51
|
Kayki-Mutlu G, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2020. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:839-852. [PMID: 33864098 PMCID: PMC8051285 DOI: 10.1007/s00210-021-02085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 01/03/2023]
Abstract
While the COVID-19 pandemic also affected the work of regulatory authorities, the US Food and Drug Administration approved a total of 53 new drugs in 2020, one of the highest numbers in the past decades. Most newly approved drugs related to oncology (34%) and neurology (15%). We discuss these new drugs by level of innovation they provide, i.e., first to treat a condition, first using a novel mechanisms of action, and "others." Six drugs were first in indication, 15 first using a novel mechanism of action, and 32 other. This includes many drugs for the treatment of orphan indications and some for the treatment of tropical diseases previously neglected for commercial reasons. Small molecules continue to dominate new drug approvals, followed by antibodies. Of note, newly approved drugs also included small-interfering RNAs and antisense oligonucleotides. These data show that the trend for declines in drug discovery and development has clearly been broken.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany.
| |
Collapse
|
52
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
53
|
Pascual-Gilabert M, López-Castel A, Artero R. Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discov Today 2021; 26:1765-1772. [PMID: 33798646 PMCID: PMC8372527 DOI: 10.1016/j.drudis.2021.03.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular genetic disease with an estimated prevalence of approximately at least half a million individuals based on its vast ethnic variation. Building upon a well-known physiopathology and several proof-of-concept therapeutic approaches, herein we compile a comprehensive overview of the most recent drug development programs under preclinical and clinical evaluation. Specifically, close to two dozen drug developments, eight of which are already in clinical trials, explore a diversity of new chemical entities, drug repurposing, oligonucleotide, and gene therapy-based approaches. Of these, repurposing of tideglusib, mexiletine, or metformin appear to be therapies with the most potential to receive marketing authorization for DM1.
Collapse
Affiliation(s)
| | - Arturo López-Castel
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| | - Ruben Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| |
Collapse
|
54
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
55
|
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, Deane CS, Cooke M, Etheridge T, Piasecki M, Antebi A, Lynch GS, Philp A, Vanapalli SA, Whiteman M, Szewczyk NJ. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A 2021; 118:e2018342118. [PMID: 33627403 PMCID: PMC7936346 DOI: 10.1073/pnas.2018342118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Locomotion/drug effects
- Locomotion/genetics
- Male
- Mice
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/metabolism
- Morpholines/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- Organothiophosphorus Compounds/metabolism
- Organothiophosphorus Compounds/pharmacology
- Prednisone/pharmacology
- Sirtuins/genetics
- Sirtuins/metabolism
- Thiones/metabolism
- Thiones/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Utrophin/deficiency
- Utrophin/genetics
Collapse
Affiliation(s)
- Rebecca A Ellwood
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Ashleigh M Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Nijmegen 6525EM, The Netherlands
| | | | - Nima Gharahdaghi
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Taslim Anupom
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409
| | - Luke Slade
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
- Living System Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Michael Cooke
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, EX1 2LU Exeter, United Kingdom
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
| | - Adam Antebi
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales (UNSW) Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, EX1 2LU Exeter, United Kingdom;
| | - Nathaniel J Szewczyk
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom;
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
57
|
Paul S, Scoles DR, Pulst SM. Splicing Control of Pontocerebellar Development. Neuron 2021; 109:191-192. [PMID: 33476558 DOI: 10.1016/j.neuron.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Neuron, Chai et al. (2021) analyze several families with neurodegeneration and marked pontocerebellar hypoplasia and microcephaly and identify recessive (bi-allelic) mutations in peptidyl-prolyl isomerase-like 1 (PPIL1) and pre-RNA-processing-17 (PPR17). PPIL1 patient mutation knockin mice develop neuronal apoptosis. Loss of either protein affects splicing predominantly involving GC-rich and short introns.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA.
| | - Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA.
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, UT 84132, USA.
| |
Collapse
|