51
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
52
|
Research progress of Lycium barbarum L. as functional food: phytochemical composition and health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
53
|
Parameter Optimization of the Harvest Method in the Standardized Hedge Cultivation Mode of Lycium barbarum Using Response Surface Methodology. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In a previously published study, to optimize the vibrating and comb-brushing harvesting, the main factors and their parameter values were obtained based on the FEM and RSM. However, the study was based on the extensive cultivation mode which need to be improve. To realize the mechanization of the harvesting of Lycium barbarum L., as well as to face the standardized hedge cultivation mode, a vibrating and comb-brushing harvester machine was designed, which was primarily composed of an execution system, a motion system, and a control system. The mathematical model between the harvest effect index and the operation parameters was established based on response surface methodology (RSM). The effects of various parameters on the harvest index were analyzed, and the best parameter combination was determined: a vibration frequency of 38.73 Hz, a brush speed of 14.21 mm/s, and an insertion depth of 26.07 mm. The field experiment showed that the harvesting rate of ripe fruit was 83.65%, the harvesting rate of unripe fruit was 7.22%, the damage rate of the ripe fruit was 11.49%, and the comprehensive picking index was 87.85. The findings provided a reference for the development of L. barbarum harvesting mechanization in a standardized hedge cultivation mode.
Collapse
|
54
|
Structural Characterization of Degraded Lycium barbarum L. Leaves’ Polysaccharide Using Ascorbic Acid and Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14071404. [PMID: 35406277 PMCID: PMC9002820 DOI: 10.3390/polym14071404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
Plant-derived polysaccharide’s conformation and chain structure play a key role in their various biological activities. Lycium barbarum L. leaves’ polysaccharide is well renowned for its health functions. However, its functional bioactivities are greatly hindered by its compact globular structure and high molecular weight. To overcome such issue and to improve the functional bioactivities of the polysaccharides, degradation is usually used to modify the polysaccharides conformation. In this study, the ethanol extract containing crude Lycium barbarum L. leaves’ polysaccharide was first extracted, further characterized, and subsequently chemically modified with vitamin C (Ascorbic acid) and hydrogen peroxide (H2O2) to produce degraded Lycium barbarum L. leaves’ polysaccharide. To explore the degradation effect, both polysaccharides were further characterized using inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), high performance gel permeation chromatography (HPGPC), and scanning electron microscope (SEM). Results shown that both polysaccharides were rich in sugar and degradation had no significant major functional group transformation effect on the degraded product composition. However, the molecular weight (Mw) had decreased significantly from 223.5 kDa to 64.3 kDa after degradation, indicating significant changes in the polysaccharides molecular structure caused by degradation.
Collapse
|
55
|
Xie X, Wu Y, Xie H, Wang H, Zhang X, Yu J, Zhu S, Zhao J, Sui L, Li S. Polysaccharides, Next Potential Agent for the Treatment of Epilepsy? Front Pharmacol 2022; 13:790136. [PMID: 35418858 PMCID: PMC8996301 DOI: 10.3389/fphar.2022.790136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic neurological disorder. Current pharmacological therapies for epilepsy have limited efficacy that result in refractory epilepsy (RE). Owing to the limitations of conventional therapies, it is needed to develop new anti-epileptic drugs. The beneficial effects of polysaccharides from Chinese medicines, such as Lycium barbarum polysaccharides (COP) and Ganoderma lucidum polysaccharides (GLP), for treatment of epilepsy include regulation of inflammatory factors, neurotransmitters, ion channels, and antioxidant reactions. Especially, polysaccharides could be digested by intestinal microbial flora, referred as “intestinal brain organ” or “adult’s second brain”, may be the target for treatment of epilepsy. Actually, polysaccharides can effectively improve the type and quantity of intestinal flora such as bifidobacteria and lactic acid bacteria and achieve the purpose of treating epilepsy. Therefore, polysaccharides are hypothesized and discussed as potential agent for treatment of epilepsy.
Collapse
Affiliation(s)
- Xuemin Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Youliang Wu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haitao Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haiyan Wang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaojing Zhang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jiabin Yu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shaofang Zhu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Lisen Sui
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| |
Collapse
|
56
|
Qin D, Deng Y, Wang L, Yin H. Therapeutic Effects of Topical Application of Lycium barbarum Polysaccharide in a Murine Model of Dry Eye. Front Med (Lausanne) 2022; 9:827594. [PMID: 35360713 PMCID: PMC8961801 DOI: 10.3389/fmed.2022.827594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo evaluate the safety and efficacy of Lycium barbarum polysaccharide (LBP) eye drops in a murine model of dry eye disease (DED).MethodsSix- to eight-week-old female C57BL/6 mice were subjected to a combination of desiccating stress (DS) and topical benzalkonium chloride (BAC) to induce DED. Five microliters of LBP eye drops (0.625, 2.5, or 12.5 mg/ml) or PBS was applied topically 3 times per day for 10 days to subsequently test their efficacy. Tear secretion, tear breakup time (TBUT), corneal irregularity, and corneal fluorescein staining scores were measured on days 3 and 10 after treatment. The expression of tumor necrosis factor-alpha (TNF-α) in the cornea was assessed by quantitative (q) RT–PCR on days 10. The ocular irritation of LBP eye drops of corresponding concentrations was evaluated on 10- to 12-week-old female Sprague–Dawley rats.ResultsCompared with PBS-treated groups, mice treated with 0.625, 2.5, and 12.5 mg/ml LBP showed a significant improvement in the clinical signs of DED in a dose-dependent manner, including corneal epithelial integrity, corneal regularity, and tear production, as well as significant inhibition of inflammatory cell infiltration and TNF-α expression levels in the cornea. All corresponding concentrations of LBP eye drops revealed no obvious ocular irritation.ConclusionTopical application of LBP could ameliorate dry eye in a murine model of DED without obvious ocular irritation.
Collapse
|
57
|
Han Z, Cen C, Ou Q, Pan Y, Zhang J, Huo D, Chen K. The Potential Prebiotic Berberine Combined With Methimazole Improved the Therapeutic Effect of Graves' Disease Patients Through Regulating the Intestinal Microbiome. Front Immunol 2022; 12:826067. [PMID: 35082799 PMCID: PMC8785824 DOI: 10.3389/fimmu.2021.826067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease, a typical metabolism disorder, causes diffuse goiter accompanied by ocular abnormalities and ocular dysfunction. Although methimazole (MI) is a commonly used drug for the treatment of GD, the efficacy of methimazole is only limited to the control of clinical indicators, and the side effects of MI should be seriously considered. Here, we designed a 6-month clinical trial that divided the patients into two groups: a methimazole group (n=8) and a methimazole combined with potential prebiotic berberine group (n=10). The effects of both treatments on thyroid function and treatment outcomes in patients with GD were assessed by thyroid index measurements and gut microbiota metagenomic sequencing. The results showed that the addition of berberine restored the patients’ TSH and FT3 indices to normal levels, whereas MI alone restored only FT3. In addition, TRAb was closer to the healthy threshold at the end of treatment with the drug combination. MI alone failed to modulate the gut microbiota of the patients. However, the combination of berberine with methimazole significantly altered the microbiota structure of the patients, increasing the abundance of the beneficial bacteria Lactococcus lactis while decreasing the abundance of the pathogenic bacteria Enterobacter hormaechei and Chryseobacterium indologenes. Furthermore, further mechanistic exploration showed that the addition of berberine resulted in a significant upregulation of the synthesis of enterobactin, which may have increased iron functioning and thus restored thyroid function. In conclusion, methimazole combined with berberine has better efficacy in patients with GD, suggesting the potential benefit of berberine combined with methimazole in modulating the composition of intestinal microbes in the treatment of GD, providing new strong evidence for the effectiveness of combining Chinese and Western drugs from the perspective of modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Zhe Han
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chaoping Cen
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qianying Ou
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yonggui Pan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Dongxue Huo
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Kaining Chen
- School of Food Science and Engineering, Hainan University, Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
58
|
Agradi S, Draghi S, Cotozzolo E, Barbato O, Castrica M, Quattrone A, Sulce M, Vigo D, Menchetti L, Ceccarini MR, Andoni E, Riva F, Marongiu ML, Curone G, Brecchia G. Goji Berries Supplementation in the Diet of Rabbits and Other Livestock Animals: A Mini-Review of the Current Knowledge. Front Vet Sci 2022; 8:823589. [PMID: 35174242 PMCID: PMC8841604 DOI: 10.3389/fvets.2021.823589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, several nutraceutical substances have received great attention for their potential role in the prevention and treatment of different diseases as well as for their beneficial effects in promoting the health of humans and animals. Goji berries (GBs) are the fruit of Lycium barbarum and other species of Lycium, used in traditional Chinese medicine, and they have recently become very popular in the Occidental world because of their properties, such as anti-aging, antioxidant, anticancer, neuroprotective, cytoprotective, antidiabetic, and anti-inflammatory activities. These effects are essentially evaluated in clinical trials in humans; in experimental animal models, such as mice and rats; and in cell lines in in vitro studies. Only recently has scientific research evaluated the effects of GBs diet supplementation in livestock animals, including rabbits. Although studies in the zootechnical field are still limited and the investigation of the GB mechanisms of action is in an early stage, the results are encouraging. This review includes a survey of the experimental trials that evaluated the effects of the GBs supplementation on reproductive and productive performances, immune system, metabolic homeostasis, and meat quality principally in the rabbit with also some references to other livestock animal species. Evidence supports the idea that GB supplementation could be used in rabbit breeding, although future studies should be conducted to establish the optimal dose to be administered and to assess the sustainability of the use of GBs in the diet of the rabbit.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Milan, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Majlind Sulce
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Laura Menchetti ;
| | | | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | |
Collapse
|
59
|
Li X, Mo X, Liu T, Shao R, Teopiz K, McIntyre RS, So KF, Lin K. Efficacy of Lycium barbarum polysaccharide in adolescents with subthreshold depression: interim analysis of a randomized controlled study. Neural Regen Res 2021; 17:1582-1587. [PMID: 34916444 PMCID: PMC8771081 DOI: 10.4103/1673-5374.330618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Subthreshold depression is a highly prevalent condition in adolescents who are at high risk for developing major depressive disorder. In preclinical models of neurological and psychiatric diseases, Lycium barbarum polysaccharide (LBP) extracted from Goji berries had anti-depressant effects including but not limited to anti-oxidative and anti-inflammatory properties. However, the effect of LBP on subthreshold depression is unclear. To investigate the clinical efficacy and safety of LBP for treating subthreshold depression in adolescents, we conducted a randomized, double-blind, placebo-controlled trial (RCT) with 29 adolescents with subthreshold depression recruited at The Fifth Affiliated Hospital of Guangzhou Medical University. The participants were randomly assigned to groups where they received either 300 mg LBP (LBP group, n = 15, 3 boys and 12 girls aged 15.13 ± 2.17 years) or a placebo (placebo group, n = 14, 2 boys and 12 girls aged 15 ± 1.71 years) for 6 successive weeks. Interim analyses revealed that the LBP group exhibited a greater change in Hamilton Depression Scale (HAMD-24) scores relative to the baseline and a higher remission rate (HAMD-24 total score ≤ 7) at 6 weeks compared with the placebo group. Scores on the Beck Depression Inventory-II (BDI-II), Pittsburgh Sleep Quality Index (PSQI), Kessler Psychological Distress Scale (Kessler), and Screen for Child Anxiety-Related Emotional Disorders (SCARED) were similar between the LBP and placebo groups. No side effects related to the intervention were reported in either group. These results indicate that LBP administration reduced depressive symptoms in adolescents with subthreshold depression. Furthermore, LBP was well tolerated with no treatment-limiting adverse events. Clinical trials involving a larger sample size are needed to further confirm the anti-depressive effects of LBP in adolescents with subthreshold depression. This study was approved by the Medical Ethics Committee of the Fifth Affiliated Hospital of Guangzhou Medical University (Guangzhou, China; approval No. L2019-08) on April 4, 2019 and was registered on ClinicalTrials.gov (identifier: NCT04032795) on July 25, 2019.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Xuan Mo
- Department of Psychiatry, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Kayla Teopiz
- Canadian Rapid Treatment Center of Excellence, Mississauga; Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University, Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University, Health Network; Department of Psychiatry, University of Toronto; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital); Laboratory of Emotion and Cognition, The Affiliated Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|