida H, Yokoyama Y. Comprehensive metabolome analysis for the pharmacological action of inchinkoto, a hepatoprotective herbal medicine. Metabolomics 2021; 17:106. [PMID: 34855010 DOI: 10.1007/s11306-021-01824-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The precise pharmacological action of inchinkoto (ICKT, Yin-Chen-Hao-Tang in Chinese), a hepatoprotective herbal medicine, on total metabolic pathways has not been well investigated. OBJECTIVES The aim of this study was to explore the serum metabolites reflecting the pharmacological activity of ICKT, and mechanism of action of ICKT using serum metabolome analysis. METHODS 54 patients with obstructive jaundice due to malignancies were included in this study. ICKT was administered for 3 days. Serum and bile samples were collected before and 1 h after ICKT administration on days 1 and 4. Serum metabolome analysis including ICKT components were performed. RESULTS The levels of total/direct bilirubin, C-reactive protein, γ-glutamyl transpeptidase, and albumin in the serum were significantly improved after ICKT administration. In the serum metabolome analysis, inosine was the only elevated metabolite on days 1 and 4. Most of the metabolites which were significantly changed after ICKT administration were lipid mediators, and all decreased on day 1. Notably, the levels of many lipid mediators were increased on day 4. The difference in serum aspartic acid 1 h after ICKT administration was significantly correlated with a decrease in the levels of total bilirubin in the serum on day 4. CONCLUSIONS Using metabolome analysis, we demonstrated several metabolic changes that may be associated with the pharmacological mechanisms of ICKT. The biological implications of these metabolites should be further investigated in basic research studies.
Collapse
Affiliation(s)
- Hiromasa Yamashita
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Masato Nagino
- Department of Gastrointestinal Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuaki Tsuchiya
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Hirotaka Kushida
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
76
|
Li T, Zhang M, Tan Z, Miao J, He Y, Zhang A, Ou M, Huang D, Wu F, Wang X. Rapid characterization of the constituents in Jigucao capsule using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2021; 45:677-696. [PMID: 34822724 DOI: 10.1002/jssc.202100664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Jigucao capsule is a well-known Chinese patent medicine for the treatment of acute and chronic hepatitis and cholecystitis. The chemical components of Jigucao capsule were not clear resulting from the paucity of relevant studies, which hindered the research of the pharmacological mechanism, the comprehensive development, and utilization of Jigucao capsule in clinical studies. By establishing a high-throughput ultra-performance liquid chromatography quadrupole time of flight mass spectrometry in combination with intelligent UNIFI software data processing platform to automatically characterize and identify the chemical profile of Jigucao capsule, 144 compounds were determined rapidly, including 34 terpenoids, 25 flavonoids, 22 steroids, 21 phenylpropanoids, 10 glycosides, six alkaloids, 13 organic acids, and other 13 components. These compounds may be the active components of Jigucao capsule. In this study, a rapid and robust method for comprehensively analyzing the chemical composition of Jigucao capsule was described and established for the first time. The results will provide a reference for the quality control of Jigucao capsule and the establishment of a higher quality standard, as well as for the pharmacodynamic material basis research.
Collapse
Affiliation(s)
- Taiping Li
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Danna Huang
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered, Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
77
|
Chemicalome and metabolome profiling of Chai-Gui Decoction using an integrated strategy based on UHPLC-Q-TOF-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122979. [PMID: 34688199 DOI: 10.1016/j.jchromb.2021.122979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023]
Abstract
Traditional Chinese medicine prescriptions are widely believed to exert therapeutic benefits via a multiple-component and multiple-target mode. The systemic profiling of their in vitro chemicalome and in vivo metabolome is of great importance for further understanding their clinical value. Herein, an integrated strategy using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was proposed to profile the chemicalome and metabolome of Chai-Gui Decoction. Particularly, an approach combined mass defect filter, characteristic product ion filter, and neutral loss filter was adopted to identify metabolites in plasma, urine, bile, and feces by MetabolitePilot. Consequently, a total of 174 constituents were identified or tentatively characterized and 70 metabolites that related to 21 representative structural components were matched in rat biofluids. Among them, 19 prototypes and 7 metabolites that contributed to flavonoids, monoterpenes, and phenylpropanoids were detected distribution in brain, heart, kidney, liver, lung or spleen. This study provided a generally applicable approach to comprehensive investigation on chemicalome and metabolome of traditional Chinese medicine prescriptions, and offered reasonable guidelines for further screening of quality control indicators of Chai-Gui Decoction.
Collapse
|
78
|
Tao W, Li Z, Nabi F, Hu Y, Hu Z, Liu J. Penthorum chinense Pursh Compound Ameliorates AFB1-Induced Oxidative Stress and Apoptosis via Modulation of Mitochondrial Pathways in Broiler Chicken Kidneys. Front Vet Sci 2021; 8:750937. [PMID: 34692815 PMCID: PMC8531719 DOI: 10.3389/fvets.2021.750937] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin widely present in foods and animal feeds; it represents a great risk to human and animal health. The aim of this study was to investigate the protective effects of Penthorum chinense Pursh compound (PCPC) against AFB1-induced damage, oxidative stress, and apoptosis via mitochondrial pathways in kidney tissues of broilers. One-day-old chickens (n = 180) were randomly allocated to six groups: control, AFB1 (2.8 mg AFB1/kg feed), positive drug (10 mLYCHT/kg feed), and PCPC high, medium, and low-dose groups (15, 10, and 5 ml PCPC/kg feed, respectively). AFB1 treatment reduced weight gain and induced oxidative stress and kidney damage in broiler tissues; however, PCPC supplementation effectively enhanced broiler performance, ameliorated AFB1-induced oxidative stress, and inhibited apoptosis in the kidneys of broilers. The mRNA expression levels of mitochondria-related apoptosis genes (Bax, Bak, cytochrome c, caspase-9, and caspase-3) were significantly increased, whereas BCL2 expression level decreased in the AFB1 group. Supplementation of PCPC to the AFB1 group significantly reversed the changes in mRNA expression levels of these apoptosis-associated genes compared to those in the AFB1 group. The mRNA levels of NRF2 and HMOX1 in the kidneys of the AFB1 group were significantly reduced compared to those in the control group, whereas PCPC significantly increased the NRF2 and HMOX1 mRNA levels. AFB1 decreased the levels of Beclin1, LC3-I, and LC3-II and increased P53 levels in the kidney compared to those in the control, whereas PCPC significantly reversed these changes to normal levels of autophagy-related genes compared to those in the AFB1 group. In conclusion, our findings demonstrated that PCPC ameliorated AFB1-induced oxidative stress by regulating the expression of apoptosis-related genes and mitochondrial pathways. Our results suggest that PCPC represents a natural and safe agent for preventing AFB1-induced injury and damage in broiler tissues.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zeyu Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
79
|
Liu SB, Lu SW, Sun H, Zhang AH, Wang H, Wei WF, Han JR, Guo YJ, Wang XJ. Deciphering the Q-markers of nourishing kidney-yin of Cortex Phellodendri amurense from ZhibaiDihuang pill based on Chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153690. [PMID: 34438229 DOI: 10.1016/j.phymed.2021.153690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cortex Phellodendri amurensis (CPA) has high medicinal value in the treatment of kidney-yin deficiency diseases. However, due to the lack of research on the therapeutic material basis of CPA, the current quality control standard for CPA is defective, and the effect of the nourishing kidney-yin of CPA was limited. PURPOSE Based on the principle of correspondence between the syndrome and prescriptions, we studied the CPA in ZhibaiDihuang pill (ZBDH) to identify quality markers (Q-markers) of CPA in ZBDH for treating kidney-yin deficiency and seek the potential Q-markers of CPA under nourishing kidney-yin effect combined with the analysis of single CPA. METHODS Taking Chinmedomics as the core strategy, metabonomics analysis and effective component identification were performed by UPLC-MS. RESULTS A total of 121 chemical components of ZBDH were identified, among which the contents of berberine, palmatine, jatrorrhizine and magnoflorine changed the most obviously with the addition of CPA. Forty-five components were identified in the blood in the markedly effective state, including berberine, palmatine, jatrorrhizine and magnoflorine. The therapeutic material basis of ZBDH in the treatment of kidney-yin deficiency was found, and 6 components were found to derive from CPA, including magnoflorine and jatrorrhizine. In addition, seventeen components were identified in the blood in the single CPA treatment, including berberine, palmatine, jatrorrhizine and magnoflorine. CONCLUSIONS Magnoflorine and jatrorrhizine were the Q-markers of CPA for treating kidney-yin deficiency in the formula of ZBDH and they were also potential Q-markers of the nourishing kidney-yin of CPA.
Collapse
Affiliation(s)
- Shao-Bo Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sheng-Wen Lu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wen-Feng Wei
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jin-Run Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ya-Jing Guo
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi 530023, China.
| |
Collapse
|
80
|
Wu Y, Cheng Y, Yang Y, Wang D, Yang X, Fu C, Zhang J, Hu Y. Mechanisms of Gegen Qinlian Pill to ameliorate irinotecan-induced diarrhea investigated by the combination of serum pharmacochemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114200. [PMID: 33989737 DOI: 10.1016/j.jep.2021.114200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine suggests the use of natural extracts and compounds is a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity and resulting diarrhea. Previous work from our lab indicated the protective effect of Gegen Qinlian decoction; given this, we further speculated that Gegen Qinlian Pill (GQP) would exhibit similar therapeutic effects. The effective material basis as well as potential mechanisms underlying the effect of GQP for the treatment of CPT-11-induced diarrhea have not been fully elucidated. AIM OF THE STUDY The application of natural extracts or compounds derived from Chinese medicine is deemed to a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity. The aim of this study was to investigated the beneficial effects of GQP on CPT-11-induced gut toxicity and further explored its anti-diarrheal mechanism. METHODS First, the beneficial effect of GQP in alleviating diarrhea in mice following CPT-11 administration was investigated. We also obtained the effective ingredients in GQP from murine serum samples using HPLC-Q-TOF-MS analysis. Based on these active components, we next established an interaction network linking "compound-target-pathway". Finally, a predicted mechanism of action was obtained using in vivo GQP validation based on Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS A total of 19, GQP-derived chemical compounds were identified in murine serum samples. An interaction network linking "compound-target-pathway" was then established to illuminate the interaction between the components present in serum and their targets that mitigated diarrhea. These results indicated GQP exerted a curative effect on diarrhea and diarrhea-related diseases through different targets, which cumulatively regulated inflammation, oxidative stress, and proliferation processes. CONCLUSION Taken together, this study provides a feasible strategy to elucidate the effective constituents in traditional Chinese medicine formulations. More specifically, this work detailed the basic pharmacological effects and underlying mechanism behind GQP's effects in the treatment of CPT-11-induced gut toxicity.
Collapse
Affiliation(s)
- Yihan Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanfen Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuhan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaoqin Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yichen Hu
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
81
|
Yu YD, Xiu YP, Li YF, Zhang J, Xue YT, Li Y. To Explore the Mechanism and Equivalent Molecular Group of Radix Astragali and Semen Lepidii in Treating Heart Failure Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5518192. [PMID: 34285700 PMCID: PMC8275399 DOI: 10.1155/2021/5518192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.
Collapse
Affiliation(s)
- Yi-ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-ping Xiu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yang-fan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
82
|
Chen YH, Bi JH, Xie M, Zhang H, Shi ZQ, Guo H, Yin HB, Zhang JN, Xin GZ, Song HP. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty. J Chromatogr A 2021; 1651:462307. [PMID: 34161837 DOI: 10.1016/j.chroma.2021.462307] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.
Collapse
Affiliation(s)
- Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jing-Hua Bi
- Shanxi Medical University, Taiyuan 030001, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Qi Shi
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
83
|
Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol Ther 2021; 224:107824. [PMID: 33667524 DOI: 10.1016/j.pharmthera.2021.107824] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicines (TCMs) produce chemically diverse functional compounds that are importantly chemical resource for facilitating new drug discovery and development against a diversity of diseases. However, modern exploration of TCM derived functional compounds is significantly hindered by the inefficient elucidation of pharmacological functions over past decades, because conventional research methods are incapable of efficiently elucidating therapeutic potential of TCM conferred by multiple functional compounds. Functional metabolomics has the priority-capacity to characterize systems therapeutic actions of TCM by precisely capturing molecular interactions between disease response metabolite biomarkers (DRMB) and functional compounds (secondary metabolites), which underline pharmacological efficiency and associated therapeutic mechanisms. In this critical review, we innovatively summarize systems therapeutic feature of TCM derived functional compounds from a functional-metabolism perspective, then systems metabolic targets (SMT) identified by functional metabolomics method are strategically proposed to better understanding of therapeutic discovery of TCM derived functional compounds. In addition, we propose the perspective strategy as Spatial Temporal Operative Real Metabolomics (STORM) to considerably improve analytical capacity of functional metabolomics method by selectively incorporating the cutting edge technologies of mass spectrometry imaging, isotope-metabolic fluxomics, synthetic and biosynthetic chemistry, which could considerably enhance the precision and resolution of elucidating pharmacological efficiency and associated therapeutic mechanisms of TCM derived functional compounds. Collectively, such critical review is expected to provide novel perspective-strategy that could significantly improve modern exploration and exploitation of TCM derived functional compounds that further promote new drug discovery and development against the complex diseases.
Collapse
|
84
|
Xiang-Li, Bo-Xing, Xin-Liu, Jiang XW, Lu HY, Xu ZH, Yue-Yang, Qiong-Wu, Dong-Yao, Zhang YS, Zhao QC. Network pharmacology-based research uncovers cold resistance and thermogenesis mechanism of Cinnamomum cassia. Fitoterapia 2021; 149:104824. [PMID: 33388379 DOI: 10.1016/j.fitote.2020.104824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cinnamomum cassia (L.) J.Presl (Cinnamon) was known as a kind of hot herb, improved circulation and warmed the body. However, the active components and mechanisms of dispelling cold remain unknown. METHODS The effects of several Chinses herbs on thermogenesis were evaluated on body temperature and activation of brown adipose tissue. After confirming the effect, the components of cinnamon were identified using HPLC-Q-TOF/MS and screened with databases. The targets of components were obtained with TCMSP, SymMap, Swiss and STITCH databases. Thermogenesis genes were predicted with DisGeNET and GeneCards databases. The protein-protein interaction network was constructed with Cytoscape 3.7.1 software. GO enrichment analysis was accomplished with STRING databases. KEGG pathway analysis was established with Omicshare tools. The top 20 targets for four compounds were obtained according to the number of edges of PPI network. In addition, the network results were verified with experimental research for the effects of extracts and major compounds. RESULTS Cinnamon extract significantly upregulated the body temperature during cold exposure.121 components were identified in HPLC-Q-TOF/MS. Among them, 60 compounds were included in the databases. 116 targets were obtained for the compounds, and 41 genes were related to thermogenesis. The network results revealed that 27 active ingredients and 39 target genes. Through the KEGG analysis, the top 3 pathways were PPAR signaling pathway, AMPK signaling pathway, thermogenesis pathway. The thermogenic protein PPARγ, UCP1 and PGC1-α was included in the critical targets of four major compounds. The three major compounds increased the lipid consumption and activated the brown adipocyte. They also upregulated the expression of UCP1, PGC1-α and pHSL, especially 2-methoxycinnamaldehyde was confirmed the effect for the first time. Furthermore, cinnamaldehyde and cinnamon extract activated the expression of TRPA1 on DRG cells. CONCLUSION The mechanisms of cinnamon on cold resistance were investigated with network pharmacology and experiment validation. This work provided research direction to support the traditional applications of thermogenesis.
Collapse
Affiliation(s)
- Xiang-Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Bo-Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong-Yuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Hua Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue-Yang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiong-Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dong-Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Ying-Shi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing-Chun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China.
| |
Collapse
|
85
|
Liang G, Yang J, Liu T, Wang S, Wen Y, Han C, Huang Y, Wang R, Wang Y, Hu L, Wang G, Li F, Tyndall JDA, Deng L, Du D, Xia Q. A multi-strategy platform for quality control and Q-markers screen of Chaiqin chengqi decoction. PHYTOMEDICINE 2021; 85:153525. [PMID: 33740732 DOI: 10.1016/j.phymed.2021.153525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that is associated with substantial morbidity and mortality. Chaiqin chengqi decoction (CQCQD) has been proven clinically to be an effective treatment for AP for decades in West China Hospital. Quality control for CQCQD containing many hundreds of characteristic phytochemicals poses a challenge for developing robust quality assessment metrics. PURPOSE To evaluate quality consistency of CQCQD with a multi-strategy based analytical method, identify potential quality-markers (Q-markers) based on drug properties and effect characteristics, and endeavor to establish CQCQD as a globally-accepted medicine. METHODS A typical analysis of constitutive medicinal plant materials was performed following the Chinese Pharmacopoeia. The extraction process was optimized through an orthogonal array (L9(34)) to evaluate three levels of liquid to solid ratio, soaking time, duration of extraction, and the number of extractions. An ultra-high-performance liquid chromatography (UHPLC) fingerprinting combined with absolute quantitation of multi chemical marker compounds, coupled with similarity, hierarchical clustering analysis (HCA), and principal component analyses (PCA) were performed to evaluate 10 batches of CQCQD. On the basis of systematic analysis of fundamental features of CQCQD in treating AP, the potential Q-marker screen was proposed through detection of quality transfer and efficacy for chemical markers. UHPLC coupled with quadrupole orbitrap mass spectrometry were used to determine compounds in medicinal materials, decoctions and plasma. Network pharmacology and taurolithocholic acid 3-sulfate induced pancreatic acinar cell death were used to evaluate the correlation between chemical markers and anti-pancreatitis activity. A cerulein induced AP murine model was used to validate quality assessed CQCQD batches at clinically-equivalent dose. The effective content of chemical markers was predicted using linear regression analysis on quantitative information between validated batches and the other batches. RESULTS The chemical markers and other physical and chemical indices in the original materials met Chinese Pharmacopoeia standards. A total of 22 co-existing fingerprint peaks were selected and the similarity varied between 0.946 and 0.990. Batch D10 possessed the highest similarity index. HCA classified the 10 batches into 2 main groups: 7 batches represented by D10 and 3 batches represented by D1. During the initial Q-marker screen stage, 22 compounds were detected in both plant materials and decoctions, while 13 compounds were identified in plasma. Network pharmacology predicted the potential targets and pathway of AP related to the 22 compounds. All 10 batches showed reduced necrosis below 60% with the best effect achieved by D10 (~40%). The spectrum-efficacy relationship analyzed by Pearson correlation analysis indicated that emodin, rhein, aloe emodin, geniposide, hesperridin, chrysin, syringin, synephrine, geniposidic acid, magnolol, physcion, sinensetin, and baicalein showed positive correlation with pancreatic acinar cell death protection. Similar to the in vitro evaluation, batch D10 significantly reduced total histopathological scores and biochemical severity indices at a clinically-equivalent dose but batch D1 did not. The content of naringin, narirutin and baicalin in batches D1, D5 and D9 consistently exceeds the upper limit of the predicted value. Eight markers whose lower limit is predicted to be close to 0 contributed less to the material basis for AP protection. CONCLUSION Despite qualified materials used for CQCQD preparation, the clinical effect depends on appropriate content range of Q-markers. Emodin, rhein, aloe emodin, magnolol, hesperidin, synephrine, baicalein, and geniposide are considered as vital Q-markers in the primary screen. This study proposed a feasible platform for producing highly consistent batches of CQCQD in future study.
Collapse
Affiliation(s)
- Ge Liang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyu Yang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjian Wen
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxia Han
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangzhi Wang
- Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Li
- Laboratory of metabolomics and drug-induced liver injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Lihui Deng
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|