51
|
Blue light induces skin apoptosis and degeneration through activation of the endoplasmic reticulum stress-autophagy apoptosis axis: Protective role of hydrogen sulfide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112426. [PMID: 35292420 DOI: 10.1016/j.jphotobiol.2022.112426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
Abstract
Research on the phototoxicity of blue light (BL) to the skin is increasing. Although blue light can induce oxidative stress, inflammation, and inhibition of proliferation in skin cells, the mechanism by which blue light damages the skin is not yet clear. Endoplasmic reticulum (ER) stress and autophagy are two mechanisms by which cells resist external interference factors and maintain cell homeostasis and normal function, and both can affect cell apoptosis. Interestingly, we have found that blue light (435 nm ~ 445 nm, 8000 lx, 6-24 h)-induced oxidative stress triggers the ER stress-CHOP (C/EBP homologous protein) signal and affects the protein levels of B-cell lymphoma-2 (Bcl-2) and Bcl2-associated X (Bax), thereby promoting apoptosis. In addition, blue light activates autophagy in skin cells, which intensifies cell death. When ER stress is inhibited, autophagy is subsequently inhibited, suggesting that blue light-induced autophagy is influenced by ER stress. These evidences suggest that blue light induces activation of reactive oxygen species (ROS)-ER stress-autophagy-apoptosis axis signaling, which further induces skin injury and apoptosis. This is the first report on the relationships among oxidative stress, ER stress, autophagy, and apoptosis in blue light-induced skin injury. Furthermore, we have studied the effect of hydrogen sulfide (H2S) on blue light-induced skin damage, and found that exogenous H2S can protect skin from blue light-induced damage by regulating the ROS-ER stress-autophagy-apoptosis axis. Our data shows that when we are exposed to blue light, such as sunbathing and jaundice treatment, H2S may be developed as a protective agent.
Collapse
|
52
|
A water-soluble near-infrared fluorescent probe for monitoring change of hydrogen sulfide during cell damage and repair process. Anal Chim Acta 2022; 1195:339457. [DOI: 10.1016/j.aca.2022.339457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
|
53
|
Chen Y, Gong S, Liu Y, Cao X, Zhao M, Xiao J, Feng C. Geraniin inhibits cell growth and promoted autophagy-mediated cell death in the nasopharyngeal cancer C666-1 cells. Saudi J Biol Sci 2022; 29:168-174. [PMID: 35002405 PMCID: PMC8716868 DOI: 10.1016/j.sjbs.2021.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/08/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a rare malignant tumor developing from epithelial linings of nasopharynx, and 10–50 out of 100,000 NPC cases were recorded globally particularly in the Asian countries. Methodology The cytotoxicity of geraniin against the NPC C666-1 cells were analyzed using MTT assay. The influences of geraniin on the C666-1 cell viability with the presence of ROS and apoptosis inhibitors were also studied. The expressions of PI3K, Akt, mTOR, and autophagic markers LC3, ATG7, P62/SQSTM1 expressions in the C666-1 cells were studied by western blotting analysis. The ROS production was assayed using DCFH-DA staining. The immunofluorescence assay was performed to detect the NF-κB and β-catenin expressions in the C666-1 cells. Results The cell viability of C666-1 cells were appreciably prevented by the geraniin. The geraniin treatment also inhibited the C666-1 cell growth with the presence of apoptotic inhibitor Z-VAD-FMK. The geraniin-treatment effectively improved the ROS production and inhibited the NF-κB and β-catenin expressions in the C666-1 cells. Geraniin appreciably modulated the PI3K/Akt/mTOR signaling axis and improved the autophagy-mediated cell death via improving the autophagic markers LC3 and ATG7 expressions in the C666-1 cells. Conclusion In conclusion, our results proved that geraniin inhibits C666-1 cell growth and initiated autophagy-mediated cell death via modulating PI3K/Akt/mTOR cascade and improving LC3 and ATG7 expressions in the C666-1. Geraniin and it could be a hopeful and efficient candidate to treat the human NPC in the future.
Collapse
Affiliation(s)
- Yulian Chen
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shunmin Gong
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Yongjun Liu
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Xianbao Cao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Ming Zhao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jing Xiao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Chun Feng
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| |
Collapse
|
54
|
Jiang X, MacArthur MR, Treviño-Villarreal JH, Kip P, Ozaki CK, Mitchell SJ, Mitchell JR. Intracellular H 2S production is an autophagy-dependent adaptive response to DNA damage. Cell Chem Biol 2021; 28:1669-1678.e5. [PMID: 34166610 PMCID: PMC8665944 DOI: 10.1016/j.chembiol.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with broad physiological activities, including protecting cells against stress, but little is known about the regulation of cellular H2S homeostasis. We have performed a high-content small-molecule screen and identified genotoxic agents, including cancer chemotherapy drugs, as activators of intracellular H2S levels. DNA damage-induced H2S in vitro and in vivo. Mechanistically, DNA damage elevated autophagy and upregulated H2S-generating enzyme CGL; chemical or genetic disruption of autophagy or CGL impaired H2S induction. Importantly, exogenous H2S partially rescued autophagy-deficient cells from genotoxic stress. Furthermore, stressors that are not primarily genotoxic (growth factor depletion and mitochondrial uncoupler FCCP) increased intracellular H2S in an autophagy-dependent manner. Our findings highlight the role of autophagy in H2S production and suggest that H2S generation may be a common adaptive response to DNA damage and other stressors.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Peter Kip
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Einthoven Laboratory for Experimental Vascular Medicine and Department of Surgery, Leiden University Medical Center, 2333 CC Leiden, the Netherlands
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
55
|
Yue L, Hu Y, Fu H, Qi L, Sun H. Hydrogen sulfide regulates autophagy in nucleus pulposus cells under hypoxia. JOR Spine 2021; 4:e1181. [PMID: 35005447 PMCID: PMC8717115 DOI: 10.1002/jsp2.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Hydrogen sulfide (H2S) has been found to act as an important gasotransmitter to regulate cell activities. This study aimed to investigate the effect of H2S on autophagy of nucleus pulposus (NP) cells under hypoxia and possible mechanism. MATERIALS AND METHODS NP cells were isolated from rat caudal discs. Cobalt chloride was used to mimic hypoxia, sodium hydrosulfide was used to emulate exogenous H2S and 3-methyladenine was used to block cell autophagy. Cell viability was assessed by phase contrast microscope and Cell Counting Kit-8 method. Moreover, expression of key autophagic proteins was analyzed via western blotting, and transmission electron microscopy was performed to detect autophagosomes. RESULTS Hypoxia markedly impaired NP cell proliferation compared with control. Whereas H2S provided pro-proliferation and pro-autophagy effects on hypoxic NP cells. However, these beneficial impact of H2S on hypoxic NP cells were reversed by autophagy inhibitor. CONCLUSIONS Our results showed that H2S played a cytoprotective role in NP cells exposed to hypoxia in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Lei Yue
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Yongkai Hu
- Department of OrthopedicsGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Haoyong Fu
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Longtao Qi
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Haolin Sun
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| |
Collapse
|
56
|
Synthesis, molecular modeling and cholinesterase inhibitory effects of 2-indolinone-based hydrazinecarbothioamides. Future Med Chem 2021; 13:2133-2151. [PMID: 34755546 DOI: 10.4155/fmc-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: 2-Indolinone-based hydrazinecarbothioamides carrying a 3-phenylsulfonamide moiety (7-9) were designed by replacement of donepezil's pharmacophore group indanone with a 2-indolinone ring. Method: Compounds 7-9 were synthesized by reaction of N-(3-sulfamoylphenyl)hydrazinecarbothioamide (6) with 1H-indolin-2,3-diones (1-3). Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects of compounds 7-9 were assayed. Molecular modeling studies of 5-chloro-1,7-dimethyl-substituted compound 8e were carried out to determine the possible binding interactions at the active site of AChE. Results: Compound 8e showed the strongest inhibition against AChE (Ki = 0.52 ± 0.11 μM) as well as the highest selectivity (SI = 37.69). The selectivity for AChE over BuChE of compound 8e was approximately 17-times higher than donepezil and 26-times higher than galantamine. Conclusion: Further development of compounds 7-9 may present new promising agents for Alzheimer's treatment.
Collapse
|
57
|
Yu Y, Yang Q, Wang Z, Ding Q, Li M, Fang Y, He Q, Zhu YZ. The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H 2S Donor, S-Propargyl-Cysteine. J Inflamm Res 2021; 14:5863-5875. [PMID: 34785926 PMCID: PMC8590460 DOI: 10.2147/jir.s333326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Ketoprofen (KETO) is a traditional non-steroidal anti-inflammatory drug (NSAIDs) with good analgesic and antipyretic effects. However, as NASIDs, the toxicity of KETO towards gastrointestinal (GI) system might limit its clinical use. S-propargyl-cysteine (SPRC) is an excellent endogenous H2S donor showed wide application in the field of anti-inflammation, anti-oxidative stress, or even the protection of cardiovascular system through the elevation of endogenous H2S concentration. As recently studies reported, co-administration of H2S donor might potentially mitigate the GI toxicity and relevant side effects induced by series of NSAIDs. METHODS In this study, we established a SPRC and KETO co-encapsulated poly (lactic-co-glycolic acid) microsphere (SK@MS), and its particle size, morphology, storage stability and in vitro release profile were firstly investigated. The elevation of endogenous H2S level of SK@MS was then calculated, and the pharmacodynamic study (anti-inflammation and analgesic effects) of SK@MS, SPRC, and KETO towards adjuvant induced arthritis (AIA) in rats were also studied. Finally, to test the potential side effect, the heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were resected from rats and examined by H&E staining. RESULTS A monodispersed SK@MS could be observed under the SEM, and particle size was calculated around 25.12 μm. The loading efficiency (LE) for SPRC and KETO were 6.67% and 2.64%, respectively, while the encapsulation efficiency (EE) for SPRC and KETO were 37.20% and 68.28%, respectively. SK@MS showed a sustained release of SPRC and KETO in vitro, which was up-to 15 days. SK@MS could achieve a long-term elevation of the H2S concentration in vivo, while SPRC showed an instant H2S elevation and metabolize within 6 h. Interestingly, the KETO did not show any influence on the H2S concentration in vivo. After establishment of AIA model, neither SPRC nor KETO showed scarcely anti-inflammation and anti-nociception effect, while conversely, SK@MS showed an obvious mitigation towards paw edema and pain in AIA rats, which indicated an improved anti-inflammation and anti-nociception effect when co-delivery of SRC and KETO. Besides, low stimulation towards major organs in rats observed in any experimental group. CONCLUSION A monodispersed was successfully prepared in this study, and SK@MS showed a sustained SPRC and KETO release in vitro and H2S release in vivo. In the pharmacodynamics study, SK@MS not only exhibited an excellent anti-inflammation and analgesic effects in AIA rats but also showed low stimulation towards rats.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Qida He
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
58
|
Hydrogen sulfide in ageing, longevity and disease. Biochem J 2021; 478:3485-3504. [PMID: 34613340 PMCID: PMC8589328 DOI: 10.1042/bcj20210517] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) modulates many biological processes, including ageing. Initially considered a hazardous toxic gas, it is now recognised that H2S is produced endogenously across taxa and is a key mediator of processes that promote longevity and improve late-life health. In this review, we consider the key developments in our understanding of this gaseous signalling molecule in the context of health and disease, discuss potential mechanisms through which H2S can influence processes central to ageing and highlight the emergence of novel H2S-based therapeutics. We also consider the major challenges that may potentially hinder the development of such therapies.
Collapse
|
59
|
The therapeutic effect of Jiawei Danshen Decoction on myocardial ischemia-reperfusion injury by inhibiting H2S-mediated autophagy signaling pathway. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
60
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
61
|
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021; 10:cells10081934. [PMID: 34440703 PMCID: PMC8391204 DOI: 10.3390/cells10081934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The high incidence of colorectal cancer (CRC) in developed countries indicates a predominant role of the environment as a causative factor. Natural gut microbiota provides multiple benefits to humans. Dysbiosis is characterized by an unbalanced microbiota and causes intestinal damage and inflammation. The latter is a common denominator in many cancers including CRC. Indeed, in an inflammation scenario, cellular growth is promoted and immune cells release Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), which cause DNA damage. Apart from that, many metabolites from the diet are converted into DNA damaging agents by microbiota and some bacteria deliver DNA damaging toxins in dysbiosis conditions as well. The interactions between diet, microbiota, inflammation, and CRC are not the result of a straightforward relationship, but rather a network of multifactorial interactions that deserve deep consideration, as their consequences are not yet fully elucidated. In this paper, we will review the influence of dysbiosis in the induction of DNA damage and CRC.
Collapse
|
62
|
Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021; 469:175-190. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. Researchers have widely accepted that oxidative stress regulates the autophagy pathway. The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
Collapse
Affiliation(s)
- Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
63
|
Abstract
In this commentary, we highlight the findings described in a recent paper regarding the mechanism of H2S regulation of macroautophagy/autophagy in mammalian cells and discuss the similarities/divergencies with plant cells. The main outcome is that the posttranslational modification of thiol groups of cysteine residues to form persulfides is a conserved molecular mechanism.
Collapse
Affiliation(s)
- Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
64
|
Su Y, Wang Y, Liu M, Chen H. Hydrogen sulfide attenuates renal I/R‑induced activation of the inflammatory response and apoptosis via regulating Nrf2‑mediated NLRP3 signaling pathway inhibition. Mol Med Rep 2021; 24:518. [PMID: 34013370 PMCID: PMC8160482 DOI: 10.3892/mmr.2021.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) injury can lead to acute renal failure, delayed graft function and graft rejection. Nucleotide-binding oligomerization domain NOD-like receptor containing pyrin domain 3 (NLRP3)-mediated inflammation participates in the development of renal injury. Nrf2 accelerates NLRP3 signaling pathway activation and further regulates the inflammatory response. In addition, hydrogen sulfide serves a protective role in renal injury; however, the detailed underlying mechanism remains poorly understood. The present study investigated whether Nrf2 and NLRP3 pathway participate in hydrogen sulfide-regulated renal I/R-induced activation of the inflammatory response and apoptosis. Wild-type and Nrf2-knockout (KO) mice underwent surgery to induce renal I/R via clamping of the bilateral renal pedicles. A total of 20 mg/kg MCC950 (an NLRP3 inhibitor) was injected intraperitoneally daily for 14 days prior to surgery. Renal tissue and blood were collected from the I/R model mice to analyze NLRP3 and Nrf2 mRNA expression levels, NLRP3, PYD and CARD domain containing, caspase-1, IL-1β, Nrf2 and heme oxygenase 1 protein expression levels, cell apoptosis, the secretion of tumor necrosis factor-α, IL-1β and IL-6 cytokines and renal histopathology and function. Renal I/R activated the NLRP3 and Nrf2 signaling pathways. Conversely, MCC950 treatment inhibited activation of the NLRP3 signaling pathway, and prevented I/R-induced renal injury, release of cytokines and apoptosis in renal I/R model mice. Sodium hydrosulfide (NaHS) not only alleviated upregulation of NLRP3 protein expression levels, but also relieved renal injury, release of cytokines and cell apoptosis induced by renal I/R in wild-type mice, but not in Nrf2-KO mice. NaHS alleviated NLRP3 inflammasome activation, renal injury, the inflammatory response and cell apoptosis via the Nrf2 signaling pathway in renal I/R model mice.
Collapse
Affiliation(s)
- Yonghong Su
- Department of Pediatric Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Min Liu
- Department of Urinary Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
65
|
Yu Y, Wang Z, Ding Q, Yu X, Yang Q, Wang R, Fang Y, Qi W, Liao J, Hu W, Zhu Y. The Preparation of a Novel Poly(Lactic Acid)-Based Sustained H 2S Releasing Microsphere for Rheumatoid Arthritis Alleviation. Pharmaceutics 2021; 13:742. [PMID: 34069878 PMCID: PMC8157395 DOI: 10.3390/pharmaceutics13050742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that mainly erodes joints and surrounding tissues, and if it is not treated in time, it can cause joint deformities and loss of function. S-propargyl-cysteine (SPRC) is an excellent endogenous hydrogen sulfide donor which can relieve the symptoms of RA through the promotion of H2S release via the CSE/H2S pathway in vivo. However, the instant release of H2S in vivo could potentially limit its further clinical use. To solve this problem, in this study, a SPRC-loaded poly(lactic acid) (PLA) microsphere (SPRC@PLA) was prepared, which could release SPRC in vitro in a sustained manner, and further promote sustained in vivo H2S release. Furthermore, its therapeutical effect on RA in rats was also studied. A spherical-like SPRC@PLA was successfully prepared with a diameter of approximately 31.61 μm, yielding rate of 50.66%, loading efficiency of 6.10% and encapsulation efficiency of 52.71%. The SPRC@PLA showed significant prolonged in vitro SPRC release, to 4 days, and additionally, an in vivo H2S release around 3 days could also be observed. In addition, a better therapeutical effect and prolonged administration interval toward RA rats was also observed in the SPRC@PLA group.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, China;
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China; (Y.Y.); (Z.W.); (Q.D.); (Q.Y.); (R.W.); (Y.F.); (W.Q.); (J.L.); (W.H.)
| |
Collapse
|
66
|
Epigallocatechin-3-Gallate Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via Inhibition of Apoptosis and Promotion of Autophagy through the ROS/MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599997. [PMID: 33953830 PMCID: PMC8068552 DOI: 10.1155/2021/5599997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents one of the most common chronic liver diseases in the world. It has been reported that epigallocatechin-3-gallate (EGCG) plays important biological and pharmacological roles in mammalian cells. Nevertheless, the mechanism underlying the beneficial effect of EGCG on the progression of NAFLD has not been fully elucidated. In the present study, the mechanisms of action of EGCG on the growth, apoptosis, and autophagy were examined using oleic acid- (OA-) treated liver cells and the high-fat diet- (HFD-) induced NAFLD mouse model. Administration of EGCG promoted the growth of OA-treated liver cells. EGCG could reduce mitochondrial-dependent apoptosis and increase autophagy possibly via the reactive oxygen species- (ROS-) mediated mitogen-activated protein kinase (MAPK) pathway in OA-treated liver cells. In line with in vitro findings, our in vivo study verified that treatment with EGCG attenuated HFD-induced NAFLD through reduction of apoptosis and promotion of autophagy. EGCG can alleviate HFD-induced NAFLD possibly by decreasing apoptosis and increasing autophagy via the ROS/MAPK pathway. EGCG may be a promising agent for the treatment of NAFLD.
Collapse
|
67
|
Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The Role of the Signaling Pathways Involved in the Effects of Hydrogen Sulfide on Endoplasmic Reticulum Stress. Front Cell Dev Biol 2021; 9:646723. [PMID: 33816495 PMCID: PMC8017186 DOI: 10.3389/fcell.2021.646723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) is a kind of organelle with multiple functions including protein synthesis, modification and folding, calcium storage, and lipid synthesis. Under stress conditions, ER homeostasis is disrupted, which is defined as ER stress (ERS). The accumulation of unfolded proteins in the ER triggers a stable signaling network named unfolded protein response (UPR). Hydrogen sulfide is an important signal molecule regulating various physiological and pathological processes. Recent studies have shown that H2S plays an important role in many diseases by affecting ERS, but its mechanism, especially the signaling pathways, is not fully understood. Therefore, in this review, we summarize the recent studies about the signaling pathways involved in the effects of H2S on ERS in diseases to provide theoretical reference for the related in-depth researches.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ping Lu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
68
|
Autophagy in Acute Pancreatitis: Organelle Interaction and microRNA Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8811935. [PMID: 33628384 PMCID: PMC7884169 DOI: 10.1155/2021/8811935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a common disorder with significant hospital admission and mortality. Due to the unclarified pathological mechanism, there is still no effective and specific treatment for AP. Recently, autophagy has been found to be closely related with occurrence and development of AP, which is crucial in determining its severity and outcomes. Emerging evidence indicates that autophagy can be regulated and influenced by microRNAs and organelles, including mitochondria, endoplasmic reticulum and lysosome, through various ways in AP. Of note, the complex interplays and close relationships among autophagy, microRNA and organelles in AP are vital for figuring out pathogenesis but not clear yet. Thus, this review summarizes the role of autophagy in the pathological mechanism of AP, especially the relationship between impaired autophagy and organelles, and discusses the regulatory mechanism of microRNA on autophagy, which could offer new insights into understanding the pathogenesis of AP and developing new potential therapeutic targets against AP.
Collapse
|
69
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Yakovleva DV, Ulyasheva NS, Gorbunova AA, Minnikhanova NR, Moskalev AA. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology 2021; 22:197-214. [PMID: 33544267 DOI: 10.1007/s10522-021-09911-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Liubov A Koval
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. .,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation.
| |
Collapse
|
70
|
Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/mTOR pathways. Bioorg Chem 2021; 109:104693. [PMID: 33609914 DOI: 10.1016/j.bioorg.2021.104693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third commonly diagnosed malignancy and the second leading cause of cancer death worldwide. Development of novel chemotherapeutics is crucial. Natural products are the main source of drug discovery, and epipolythiodioxopiperazine (ETP) alkaloids are one kind of them have been reported to have potent biological activities. In the present study, we first isolated Chaetocochin J (CJ), an ETP alkaloid from the secondary metabolites of Chaetomium sp, and studied the anti-CRC activity and mechanism of it. The results showed that CJ exhibits potent proliferation inhibition effect, its IC50 to CRC cells are around 0.5 µM. CJ also induces apoptosis of CRC cells in a dose-dependent manner, and this effect is stronger than topotecan. In addition, CJ treatment triggers autophagic flux in CRC cells, inhibition of autophagy by chloroquine didn't affect CJ-induced apoptosis and growth inhibition, suggesting CJ may simultaneously induced apoptosis and autophagy in CRC cells. We further explored the mechanism of action, and found that CJ exerts its anti-CRC function via AMPK and PI3K/AKT/mTOR pathways and further regulation of their downstream signaling cascade in CRC cells, including apoptosis and autophagy. These data potently suggest that CJ may be a potential drug candidate for CRC treatment.
Collapse
|
71
|
Zhang P, Yu Y, Wang P, Shen H, Ling X, Xue X, Yang Q, Zhang Y, Xiao J, Wang Z. Role of Hydrogen Sulfide in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol 2021; 77:130-141. [PMID: 33165141 DOI: 10.1097/fjc.0000000000000943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S), generally known as a new gas signal molecule after nitric oxide and carbon monoxide, has been found as an important endogenous gasotransmitter in the last few decades, and it plays a significant role in the cardiovascular system both pathologically and physiologically. In recent years, there is growing evidence that H2S provides myocardial protection against myocardial ischemia-reperfusion injury (MIRI), which resulted in an ongoing focus on the possible mechanisms of action accounting for the H2S cardioprotective effect. At present, lots of mechanisms of action have been verified through in vitro and in vivo models of I/R injury, such as S-sulfhydrated modification, antiapoptosis, effects on microRNA, bidirectional effect on autophagy, antioxidant stress, or interaction with NO and CO. With advances in understanding of the molecular pathogenesis of MIRI and pharmacology studies, the design, the development, and the pharmacological characterization of H2S donor drugs have made great important progress. This review summarizes the latest research progress on the role of H2S in MIRI, systematically explains the molecular mechanism of H2S affecting MIRI, and provides a new idea for the formulation of a myocardial protection strategy in the future.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Pei Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Hua Shen
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Ling
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Xiaofei Xue
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Qian Yang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| |
Collapse
|
72
|
Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021; 27:85-97. [PMID: 33318869 PMCID: PMC7728588 DOI: 10.1016/j.jare.2020.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide (CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular remodeling have has proved to be related to the impaired H2S generation. AIM OF REVIEW This study aimed to summarize and discuss current data about the function of H2S in vascular physiology and pathophysiology as well as the underlying mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primarily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physiologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the progression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified in animal and cell experiments and even in the clinical investigation. Besides, H2S system and angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design and application of novel H2S donors have significant clinical implications in the treatment of vascular-related diseases. However, further research regarding the role of H2S in vascular physiology and pathophysiology is required.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| |
Collapse
|
73
|
Hu L, Guo J, Zhou L, Zhu S, Wang C, Liu J, Hu S, Yang M, Lin C. Hydrogen Sulfide Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Apoptosis and Affects Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8868564. [PMID: 33488939 PMCID: PMC7790554 DOI: 10.1155/2020/8868564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of visual impairment and blindness among the elderly. AMD is characterized by retinal pigment epithelial (RPE) cell dysfunction. However, the pathogenesis of AMD is still unclear, and there is currently no effective treatment. Accumulated evidence indicates that oxidative stress and autophagy play a crucial role in the development of AMD. H2S is an antioxidant that can directly remove intracellular superoxide anions and hydrogen peroxide. The purpose of this study is to investigate the antioxidative effect of H2S in RPE cells and its role in autophagy. The results show that exogenous H2S (NaHS) pretreatment effectively reduces H2O2-induced oxidative stress, oxidative damage, apoptosis, and inflammation in ARPE-19 cells. NaHS pretreatment also decreased autophagy levels raised by H2O2, increased cell viability, and ameliorated cell morphological damage. Interestingly, the suppression of autophagy by its inhibitor 3-MA showed an increase of cell viability, amelioration of morphology, and a decrease of apoptosis. In summary, oxidative stress causes ARPE-19 cell injury by inducing cell autophagy. However exogenous H2S is shown to attenuate ARPE-19 cell injury, decrease apoptosis, and reduce the occurrence of autophagy-mediated by oxidative stress. These findings suggest that autophagy might play a crucial role in the development of AMD, and exogenous H2S has a potential value in the treatment of AMD.
Collapse
Affiliation(s)
- Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jia Guo
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhou
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiawei Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shanshan Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mulin Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
74
|
Role of Hydrogen Sulfide and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of the Endoplasmic Reticulum Stress Response in Hepatocytes. Biomolecules 2020; 10:biom10121692. [PMID: 33352938 PMCID: PMC7766142 DOI: 10.3390/biom10121692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
It is estimated that over 1.5 billion people suffer from various forms of chronic liver disease worldwide. The emerging prevalence of metabolic syndromes and alcohol misuse, along with the lack of disease-modifying agents for the therapy of many severe liver conditions predicts that chronic liver disease will continue to be a major problem in the future. Better understanding of the underlying pathogenetic mechanisms and identification of potential therapeutic targets remains a priority. Herein, we explored the potential role of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide (H2S) system in the regulation of the endoplasmic reticulum (ER) stress and of its downstream processes in the immortalized hepatic cell line HepG2 in vitro. ER stress suppressed endogenous H2S levels and pharmacological supplementation of H2S with sodium hydrogen sulfide (NaHS) mitigated many aspects of ER stress, culminating in improved cellular bioenergetics and prevention of autophagic arrest, thereby switching cells’ fate towards survival. Genetic silencing of 3-MST or pharmacological inhibition of the key enzymes involved in hepatocyte H2S biosynthesis exacerbated many readouts related to ER-stress or its downstream functional responses. Our findings implicate the 3-MST/H2S system in the intracellular network that governs proteostasis and ER-stress adaptability in hepatocytes and reinforce the therapeutic potential of pharmacological H2S supplementation.
Collapse
|
75
|
Zhu L, Duan W, Wu G, Zhang D, Wang L, Chen D, Chen Z, Yang B. Protective effect of hydrogen sulfide on endothelial cells through Sirt1-FoxO1-mediated autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1586. [PMID: 33437785 PMCID: PMC7791216 DOI: 10.21037/atm-20-3647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background As a new member of the vasculoprotective gasotransmitter family, hydrogen sulfide (H2S) functions similar to nitric oxide (NO) and carbon monoxide (CO). Endothelial cell (EC) death and autophagy enable cells to cope with the progression of cardiovascular diseases. However, the impacts and underlying mechanisms of H2S in the autophagic process in ECs are not completely understood. Here, we investigated the effects of H2S on autophagy in human vascular ECs. Methods Human umbilical vein endothelial cells (HUVECs) were exposed to different concentrations (0, 50, 100, 200, 500 and 1,000 µmol/L) GYY4137 (H2S donor) for indicated times (0, 0.5, 1, 2, 4 and 8 h), with or without pre-treatment with the autophagy inhibitor 3-methyladenine (3-MA) or bafilomycin A1. HUVECs were transfected with sirtuin 1 (Sirt1) overexpression plasmids (PIRES-Sirt1), Sirt1-siRNAs or forkhead box O1 (FoxO1)-siRNA using Lipofectamine 2000. Cell autophagy was evaluated via Western blotting and fluorescence microscopy. Co-immunoprecipitation assay was used to measure acetylation level of FoxO1. The distribution of FoxO1 in the cytoplasm and nucleus was observed using Western blotting and immunofluorescence. Western blotting, flow cytometric analysis, and cell count kit-8 assay were conducted to evaluate the effect of H2S on the oxidized low-density lipoprotein (Ox-LDL) induced apoptosis of HUVECs. Results Using both gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1, including its nuclear translocation and deacetylation, was critical for mediating H2S-induced autophagy in ECs. Furthermore, H2S-induced autophagy protected ECs from Ox-LDL-induced apoptosis by activating Sirt1. Conclusions These results suggest that Sirt1-mediated autophagy in ECs is a novel mechanism by which H2S exerts vascular-protective actions.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guangjie Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
76
|
Wu D, Zhong P, Wang Y, Zhang Q, Li J, Liu Z, Ji A, Li Y. Hydrogen Sulfide Attenuates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Inhibiting Apoptosis and Promoting Autophagy via Reactive Oxygen Species/Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Signaling Pathway. Front Pharmacol 2020; 11:585860. [PMID: 33390956 PMCID: PMC7774297 DOI: 10.3389/fphar.2020.585860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Hydrogen sulfide (H2S) is involved in a wide range of physiological and pathological processes. Nevertheless, the mechanism of action of H2S in NAFLD development has not been fully clarified. Here, the reduced level of H2S was observed in liver cells treated with oleic acid (OA). Administration of H2S increased the proliferation of OA-treated cells. The results showed that H2S decreased apoptosis and promoted autophagy through reactive oxygen species (ROS)-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) cascade in OA-treated cells. In addition, administration of H2S relieved high-fat diet (HFD)-induced NAFLD via inhibition of apoptosis and promotion of autophagy. These findings suggest that H2S could ameliorate HFD-induced NAFLD by regulating apoptosis and autophagy through ROS/PI3K/AKT/mTOR signaling pathway. Novel H2S-releasing donors may have therapeutic potential for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Peiyu Zhong
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yizhen Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jianmei Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Zhengguo Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ailing Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
77
|
Chen J, Wen B, Wang Y, Wu S, Zhang X, Gu Y, Wang Z, Wang J, Zhang W, Yong J. Jervine exhibits anticancer effects on nasopharyngeal carcinoma through promoting autophagic apoptosis via the blockage of Hedgehog signaling. Biomed Pharmacother 2020; 132:110898. [PMID: 33113432 DOI: 10.1016/j.biopha.2020.110898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the superior mucosal epithelium of the nasopharynx. However, effective therapies for NPC are still required. Reducing Hedgehog signaling pathway has been shown to suppress tumor growth. In this study, we attempted to explore whether Jervine (JV), an inhibitor of Hedgehog signaling, had anti-cancer effects on NPC, and the underlying mechanisms. Our findings showed that JV treatments markedly reduced the proliferation of NPC cells in a dose- and time-dependent manner. Cell cycle arrest in G2/M phase was significantly enhanced by JV, along with evident DNA damage. Moreover, JV treatment effectively induced apoptosis in NPC cells through improving Caspase-3 activation. Furthermore, ROS production and mitochondrial impairments were detected in JV-incubated NPC cells with elevated releases of Cyto-c from mitochondria. JV also dramatically triggered autophagy through blocking AKT/mTOR and increasing AMPK signaling pathways. Intriguingly, we showed that JV-induced apoptosis was mainly via an autophagy-dependent manner. In addition, the expression levels of SHH, PTCH1, SMO and GLI1 were markedly suppressed in NPC cells, demonstrating the hindered Hedgehog signaling. Importantly, we found that JV-induced apoptosis and autophagy were closely associated with the blockage of Hedgehog signaling. Our in vivo studies confirmed the anti-cancer effects of JV on NPC through inducing autophagy, as evidenced by the markedly reduced tumor growth rate and weight without side effects and toxicity. Taken together, JV may be a promising and effective agent for human NPC treatment through repressing Hedgehog signaling pathway and inducing autophagic cell death.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Bin Wen
- Department of Oncology, Jingjiang Chinese Medicine Hospital, Jingjiang, Jiangsu, 214500, China
| | - Yu Wang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Sheng Wu
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Xuesong Zhang
- Central Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Yonggui Gu
- Department of Otolaryngology, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Zhiyi Wang
- Department of Otolaryngology, East Theater General Hospital of PLA, Nanjing, Jiangsu, 210000, China
| | - Jianjiang Wang
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, 214500, China
| | - Wenzhong Zhang
- Department of Otolaryngology, East Theater General Hospital of PLA, Nanjing, Jiangsu, 210000, China
| | - Ji Yong
- Department of Otolaryngology, East Theater General Hospital of PLA, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
78
|
Wang S, Chen Q, Zhang Y, Zheng F, Xue T, Ge X, Ma R, Li X, Wu R, Liang K, Qian Z, Ge Y, Ma J, Yao B. Omega-3 polyunsaturated fatty acids alleviate hydrogen sulfide-induced blood-testis barrier disruption in the testes of adult mice. Reprod Toxicol 2020; 98:233-241. [PMID: 33068716 DOI: 10.1016/j.reprotox.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a gaseous intracellular signal transducer, participates in multiple physiological and pathological conditions, including reproductive conditions, and disrupts spermatogenesis. The blood-testis barrier (BTB) plays a vital role in spermatogenesis. However, the effect of H2S on the BTB and the underlying mechanism remain unclear. Herein, we examined the effect of H2S and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on the BTB and testicular functions. ICR male mice were randomly divided into the following groups: control, H2S exposure, and H2S exposure with ω-3 PUFAs intervention. The sperm parameters (sperm concentration and sperm motility) declined in the H2S group and improved in the ω-3 intervention group. BTB integrity was severely disrupted by H2S, and the BTB-related gene levels (ZO-1, Occludin, Claudin 11) decreased; ω-3 supplementation could alleviate BTB disruption by upregulating BTB-related genes, and TM4 Sertoli cells had a similar trend in vitro. p38 MAPK phosphorylation was upregulated in the Na2S treatment group and downregulated after ω-3 cotreatment. These findings suggest that H2S can impair the BTB and that ω-3 PUFAs supplementation can attenuate H2S toxicity in the male reproductive system. Our study elucidated the relationship between a gasotransmitter (H2S) and the BTB and identified the potential therapeutic effect of ω-3 PUFAs.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qiwei Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Feng Zheng
- Model Animal Research Center of Nanjing University, Nanjing, 210002, China
| | - Tongmin Xue
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoyan Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ronghua Wu
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yifeng Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China; Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China.
| |
Collapse
|
79
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
80
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
81
|
Biological Effects of Hydrogen Sulfide and Its Protective Role in Intracerebral Hemorrhage. J Mol Neurosci 2020; 70:2020-2030. [DOI: 10.1007/s12031-020-01608-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
|
82
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
83
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
84
|
Zhu L, Liao W, Chang H, Liu X, Miao S. A Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Bioimaging Applications in Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.201903451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Zhu
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Wenhao Liao
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Haizhen Chang
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering Hunan University ChangSha 410082 P. R. China
| | - Shaobin Miao
- Department of Chemistry and Physics Augusta University Augusta GA 30912 USA
| |
Collapse
|
85
|
Shaposhnikov M, Proshkina E, Koval L, Zemskaya N, Zhavoronkov A, Moskalev A. Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging (Albany NY) 2019; 10:3260-3272. [PMID: 30408770 PMCID: PMC6286861 DOI: 10.18632/aging.101630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/28/2018] [Indexed: 12/20/2022]
Abstract
Recent experimental studies highlighted the role of hydrogen sulfide (H2S) in aging and longevity. The cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) are the key enzymes responsible for H2S production. Here we investigated the geroprotective effects of CSE and CBS overexpression in Drosophila. Overexpression of CSE did not affect a lifespan and decrease (mitochondrial form of CSE) or increase (cytoplasmic form of CSE) age dynamics of locomotor activity, while overexpression of CBS increase median (by 12.5%) and maximum (by 6.9%) lifespan and locomotor activity. Increasing of both CSE and CBS expression levels resulted in thermotolerance, but the resistance to combination of arid and food-free conditions decreased. The resistance to oxidative stress (paraquat) was not affected in flies with overexpression of CBS and cytoplasmic CSE, but decreased in flies overexpressing mitochondrial form of CSE. Thus, transgene overexpression of the CSE and CBS in Drosophila induce similar effects on stress-resistance and locomotor activity, however lifespan extending effect was revealed for CBS overexpression only.
Collapse
Affiliation(s)
- Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Ekaterina Proshkina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Lyubov Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
86
|
Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019; 45:844-856. [PMID: 31418958 PMCID: PMC6916288 DOI: 10.1002/biof.1555] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a highly conserved catabolic process and fundamental biological process in eukaryotic cells. It recycles intracellular components to provide nutrients during starvation and maintains quality control of organelles and proteins. In addition, autophagy is a well-organized homeostatic cellular process that is responsible for the removal of damaged organelles and intracellular pathogens. Moreover, it also modulates the innate and adaptive immune systems. Micro ribonucleic acids (microRNAs) are a mature class of post-transcriptional modulators that are widely expressed in tissues and organs. And, it can suppress gene expression by targeting messenger RNAs for translational repression or, at a lesser extent, degradation. Research indicates that microRNAs regulate autophagy through different pathways, playing an essential role in the treatment of various diseases. It is an important regulator of fundamental cellular processes such as proliferation, autophagy, and cell apoptosis. In this review article, we first review the current knowledge of autophagy and the function of microRNAs. Then, we summarize the mechanism of autophagy and the signaling pathways related to autophagy by citing at least the main proteins involved in the different phases of the process. Second, we introduce other members of RNA and report some examples in various pathologies. Finally, we review the current literature regarding microRNA-based therapies for cancer, atherosclerosis, cardiac disease, tuberculosis, and viral diseases. MicroRNAs can cause autophagy upregulation or downregulation by targeting genes or affecting autophagy-related signaling pathways. Therefore, the microRNAs have a huge potential in autophagy regulation, and it is the function as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| |
Collapse
|
87
|
Sestito S, Pruccoli L, Runfola M, Citi V, Martelli A, Saccomanni G, Calderone V, Tarozzi A, Rapposelli S. Design and synthesis of H 2S-donor hybrids: A new treatment for Alzheimer's disease? Eur J Med Chem 2019; 184:111745. [PMID: 31585237 DOI: 10.1016/j.ejmech.2019.111745] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Hydrogen sulphide (H2S) is an endogenous gasotransmitter, largely known as a pleiotropic mediator endowed with antioxidant, anti-inflammatory, pro-autophagic, and neuroprotective properties. Moreover, a strong relationship between H2S and aging has been recently identified and consistently, a significant decline of H2S levels has been observed in patients affected by Alzheimer's disease (AD). On this basis, the use of H2S-donors could represent an exciting and intriguing strategy to be pursued for the treatment of neurodegenerative diseases (NDDs). In this work, we designed a small series of multitarget molecules combining the rivastigmine-scaffold, a well-established drug already approved for AD, with sulforaphane (SFN) and erucin (ERN), two natural products deriving from the enzymatic hydrolysis of glucosinolates contained in broccoli and rocket, respectively, endowed both with antioxidant and neuroprotective effects. Notably, all new synthetized hybrids exhibit a H2S-donor profile in vitro and elicit protective effects in a model of LPS-induced microglia inflammation. Moreover, a decrease in NO production has been observed in LPS-stimulated cells pre-treated with the compounds. Finally, the compounds showed neuroprotective and antioxidant activities in human neuronal cells. The most interesting compounds have been further investigated to elucidate the possible mechanism of action.
Collapse
Affiliation(s)
| | - Letizia Pruccoli
- Department for Life Quality Studies, University of Bologna, Italy
| | | | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, University of Bologna, Italy.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Italy.
| |
Collapse
|
88
|
Zhang J, Zhang Q, Wang Y, Li J, Bai Z, Zhao Q, He D, Wang Z, Zhang J, Chen Y. Toxicity, bioactivity, release of H2S in vivo and pharmaco-kinetics of H2S-donors with thiophosphamide structure. Eur J Med Chem 2019; 176:456-475. [DOI: 10.1016/j.ejmech.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/15/2023]
|
89
|
PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma. Oncogenesis 2019; 8:22. [PMID: 30872582 PMCID: PMC6418141 DOI: 10.1038/s41389-019-0132-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. PEST-containing nuclear protein (PCNP) has been found in the nucleus of cancer cells. Whether PCNP plays a role in the growth of lung adenocarcinoma is still unknown. In the present study, the results indicated that the level of PCNP in lung adenocarcinoma tissue was significantly higher than that in corresponding adjacent non-tumor tissue. Over-expression of PCNP promoted the proliferation, migration, and invasion of lung adenocarcinoma cells, while down-regulation of PCNP exhibited opposite effects. PCNP over-expression decreased apoptosis through up-regulating the expression levels of phospho (p)-signal transducers and activators of transcription (STAT) 3 and p-STAT5 in lung adenocarcinoma cells, whereas PCNP knockdown showed opposite trends. PCNP overexpression enhanced autophagy by increasing the expression levels of p-phosphatidylinositol 3-kinase (PI3K), p-Akt, and p-mammalian target of rapamycin (mTOR) in lung adenocarcinoma cells, however an opposite trend was observed in the sh-PCNP group. In addition, overexpression of PCNP showed the tumor-promoting effect on xenografted lung adenocarcinoma, while PCNP knockdown reduced the growth of lung adenocarcinoma via regulating angiogenesis. Our study elucidates that PCNP can regulate the procession of human lung adenocarcinoma cells via STAT3/5 and PI3K/Akt/mTOR signaling pathways. PCNP may be considered as a promising biomarker for the diagnosis and prognosis in patients with lung adenocarcinoma. Furthermore, PCNP can be a novel therapeutic target and potent PCNP inhibitors can be designed and developed in the treatment of lung adenocarcinoma.
Collapse
|
90
|
Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3831713. [PMID: 30805080 PMCID: PMC6360590 DOI: 10.1155/2019/3831713] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant. However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and the role and mechanism of H2S in liver health and disease are further discussed.
Collapse
|
91
|
Wu DD, Liu SY, Gao YR, Lu D, Hong Y, Chen YG, Dong PZ, Wang DY, Li T, Li HM, Ren ZG, Guo JC, He F, Ren XQ, Sun SY, Duan SF, Ji XY. Tumour necrosis factor-α-induced protein 8-like 2 is a novel regulator of proliferation, migration, and invasion in human rectal adenocarcinoma cells. J Cell Mol Med 2019; 23:1698-1713. [PMID: 30637920 PMCID: PMC6378198 DOI: 10.1111/jcmm.14065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tumour necrosis factor‐α‐induced protein 8‐like 2 (TIPE2) is a tumour suppressor in many types of cancer. However, the mechanism of action of TIPE2 on the growth of rectal adenocarcinoma is unknown. Our results showed that the expression levels of TIPE2 in human rectal adenocarcinoma tissues were higher than those in adjacent non‐tumour tissues. Overexpression of TIPE2 reduced the proliferation, migration, and invasion of human rectal adenocarcinoma cells and down‐regulation of TIPE2 showed reverse effects. TIPE2 overexpression increased apoptosis through down‐regulating the expression levels of Wnt3a, phospho (p)‐β‐Catenin, and p‐glycogen synthase kinase‐3β in rectal adenocarcinoma cells, however, TIPE2 knockdown exhibited reverse trends. TIPE2 overexpression decreased autophagy by reducing the expression levels of p‐Smad2, p‐Smad3, and transforming growth factor‐beta (TGF‐β) in rectal adenocarcinoma cells, however, TIPE2 knockdown showed opposite effects. Furthermore, TIPE2 overexpression reduced the growth of xenografted human rectal adenocarcinoma, whereas TIPE2 knockdown promoted the growth of rectal adenocarcinoma tumours by modulating angiogenesis. In conclusion, TIPE2 could regulate the proliferation, migration, and invasion of human rectal adenocarcinoma cells through Wnt/β‐Catenin and TGF‐β/Smad2/3 signalling pathways. TIPE2 is a potential therapeutic target for the treatment of rectal adenocarcinoma.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shi-Yu Liu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ying-Ran Gao
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dan Lu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ya Hong
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ya-Ge Chen
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Peng-Zhen Dong
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Hui-Min Li
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Zhi-Guang Ren
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jian-Cheng Guo
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Fei He
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Xue-Qun Ren
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shao-Feng Duan
- Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Institute for Innovative Drug Design and Evaluation, Henan University School of Pharmacy, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China.,Joint National Laboratory for Antibody Drug Engineering, Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
92
|
Xu X, Li H, Gong Y, Zheng H, Zhao D. Hydrogen sulfide ameliorated lipopolysaccharide-induced acute lung injury by inhibiting autophagy through PI3K/Akt/mTOR pathway in mice. Biochem Biophys Res Commun 2018; 507:514-518. [PMID: 30448177 DOI: 10.1016/j.bbrc.2018.11.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Recent studies reported that hydrogen sulfide (H2S) is an effective agent for the prevention and treatment of acute lung injury (ALI). But the underlying mechanisms have not been understood clearly. In this study, we explored the possible mechanism from the perspective of autophagy regulation. METHODS A mouse model of ALI and alveolar type II epithelial cells (MLE-12 cells) injury was induced using lipopolysaccharide (LPS). Expression of Beclin 1 and the conversion of LC3I to LC3II were detected to evaluate the activity of autophagy. Lung histopathological changes, wet/dry (W/D) ratio, pro-inflammatory cytokines TNF-α, IL-1β and protein content in bronchoalveolar lavage fluid (BALF), cell viability and lactic dehydrogenase (LDH) in the culture medium were determined to evaluate the severity of ALI. The activity of PI3K/Akt/mTOR pathway was detected to explore the possible mechanisms involved in the regulation of autophagy by H2S. RESULTS The expression of Beclin 1 and the conversion of LC3I to LC3II were significantly increased after LPS treatment and reversed by H2S both in vivo and in vitro. Lung histopathological changes, W/D ratio, TNF-α, IL-1β and protein content in BALF induced by LPS were effectively ameliorated by H2S and autophagy inhibitor 3-methyladenine. The in vitro results showed that H2S and 3-methyladenine also attenuated LPS-induced cell viability decrease and LDH release. Furthermore, H2S effectively reversed LPS-induced PI3K/Akt/mTOR signaling pathway inhibition. CONCLUSION Autophagy inhibition through PI3K/Akt/mTOR pathway was involved in H2S prevention of LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, PR China
| | - Hao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, PR China
| | - Yuan Gong
- Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, PR China
| | - Huiyu Zheng
- People's Hospital of Zheng Zhou, 33 Huanghe Road, Zhengzhou, PR China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, PR China.
| |
Collapse
|
93
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 2018; 10:2428-2458. [PMID: 30243020 PMCID: PMC6188487 DOI: 10.18632/aging.101561] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 04/28/2023]
Abstract
N-acetyl-L-cysteine (NAC) is a derivative of the sulphur-containing amino acid L-cysteine with potential anti-aging properties. We studied 3 Drosophila species with contrast longevity differences (D. virilis is longest-lived, D. kikkawai is shortest-lived and D. melanogaster has moderate lifespan) to test the effects of NAC at 8 different concentrations (from 10 nM to 100 mM) on the lifespan, stress-resistance and locomotor activity. Except the adverse effects of highest (10 mM and 100 mM) concentrations NAC demonstrated sexually opposite and male-biased effects on Drosophila lifespan, stress-resistance and locomotor activity and not satisfied the criteria of a geroprotector in terms of the reproducibility of lifespan extending effects in different model organisms. The concentration- and sex-dependent changes in the relative expression levels of the antioxidant genes (Cat/CG6871 and Sod1/CG11793) and genes involved in hydrogen sulfide biosynthesis (Cbs/CG1753, Eip55E/CG5345 and Nfs1/CG12264) suggest the involvement of hormetic mechanisms in the geroprotective effects of NAC.
Collapse
Affiliation(s)
- Mikhail V. Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda V. Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Liubov A. Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Eugenia V. Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, JHU, Rockville, MD 21218, USA
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|