51
|
Wang W, Wang J, Yao K, Wang S, Nie M, Zhao Y, Wang B, Pang H, Xu J, Wu G, Lu M, Tang N, Qi C, Pei H, Luo X, Li D, Yang T, Sun Q, Wei X, Li Y, Jiang D, Li P, Song L, Hu Z. Metabolic characterization of hypertrophic cardiomyopathy in human heart. NATURE CARDIOVASCULAR RESEARCH 2022; 1:445-461. [PMID: 39195941 DOI: 10.1038/s44161-022-00057-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 08/29/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease with heterogeneous clinical presentations, governed by multiple molecular mechanisms. Metabolic perturbations underlie most cardiovascular diseases; however, the metabolic alterations and their function in HCM are unknown. Here, we describe the metabolome and lipidome of heart and plasma samples from individuals with and without HCM. Correlation analyses showed strong association between metabolic alterations and cardiac function and prognosis of patients with HCM. Using machine learning we identified metabolite panels as potential HCM diagnostic markers or predictors of survival. Clustering based on metabolome and lipidome of heart enabled stratification of patients with HCM into three subgroups with distinct cardiac function and survival. Integration of metabolomics and proteomics data identified metabolic pathways significantly altered in patients with HCM, with the pentose phosphate pathway and oxidative stress being particularly upregulated. Thus, targeting the pentose phosphate pathway and oxidative stress may serve as potential therapeutic strategies for HCM.
Collapse
Affiliation(s)
- Wenmin Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Shuiyun Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yizi Zhao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | | | - Guixin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Tang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunmei Qi
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hengzhi Pei
- School of Computer Science, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Xufang Luo
- Microsoft Research Asia, Shanghai, China
| | | | - Tianshu Yang
- Shanghai Qi Zhi Institute, Shanghai, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Qing Sun
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peng Li
- Shanghai Qi Zhi Institute, Shanghai, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
52
|
3,3′-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer. Metabolites 2022; 12:metabo12050410. [PMID: 35629914 PMCID: PMC9144298 DOI: 10.3390/metabo12050410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3′-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.
Collapse
|
53
|
Understanding Inborn Errors of Metabolism through Metabolomics. Metabolites 2022; 12:metabo12050398. [PMID: 35629902 PMCID: PMC9143820 DOI: 10.3390/metabo12050398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are rare diseases caused by a defect in a single enzyme, co-factor, or transport protein. For most IEMs, no effective treatment is available and the exact disease mechanism is unknown. The application of metabolomics and, more specifically, tracer metabolomics in IEM research can help to elucidate these disease mechanisms and hence direct novel therapeutic interventions. In this review, we will describe the different approaches to metabolomics in IEM research. We will discuss the strengths and weaknesses of the different sample types that can be used (biofluids, tissues or cells from model organisms; modified cell lines; and patient fibroblasts) and when each of them is appropriate to use.
Collapse
|
54
|
Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today 2022; 27:1763-1773. [PMID: 35218927 DOI: 10.1016/j.drudis.2022.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
The pharmaceutical industry adapted proteomics and other 'omics technologies for drug research early following their initial introduction. Although metabolomics lacked behind in this development, it has now become an accepted and widely applied approach in early drug development. Over the past few decades, metabolomics has evolved from a pure exploratory tool to a more mature and quantitative biochemical technology. Several metabolomics-based platforms are now applied during the early phases of drug discovery. Metabolomics analysis assists in the definition of the physiological response and target engagement (TE) markers as well as elucidation of the mode of action (MoA) of drug candidates under investigation. In this review, we highlight recent examples and novel developments of metabolomics analyses applied during early drug development.
Collapse
Affiliation(s)
- Juan Carlos Alarcon-Barrera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alejandro Ondo-Mendez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
55
|
Yuan Y, Yang C, Wang Y, Sun M, Bi C, Sun S, Sun G, Hao J, Li L, Shan C, Zhang S, Li Y. Functional metabolome profiling may improve individual outcomes in colorectal cancer management implementing concepts of predictive, preventive, and personalized medical approach. EPMA J 2022; 13:39-55. [PMID: 35273658 PMCID: PMC8897532 DOI: 10.1007/s13167-021-00269-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Objectives Colorectal cancer (CRC) is one of the most common solid tumors worldwide, but its diagnosis and treatment are limited. The objectives of our study were to compare the metabolic differences between CRC patients and healthy controls (HC), and to identify potential biomarkers in the serum that can be used for early diagnosis and as effective therapeutic targets. The aim was to provide a new direction for CRC predictive, preventive, and personalized medicine (PPPM). Methods In this study, CRC patients (n = 30) and HC (n = 30) were recruited. Serum metabolites were assayed using an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technology. Subsequently, CRC cell lines (HCT116 and HCT8) were treated with metabolites to verify their function. Key targets were identified by molecular docking, thermal shift assay, and protein overexpression/inhibition experiments. The inhibitory effect of celastrol on tumor growth was also assessed, which included IC50 analysis, nude mice xenografting, molecular docking, protein overexpression/inhibition experiments, and network pharmacology technology. Results In the CRC group, 15 serum metabolites were significantly different in comparison with the HC group. The level of glycodeoxycholic acid (GDCA) was positively correlated with CRC and showed high sensitivity and specificity for the clinical diagnostic reference (AUC = 0.825). In vitro findings showed that GDCA promoted the proliferation and migration of CRC cell lines (HCT116 and HCT8), and Poly(ADP-ribose) polymerase-1 (PARP-1) was identified as one of the key targets of GDCA. The IC50 of celastrol in HCT116 cells was 121.1 nM, and the anticancer effect of celastrol was supported by in vivo experiments. Based on the potential of GDCA in PPPM, PARP-1 was found to be significantly correlated with the anticancer functions of celastrol. Conclusion These findings suggest that GDCA is an abnormally produced metabolite of CRC, which may provide an innovative molecular biomarker for the predictive identification and targeted prevention of CRC. In addition, PARP-1 was found to be an important target of GDCA that promotes CRC; therefore, celastrol may be a potential targeted therapy for CRC via its effects on PARP-1. Taken together, the pathophysiology and progress of tumor molecules mediated by changes in metabolite content provide a new perspective for predictive, preventive, and personalized medical of clinical cancer patients based on the target of metabolites in vivo.Clinical trials registration number: ChiCTR2000039410. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-021-00269-8.
Collapse
Affiliation(s)
- Yu Yuan
- grid.410648.f0000 0001 1816 6218Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Chenxin Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yingzhi Wang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China
| | - Mingming Sun
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China
| | - Chenghao Bi
- grid.410648.f0000 0001 1816 6218Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Sitong Sun
- grid.410648.f0000 0001 1816 6218Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Guijiang Sun
- grid.412648.d0000 0004 1798 6160Department of Kidney Disease and Blood Purification, Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Jingpeng Hao
- grid.412648.d0000 0004 1798 6160Department of Anorectal Surgery, Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Lingling Li
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Changliang Shan
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China
| | - Shuai Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yubo Li
- grid.410648.f0000 0001 1816 6218Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| |
Collapse
|
56
|
Haince JF, Joubert P, Bach H, Ahmed Bux R, Tappia PS, Ramjiawan B. Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. Int J Mol Sci 2022; 23:ijms23031215. [PMID: 35163138 PMCID: PMC8835988 DOI: 10.3390/ijms23031215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
The five-year survival rate of lung cancer patients is very low, mainly because most newly diagnosed patients present with locally advanced or metastatic disease. Therefore, early diagnosis is key to the successful treatment and management of lung cancer. Unfortunately, early detection methods of lung cancer are not ideal. In this brief review, we described early detection methods such as chest X-rays followed by bronchoscopy, sputum analysis followed by cytological analysis, and low-dose computed tomography (LDCT). In addition, we discussed the potential of metabolomic fingerprinting, compared to that of other biomarkers, including molecular targets, as a low-cost, high-throughput blood-based test that is both feasible and affordable for early-stage lung cancer screening of at-risk populations. Accordingly, we proposed a paradigm shift to metabolomics as an alternative to molecular and proteomic-based markers in lung cancer screening, which will enable blood-based routine testing and be accessible to those patients at the highest risk for lung cancer.
Collapse
Affiliation(s)
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Pathology, Laval University, Quebec, QC G1V 4G5, Canada;
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Rashid Ahmed Bux
- BioMark Diagnostics Inc., Richmond, BC V6X 2W8, Canada; (J.-F.H.); (R.A.B.)
| | - Paramjit S. Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Correspondence: ; Tel.: +1-204-258-1230
| | - Bram Ramjiawan
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
57
|
Fan ZK, Ma WJ, Zhang W, Li H, Zhai J, Zhao T, Guo XF, Sinclair AJ, Li D. Elevated serum phosphatidylcholine (16:1/22:6) levels promoted by fish oil and vitamin D 3 are highly correlated with biomarkers of non-alcoholic fatty liver disease in Chinese subjects. Food Funct 2022; 13:11705-11714. [DOI: 10.1039/d2fo02349k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatidylcholine (16:1/22:6) was associated with improving inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Ze-kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen-jun Ma
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Zhang
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Jie Zhai
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Ting Zhao
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Andrew J. Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
- Faculty of Health, Deakin University, Burwood, Australia
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
58
|
Guo Y, Yang L, Guo W, Wei L, Zhou Y. FV-429 enhances the efficacy of paclitaxel in NSCLC by reprogramming HIF-1α-modulated FattyAcid metabolism. Chem Biol Interact 2021; 350:109702. [PMID: 34648812 DOI: 10.1016/j.cbi.2021.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/18/2023]
Abstract
Solid tumors often exhibit hypoxia in their centers, which has been associated with a marked reduction in the sensitivity of the tumor cells to anti-tumor and chemotherapeutic interventions. Here, we found that the occurrence and progress of hypoxic insensitivity to paclitaxel in non-small cell lung cancer (NSCLC) are closely associated with the HIF-1α pathway. The HIF-1α protein upregulated the expression of adipose differentiation-related protein (ADRP), fatty acid synthase (FASN), and sterol regulatory element binding protein 1(SREBP1), while simultaneously downregulating carnitine palmitoyltransferase 1 (CPT1), thereby leading to a more pronounced uptake of lipids and reduced oxidation of fatty acids. Diminished levels of fatty acids led to reduced Wnt pathway activation and β-catenin nuclear translocation, leading to G2/M cell cycle arrest. In this study, FV-429, a derivative of the natural flavonoid wogonin, reprogrammed metabolism of cancer cells and decreased fatty acid levels. Moreover, paclitaxel-induced G2/M phase arrest in hypoxia-resistant NSCLC was hampered but FV-429 improved the sensitivity of these cancer cells to paclitaxel. FV-429 activated and modulated fatty acid metabolism in NSCLC cells, significantly reduced levels of fatty acids within cells and increased the oxidation of these fatty acids. The results of our study demonstrated that FV-429 could reshape fatty acid metabolism in hypoxia-induced paclitaxel-resistant NSCLC and enhance the sensitivity of NSCLC cells to paclitaxel through G2/M phase arrest deterioration, by inactivating the Wnt pathway, and suggested the possibility of using FV-429 as a promising candidate therapeutic agent for advanced NSCLC.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, #639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenjing Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|