51
|
Tang Z, Wang HQ, Chen J, Chang JD, Zhao FJ. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:570-593. [PMID: 36546407 DOI: 10.1111/jipb.13440] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plants take up a wide range of trace metals/metalloids (hereinafter referred to as trace metals) from the soil, some of which are essential but become toxic at high concentrations (e.g., Cu, Zn, Ni, Co), while others are non-essential and toxic even at relatively low concentrations (e.g., As, Cd, Cr, Pb, and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities. Trace metal contamination can cause toxicity and growth inhibition in plants, as well as accumulation in the edible parts to levels that threatens food safety and human health. Understanding the mechanisms of trace metal toxicity and how plants respond to trace metal stress is important for improving plant growth and food safety in contaminated soils. The accumulation of excess trace metals in plants can cause oxidative stress, genotoxicity, programmed cell death, and disturbance in multiple physiological processes. Plants have evolved various strategies to detoxify trace metals through cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. Multiple signal transduction pathways and regulatory responses are involved in plants challenged with trace metal stresses. In this review, we discuss the recent progress in understanding the molecular mechanisms involved in trace metal toxicity, detoxification, and regulation, as well as strategies to enhance plant resistance to trace metal stresses and reduce toxic metal accumulation in food crops.
Collapse
Affiliation(s)
- Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han-Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
52
|
Wang X, Ai S, Liao H. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil. Cells 2023; 12:cells12030441. [PMID: 36766784 PMCID: PMC9913701 DOI: 10.3390/cells12030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils.
Collapse
Affiliation(s)
- Xiurong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-88260230
| |
Collapse
|
53
|
Yao Q, Li W, Liu Y, Cheng Y, Xiao X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y. FeCl 3 and Fe 2(SO 4) 3 differentially reduce Cd uptake and accumulation in Polish wheat (Triticum polonicum L.) seedlings by exporting Cd from roots and limiting Cd binding in the root cell walls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120762. [PMID: 36471548 DOI: 10.1016/j.envpol.2022.120762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Wheat grown in cadmium (Cd)-contaminated soils easily accumulates more Cd in edible parts than the Chinese safety limit (0.1 mg/kg). FeCl3 and Fe2(SO4)3 have been used to extract Cd from Cd-contaminated soils. Thus, we hypothesized that FeCl3 and Fe2(SO4)3, used as iron (Fe) fertilizers, can reduce Cd uptake and accumulation in wheat. Here, a hydroponic experiment was performed with three FeCl3 and Fe2(SO4)3 concentrations under 80 μM CdCl2 stress on dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB) seedlings. Compared with Fe deficiency, FeCl3 and Fe2(SO4)3 additions competitively reduced Cd concentrations. The reductions were not associated with changes in dry weight and root morphological parameters. FeCl3 and Fe2(SO4)3 additions reduced Cd concentrations in the following order from smallest to largest reduction: 25 μM Fe2(SO4)3 < 200 μM FeCl3 < 50 μM FeCl3 < 100 μM Fe2(SO4)3. Investigation of subcellular distributions showed that the four Fe fertilizers differentially reduced Cd binding in the root cell walls and enhanced root sucrose and trehalose. Cd chemical form analysis revealed that Fe fertilizer addition also differentially reduced root FE, FW, and FNaCl. Transcriptomic analysis revealed that addition of FeCl3 and Fe2(SO4)3 differentially up-regulated several genes that hydrolyze cell wall polysaccharides and metal transporter genes for Cd uptake (IRT1 and CAX19) and export (ZIP1, ABCG11, ABCG14, ABCG28, ABCG37, ABCG44, and ABCG48) reducing Cd uptake and accumulation. Our results demonstrated that FeCl3 and Fe2(SO4)3 can reduce Cd accumulation in wheat, and 50 μM FeCl3 is the most effective treatment.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weiping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
54
|
Ai H, Wu D, Li C, Hou M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1003953. [PMID: 36204081 PMCID: PMC9530829 DOI: 10.3389/fpls.2022.1003953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The increasing cadmium (Cd) pollution in paddy fields has severely threatened China's ecological and food safety. Cultivation of low Cd accumulation varieties to reduce Cd content in rice or cultivation of Cd-tolerant varieties for phytoremediation are considered effective methods to control Cd pollution in paddy fields. However, the underlying molecular mechanism of Cd absorption and transport by rice plants needs to be deciphered to cultivate these varieties. Here, we summarized the molecular mechanisms underlying Cd absorption and transport in rice, as well as the variation of Cd accumulation among rice varieties, the QTLs related to Cd accumulation in rice, and discusses the direction of future research.
Collapse
Affiliation(s)
- Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chunli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
55
|
Qiao Y, Jie Chen Z, Liu J, Nan Z, Yang H. Genome-wide identification of Oryza sativa: A new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene 2022; 834:146613. [PMID: 35643224 DOI: 10.1016/j.gene.2022.146613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
ATP-binding cassette (ABC) transporter is a large genes superfamily. It involves transportation of diverse substrates (e.g., heavy metal, amino acids, pesticides, metabolites). The ABC transporters can be strongly induced by environmental stress and responsible for the phase III metabolic process of toxic compounds in plants. To investigate the potential molecular and biochemical function of ABC transporters in response to pesticides, we used bioinformatics and high-throughput sequencing to identify 107 loci from rice (Oryza sativa) exposed to different pesticides (ametryn, AME; bentazone, BNTZ; fomesafen, FSA; mesotrione, MTR) and annotated as ABC transporter genes. ABC transporter genes were categorized to eight subfamilies including ABCA-G and ABCI. ABCG subfamily was the largest group in rice genome followed by ABCC subfamily and ABCB subfamily. The distribution of each ABC transporter on twelve chromosomes was identified. The result showed that a large number of genes were scattered around chromosome. Differentially expressed genes (DEGs) were selected for cis-acting analysis under pesticide stress. Multiple cis-elements for biological functions such as hormone-sensitive elements and defense-related elements were found to involve the initiation and regulation of transcription. Comprehensive phylogenetic analysis and domain prediction of all ABC DEGs from rice and Arabidopsis were carried out. The docking analysis of ABC transporters and pesticides provided insights into the key amino acid residues involved in the binding of the pesticides. Consequently, the results provided applicable information and reference for a more functional analysis of ABC transporter genes on regulation of pesticide metabolism and transport in plants.
Collapse
Affiliation(s)
- Yuxin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhang Nan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
56
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
57
|
Hu J, Chen G, Xu K, Wang J. Cadmium in Cereal Crops: Uptake and Transport Mechanisms and Minimizing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5961-5974. [PMID: 35576456 DOI: 10.1021/acs.jafc.1c07896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) contamination in soils and accumulation in cereal grains have posed food security risks and serious health concerns worldwide. Understanding the Cd transport process and its management for minimizing Cd accumulation in cereals may help to improve crop growth and grain quality. In this review, we summarize Cd uptake, translocation, and accumulation mechanisms in cereal crops and discuss efficient measures to reduce Cd uptake as well as potential remediation strategies, including the applications of plant growth regulators, microbes, nanoparticles, and cropping systems and developing low-Cd grain cultivars by CRISPR/Cas9. In addition, miRNAs modulate Cd translocation, and accumulation in crops through the regulation of their target genes was revealed. Combined use of multiple remediation methods may successfully decrease Cd concentrations in cereals. The findings in this review provide some insights into innovative and applicable approaches for reducing Cd accumulation in cereal grains and sustainable management of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, and Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| |
Collapse
|
58
|
Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int J Mol Sci 2022; 23:ijms23031734. [PMID: 35163656 PMCID: PMC8836122 DOI: 10.3390/ijms23031734] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.
Collapse
|
59
|
Li H, Gao MY, Mo CH, Wong MH, Chen XW, Wang JJ. Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:50-67. [PMID: 34610119 DOI: 10.1093/jxb/erab444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Rice polluted by metal(loid)s, especially arsenic (As) and cadmium (Cd), imposes serious health risks. Numerous studies have demonstrated that the obligate plant symbionts arbuscular mycorrhizal fungi (AMF) can reduce As and Cd concentrations in rice. The behaviours of metal(loid)s in the soil-rice-AMF system are of significant interest for scientists in the fields of plant biology, microbiology, agriculture, and environmental science. We review the mechanisms of As and Cd accumulation in rice with and without the involvement of AMF. In the context of the soil-rice-AMF system, we assess and discuss the role of AMF in affecting soil ion mobility, chemical forms, transport pathways (including the symplast and apoplast), and genotype variation. A potential strategy for AMF application in rice fields is considered, followed by future research directions to improve theoretical understanding and encourage field application.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Xun Wen Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Jian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
60
|
Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. MOLECULAR PLANT 2022; 15:27-44. [PMID: 34619329 DOI: 10.1016/j.molp.2021.09.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/20/2023]
Abstract
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Collapse
Affiliation(s)
- Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Jun Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
61
|
Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. PHYSIOLOGIA PLANTARUM 2021; 173:430-448. [PMID: 34227684 DOI: 10.1111/ppl.13491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination of agricultural fields has become a global concern as it causes a direct impact on human health. Rice is the major food crop for almost half of the world population and is grown under diverse environmental conditions, including heavy metal-contaminated soil. In recent years, the impact of heavy metal contamination on rice yield and grain quality has been shown through multiple approaches. In this review article, different aspects of heavy metal stress, that is uptake, transport, signaling and tolerance mechanisms, are comprehensively discussed with special emphasis on rice. For uptake, some of the transporters have specificity to one or two metal ions, whereas many other transporters are able to transport many different ions. After uptake, the intercellular signaling is mediated through different signaling pathways involving the regulation of various hormones, alteration of calcium levels, and the activation of mitogen-activated protein kinases. Heavy metal stress signals from various intermediate molecules activate various transcription factors, which triggers the expression of various antioxidant enzymes. Activated antioxidant enzymes then scavenge various reactive oxygen species, which eventually leads to stress tolerance in plants. Non-enzymatic antioxidants, such as ascorbate, metalloids, and even metal-binding peptides (metallothionein and phytochelatin) can also help to reduce metal toxicity in plants. Genetic engineering has been successfully used in rice and many other crops to increase metal tolerance and reduce heavy metals accumulation. A comprehensive understanding of uptake, transport, signaling, and tolerance mechanisms will help to grow rice plants in agricultural fields with less heavy metal accumulation in grains.
Collapse
Affiliation(s)
- Ravneet Kaur
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Sakshi Bansal
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Gurbir Singh
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shaswati Sardar
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Hena Dhar
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Hasthi Ram
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
62
|
Huang J, Li X, Chen X, Guo Y, Liang W, Wang H. Genome-Wide Identification of Soybean ABC Transporters Relate to Aluminum Toxicity. Int J Mol Sci 2021; 22:6556. [PMID: 34207256 PMCID: PMC8234336 DOI: 10.3390/ijms22126556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.
Collapse
Affiliation(s)
| | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.H.); (X.L.); (X.C.); (Y.G.); (W.L.)
| |
Collapse
|