51
|
Okino N, Li M, Qu Q, Nakagawa T, Hayashi Y, Matsumoto M, Ishibashi Y, Ito M. Two bacterial glycosphingolipid synthases responsible for the synthesis of glucuronosylceramide and α-galactosylceramide. J Biol Chem 2020; 295:10709-10725. [PMID: 32518167 DOI: 10.1074/jbc.ra120.013796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial glycosphingolipids such as glucuronosylceramide and galactosylceramide have been identified as ligands for invariant natural killer T cells and play important roles in host defense. However, the glycosphingolipid synthases required for production of these ceramides have not been well-characterized. Here, we report the identification and characterization of glucuronosylceramide synthase (ceramide UDP-glucuronosyltransferase [Cer-GlcAT]) in Zymomonas mobilis, a Gram-negative bacterium whose cellular membranes contain glucuronosylceramide. On comparing the gene sequences that encode the diacylglycerol GlcAT in bacteria and plants, we found a homologous gene that is widely distributed in the order Sphingomonadales in the Z. mobilis genome. We first cloned the gene and expressed it in Escherichia coli, followed by protein purification using nickel-Sepharose affinity and gel filtration chromatography. Using the highly enriched enzyme, we observed that it has high glycosyltransferase activity with UDP-glucuronic acid and ceramide as sugar donor and acceptor substrate, respectively. Cer-GlcAT deletion resulted in a loss of glucuronosylceramide and increased the levels of ceramide phosphoglycerol, which was expressed in WT cells only at very low levels. Furthermore, we found sequences homologous to Cer-GlcAT in Sphingobium yanoikuyae and Bacteroides fragilis, which have been reported to produce glucuronosylceramide and α-galactosylceramide, respectively. We expressed the two homologs of the cer-glcat gene in E. coli and found that each gene encodes Cer-GlcAT and Cer-galactosyltransferase, respectively. These results contribute to the understanding of the roles of bacterial glycosphingolipids in host-bacteria interactions and the function of bacterial glycosphingolipids in bacterial physiology.
Collapse
Affiliation(s)
- Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mengbai Li
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Qingjun Qu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Tomoko Nakagawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yasuhiro Hayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mitsufumi Matsumoto
- Electric Power Development Co., Ltd., Wakamatsu Institute, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan.,Innovative Bio-architecture Center, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
52
|
Orive-Milla N, Delmulle T, de Mey M, Faijes M, Planas A. Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways. Metab Eng 2020; 61:106-119. [PMID: 32492511 DOI: 10.1016/j.ymben.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glycolipids are target molecules in biotechnology and biomedicine as biosurfactants, biomaterials and bioactive molecules. An engineered E. coli strain for the production of glycoglycerolipids (GGL) used the MG517 glycolipid synthase from M. genitalium for glucosyl transfer from UDPGlc to diacylglycerol acceptor (Mora-Buyé et al., 2012). The intracellular diacylglycerol pool proved to be the limiting factor for GGL production. Here we designed different metabolic engineering strategies to enhance the availability of precursor substrates for the glycolipid synthase by modulating fatty acids, acyl donor and phosphatidic acid biosynthesis. Knockouts of tesA, fadE and fabR genes involved in fatty acids degradation, overexpression of the transcriptional regulator FadR, the acyltransferases PlsB and C, and the pyrophosphatase Cdh for phosphatidic acid biosynthesis, as well as the phosphatase PgpB for conversion to diacylglycerol were explored with the aim of improving GGL titers. Among the different engineered strains, the ΔtesA strain co-expressing MG517 and a fusion PlsCxPgpB protein was the best producer, with a 350% increase of GGL titer compared to the parental strain expressing MG517 alone. Attempts to boost UDPGlc availability by overexpressing the uridyltransferase GalU or knocking out the UDP-sugar diphosphatase encoding gene ushA did not further improve GGL titers. Most of the strains produced GGL containing a variable number of glucosyl units from mono-to tetra-saccharides. Interestingly, the strains co-expressing Cdh showed a shift in the GGL profile towards the diglucosylated lipid (up to 80% of total GGLs) whereas the strains with a fadR knockout presented a higher amount of unsaturated acyl chains. In all cases, GGL production altered the lipidic composition of the E. coli membrane, observing that GGL replace phosphatidylethanolamine to maintain the overall membrane charge balance.
Collapse
Affiliation(s)
- Nuria Orive-Milla
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain
| | - Tom Delmulle
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marjan de Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Via Augusta 350, E-08017, Barcelona, Spain.
| |
Collapse
|
53
|
Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C. PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1 Δ3trans FATTY ACID DESATURASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:718-729. [PMID: 31856363 DOI: 10.1111/tpj.14657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t. The FAD4-PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co-production of PRXQ with FAD4 was required to produce Δ3-desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site-directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Montgomery D Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Tessa R Clark
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
54
|
Custódio M, Maciel E, Domingues MR, Lillebø AI, Calado R. Nutrient availability affects the polar lipidome of Halimione portulacoides leaves cultured in hydroponics. Sci Rep 2020; 10:6583. [PMID: 32313165 PMCID: PMC7171145 DOI: 10.1038/s41598-020-63551-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/27/2020] [Indexed: 12/02/2022] Open
Abstract
Halophytes are increasingly regarded as suitable extractive species and co-products for coastal Integrated Multi-Trophic Aquaculture (IMTA) and studying their lipidome is a valid means towards their economic valorization. Halimione portulacoides (L.) Aellen edible leaves are rich in functional lipids with nutraceutical and pharmaceutical relevance and the present study aimed to investigate the extent to which its lipidome remains unchanged under a range of dissolved inorganic nitrogen (N) and phosphorus (P) concentrations typical of aquaculture effluents. Lipidomics analysis, done by hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry, identified 175 lipid species in the lipid extract of leaves: 140 phospholipids (PLs) and 35 glycolipids (GLs). Plants irrigated with a saline solution with 20-100 mg DIN-N L-1 and 3-15.5 mg DIP-P L-1 under a 1-week hydraulic retention time displayed a relatively stable lipidome. At lower concentrations (6 mg DIN-N L-1 and 0.8 mg DIP-P L-1), plants exhibited less PLs and GLs per unit of leaves dry weight and the GLs fraction of the lipidome changed significantly. This study reveals the importance of analyzing the lipidomic profile of halophytes under different nutritional regimens in order to establish nutrient-limitation thresholds and assure production conditions that deliver a final product with a consistent lipid profile.
Collapse
Affiliation(s)
- Marco Custódio
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.
| | - Elisabete Maciel
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Mass Spectrometry Center, Department of Chemistry & QOPNA & LAQV - Requinte, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Rosário Domingues
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Mass Spectrometry Center, Department of Chemistry & QOPNA & LAQV - Requinte, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Isabel Lillebø
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.
| |
Collapse
|
55
|
Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild-Relevance for Biotechnological Applications of this Green Seaweed. Mar Drugs 2020; 18:md18040188. [PMID: 32244516 PMCID: PMC7230330 DOI: 10.3390/md18040188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decades, the use of algae in biotechnology and food industries has experienced an exponential growth. Codium tomentosum is a green macroalgae with high biotechnological potential, due to its rich lipidome, although few studies have addressed it. This study aimed to investigate the seasonal changes in lipid and pigment profiles of C. tomentosum, as well as to screen its antioxidant activity, in order to evaluate its natural plasticity. Samples of C. tomentosum were collected in two different seasons, early-autumn (September/October) and spring (May), in the Portuguese coast (wild samples), and in a land-based integrated multitrophic aquaculture (IMTA) system (IMTA samples). Total lipid extracts were analysed by LC-MS, GC-MS, and HPLC, and antioxidant activity was screened through free radical scavenging potential against DPPH and 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Wild samples showed a high seasonal variability, modifying their lipidome and pigment profiles according to environmental shifts, while IMTA samples showed a relatively stable composition due to early-stage culturing in controlled conditions. The lipids that contributed the most to seasonal discrimination were glycolipids (monogalactosyl diacylglycerol - MGDG and digalactosyl diacylglycerol - DGDG) and the lyso forms of phospholipids and glycolipids. Lipid extracts showed antioxidant activity ranging from 61 ± 2 to 115 ± 35 µmol Trolox g-1 of lipid extract in DPPH assay and from 532 ± 73 to 927 ± 92 µmol Trolox g-1 of lipid extract in ABTS assay, with a more intense antioxidant activity in wild spring samples. This study revealed that wild specimens of C. tomentosum presented a higher plasticity to cope with seasonal environmental changes, adjusting their lipid, pigment, and bioactivity profiles, while IMTA samples, cultured under controlled conditions, displayed more stable lipidome and pigment compositions.
Collapse
|
56
|
Peng Z, Miao X. Monoglucosyldiacylglycerol participates in phosphate stress adaptation in Synechococcus sp. PCC 7942. Biochem Biophys Res Commun 2020; 522:662-668. [PMID: 31787233 DOI: 10.1016/j.bbrc.2019.11.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Cyanobacterial monoglucosyldiacylglycerol (MGlcDG) not only serves as a precursor for monogalactosyldiacylglycerol (MGDG) synthesis, but also participates in stress acclimation. Two genes (mgdA and mgdE) related to MGDG synthesis of Synechococcus sp. PCC 7942 were identified. The mgdE-suppressed mutant (AE) accumulated MGlcDG (4.2%) and showed better growth and photosynthetic activities compared with WT and other mutants (mgdA/mgdE-overexpressed and mgdA-suppressed strains), which suggested that MGlcDG was involved in phosphate stress adaptation for Synechococcus sp. PCC 7942. A notable increase in contents of 18:1 fatty acid (FA) of MGDG (127%), DGDG (68%), and SQDG (105%) in AE were found under phosphate starvation. However, the expression of △9 desaturase (desC) was not higher in AE than that in WT during phosphate-starved period. These results suggested that MGlcDG might be involved in the process of FA desaturation, which contributed to membrane fluidity and cell basic metabolism for stress acclimation in cyanobacteria. In complementary experiments of E. coli, although the expression of mgdA and desC in the mgdA and desC coexpressed strain (OEAC) reduced by 22% and 35% compared with that of the strains only overexpressing mgdA (OEA) or desC (OEC), the content of unsaturated FA in OEAC was the highest. This further implied that the accumulation of MGlcDG could prompt FA desaturation in E. coli. Therefore, we propose that an overproduction of MGlcDG is responsible for FA desaturation and participates in phosphate stress adaptation in cyanobacteria.
Collapse
Affiliation(s)
- Zhou Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
57
|
Pourteymour Fard Tabrizi F, Abbasalizad Farhangi M. A Systematic Review of the Potential Effects of Thylakoids in the Management of Obesity and Its Related Issues. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1710747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fatemeh Pourteymour Fard Tabrizi
- Student Research Committee, Department of Nutrition, Faculty of Nutrition and Food science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Research Center for Evidence Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
58
|
Sebastiana M, Duarte B, Monteiro F, Malhó R, Caçador I, Matos AR. The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:157-165. [PMID: 31568958 DOI: 10.1016/j.plaphy.2019.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/25/2023]
Abstract
Ectomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought. We have previously shown that improved tolerance of ectomycorrhizal oak plants to drought could be related to leaf membrane lipid metabolism, namely through an increased ability to sustain fatty acid content and composition, indicative of a higher membrane stability under stress. Here, we analysed in deeper detail the modulation of leaf lipid metabolism in oak plants mycorrhized with Pisolithus tinctorius and subjected to drought stress. Results show that mycorrhizal plants show patterns associated with water deficit tolerance, like a higher content of chloroplast lipids, whose levels are maintained upon drought stress. Likewise, mycorrhizal plants show increased levels of unsaturated fatty acids in the chloroplast phosphatidylglycerol lipid fraction. As a common response to drought, the digalactosyldiacyloglycerol/monogalactosyldiacyloglycerol ratio increased in the non-mycorrhizal plants, but not in the mycorrhizal plants, associated to smaller alterations in the expression of galactolipid metabolism genes, indicative of a higher drought tolerance. Under drought, inoculated plants showed increased expression of genes involved in neutral lipids biosynthesis, which could be related to an increased ability to tolerate drought stress. Overall, results from this study provide evidences of the involvement of lipid metabolism in the response of ectomycorrhizal plants to water deficit and point to an increased ability to maintain a stable chloroplast membrane functional integrity under stress.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Filipa Monteiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C). Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rui Malhó
- Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Rita Matos
- Plant Functional Genomics Group, University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute. Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
59
|
Peng Z, Feng L, Wang X, Miao X. Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158522. [PMID: 31487556 DOI: 10.1016/j.bbalip.2019.158522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
Abstract
Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.
Collapse
Affiliation(s)
- Zhou Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoxue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
60
|
Si Z, Yang Q, Liang R, Chen L, Chen D, Li Y. Digalactosyldiacylglycerol Synthase Gene MtDGD1 Plays an Essential Role in Nodule Development and Nitrogen Fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1196-1209. [PMID: 30986120 DOI: 10.1094/mpmi-11-18-0322-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.
Collapse
Affiliation(s)
- Zaiyong Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qianqian Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rongrong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
61
|
Takato K, Kurita M, Yagami N, Tanaka HN, Ando H, Imamura A, Ishida H. Chemical synthesis of diglucosyl diacylglycerols utilizing glycosyl donors with stereodirecting cyclic silyl protective groups. Carbohydr Res 2019; 483:107748. [PMID: 31362138 DOI: 10.1016/j.carres.2019.107748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022]
Abstract
Chemical syntheses of the bacterial diglucosyl diacylglycerols 1-heptadecanoyl-2-pentadecanoyl-3-O-[6-O-(β-d-glucopyranosyl)-β-d-glucopyranosyl]-sn-glycerol and 1-(cis-13-octadecenoyl)-2-palmitoyl-3-O-[2-O-(α-d-glucopyranosyl)-α-d-glucopyranosyl]-sn-glycerol are described. The syntheses feature the stereoselective construction of glycosidic linkages in glycosylation reaction by utilizing glycosyl donors with stereodirecting cyclic silyl protective groups. The 1,1,3,3-tetraisopropyldisiloxane-1,3-diyl (TIPDS) group was used for formation of the β-glycosidic linkage, while the di-tert-butylsilylene (DTBS) group was used for α-linkage formation. The silyl protective groups were chemoselectively cleavable without affecting acyl functionalities on the glycerol moiety and proved effective for the synthesis of diacylglycoglycerolipids.
Collapse
Affiliation(s)
- Koichi Takato
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Motoki Kurita
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Nahoko Yagami
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
62
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
63
|
White DA, Rooks PA, Kimmance S, Tait K, Jones M, Tarran GA, Cook C, Llewellyn CA. Modulation of Polar Lipid Profiles in Chlorella sp. in Response to Nutrient Limitation. Metabolites 2019; 9:metabo9030039. [PMID: 30823401 PMCID: PMC6468466 DOI: 10.3390/metabo9030039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
We evaluate the effects of nutrient limitation on cellular composition of polar lipid classes/species in Chlorella sp. using modern polar lipidomic profiling methods (liquid chromatography⁻tandem mass spectrometry; LC-MS/MS). Total polar lipid concentration was highest in nutrient-replete (HN) cultures with a significant reduction in monogalactosyldiacylglycerol (MGDG), phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) class concentrations for nutrient-deplete (LN) cultures. Moreover, reductions in the abundance of MGDG relative to total polar lipids versus an increase in the relative abundance of digalactosyldiacylglycerol (DGDG) were recorded in LN cultures. In HN cultures, polar lipid species composition remained relatively constant throughout culture with high degrees of unsaturation associated with acyl moieties. Conversely, in LN cultures lipid species composition shifted towards greater saturation of acyl moieties. Multivariate analyses revealed that changes in the abundance of a number of species contributed to the dissimilarity between LN and HN cultures but with dominant effects from certain species, e.g., reduction in MGDG 34:7 (18:3/16:4). Results demonstrate that Chlorella sp. significantly alters its polar lipidome in response to nutrient limitation, and this is discussed in terms of physiological significance and polar lipids production for applied microalgal production systems.
Collapse
Affiliation(s)
- Daniel A White
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Paul A Rooks
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Susan Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Karen Tait
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Mark Jones
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Glen A Tarran
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Charlotte Cook
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK.
| | - Carole A Llewellyn
- Department of Biosciences, Singleton Park, Swansea University, Swansea, Wales SA2 8PP, UK.
| |
Collapse
|
64
|
Shaar‐Moshe L, Hayouka R, Roessner U, Peleg Z. Phenotypic and metabolic plasticity shapes life-history strategies under combinations of abiotic stresses. PLANT DIRECT 2019; 3:e00113. [PMID: 31245755 PMCID: PMC6508786 DOI: 10.1002/pld3.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 05/23/2023]
Abstract
Plants developed various reversible and non-reversible acclimation mechanisms to cope with the multifaceted nature of abiotic-stress combinations. We hypothesized that in order to endure these stress combinations, plants elicit distinctive acclimation strategies through specific trade-offs between reproduction and defense. To investigate Brachypodium distachyon acclimation strategies to combinations of salinity, drought and heat, we applied a system biology approach, integrating physiological, metabolic, and transcriptional analyses. We analyzed the trade-offs among functional and performance traits, and their effects on plant fitness. A combination of drought and heat resulted in escape strategy, while under a combination of salinity and heat, plants exhibited an avoidance strategy. On the other hand, under combinations of salinity and drought, with or without heat stress, plant fitness (i.e., germination rate of subsequent generation) was severely impaired. These results indicate that under combined stresses, plants' life-history strategies were shaped by the limits of phenotypic and metabolic plasticity and the trade-offs between traits, thereby giving raise to distinct acclimations. Our findings provide a mechanistic understanding of plant acclimations to combinations of abiotic stresses and shed light on the different life-history strategies that can contribute to grass fitness and possibly to their dispersion under changing environments.
Collapse
Affiliation(s)
- Lidor Shaar‐Moshe
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ruchama Hayouka
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneAustralia
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
65
|
Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J Chem Theory Comput 2018; 15:775-786. [PMID: 30525595 DOI: 10.1021/acs.jctc.8b01066] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.
Collapse
Affiliation(s)
- Jumin Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Sang-Jun Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Joonseong Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Xi Cheng
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine , Queen's University Belfast BT9 7BL , United Kingdom
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel , Airway Research Center North, Member of the German Center for Lung Research (DZL) , D-23845 Borstel , Germany
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 Moscow , Russia
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Sunhwan Jo
- Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
66
|
Kim SK, Park SJ, Li XH, Choi YS, Im DS, Lee JH. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ Microbiol 2018; 20:3992-4008. [PMID: 30252196 DOI: 10.1111/1462-2920.14430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Ornithine lipids (OLs) are bacteria-specific lipids that are found in the outer membrane of Gram (-) bacteria and increase as surrogates of phospholipids under phosphate-limited environmental conditions. We investigated the effects of OL increase in bacterial membranes on pathogen virulence and the host immune response. In Pseudomonas aeruginosa, we increased OL levels in membranes by overexpressing the OL-synthesizing operon (olsBA). These increases changed the bacterial surface charge and hydrophobicity, which reduced bacterial susceptibility to antibiotics and antimicrobial peptides (AMPs), interfered with the binding of macrophages to bacterial cells and enhanced bacterial biofilm formation. When grown under low phosphate conditions, P. aeruginosa became more persistent in the treatment of antibiotics and AMPs in an olsBA-dependent manner. While OLs increased persistence, they attenuated P. aeruginosa virulence; in host cells, they reduced the production of inflammatory factors (iNOS, COX-2, PGE2 and nitric oxide) and increased intracellular Ca2+ release. Exogenously added OL had similar effects on P. aeruginosa and host cells. Our results suggest that bacterial OL plays important roles in bacteria-host interaction in a way that enhances bacterial persistence and develops chronic adaptation to infection.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Soo-Jin Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Yu-Sang Choi
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Dong-Soon Im
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|
67
|
Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. BIOPHYSICS REPORTS 2018; 4:189-203. [PMID: 30310856 PMCID: PMC6153512 DOI: 10.1007/s41048-018-0068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/22/2018] [Indexed: 01/26/2023] Open
Abstract
In plants, photosystem II (PSII) associates with light-harvesting complexes II (LHCII) to form PSII–LHCII supercomplexes. They are multi-subunit supramolecular systems embedded in the thylakoid membrane of chloroplast, functioning as energy-converting and water-splitting machinery powered by light energy. The high-resolution structure of a PSII–LHCII supercomplex, previously solved through cryo-electron microscopy, revealed 34 well-defined lipid molecules per monomer of the homodimeric system. Here we characterize the distribution of lipid-binding sites in plant PSII–LHCII supercomplex and summarize their arrangement pattern within and across the membrane. These lipid molecules have crucial roles in stabilizing the oligomerization interfaces of plant PSII dimer and LHCII trimer. Moreover, they also mediate the interactions among PSII core subunits and contribute to the assembly between peripheral antenna complexes and PSII core. The detailed information of lipid-binding sites within PSII–LHCII supercomplex may serve as a framework for future researches on the functional roles of lipids in plant photosynthesis.
Collapse
|
68
|
Vasconcelos AA, Pomin VH. Marine Carbohydrate-Based Compounds with Medicinal Properties. Mar Drugs 2018; 16:E233. [PMID: 29987239 PMCID: PMC6070937 DOI: 10.3390/md16070233] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
The oceans harbor a great diversity of organisms, and have been recognized as an important source of new compounds with nutritional and therapeutic potential. Among these compounds, carbohydrate-based compounds are of particular interest because they exhibit numerous biological functions associated with their chemical diversity. This gives rise to new substances for the development of bioactive products. Many are the known applications of substances with glycosidic domains obtained from marine species. This review covers the structural properties and the current findings on the antioxidant, anti-inflammatory, anticoagulant, antitumor and antimicrobial activities of medium and high molecular-weight carbohydrates or glycosylated compounds extracted from various marine organisms.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
69
|
Bennett H, Bell JJ, Davy SK, Webster NS, Francis DS. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. GLOBAL CHANGE BIOLOGY 2018; 24:3130-3144. [PMID: 29505691 DOI: 10.1111/gcb.14116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Ocean warming (OW) and ocean acidification (OA) are threatening coral reef ecosystems, with a bleak future forecast for reef-building corals, which are already experiencing global declines in abundance. In contrast, many coral reef sponge species are able to tolerate climate change conditions projected for 2100. To increase our understanding of the mechanisms underpinning this tolerance, we explored the lipid and fatty acid (FA) composition of four sponge species with differing sensitivities to climate change, experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways. Sponges with greater concentrations of storage lipid, phospholipids, sterols and elevated concentrations of n-3 and n-6 long-chain polyunsaturated FA (LC PUFA), were more resistant to OW. Such biochemical constituents likely contribute to the ability of these sponges to maintain membrane function and cell homeostasis in the face of environmental change. Our results suggest that n-3 and n-6 LC PUFA are important components of the sponge stress response potentially via chain elongation and the eicosanoid stress-signalling pathways. The capacity for sponges to compositionally alter their membrane lipids in response to stress was also explored using a number of specific homeoviscous adaptation (HVA) indicators. This revealed a potential mechanism via which additional CO2 could facilitate the resistance of phototrophic sponges to thermal stress through an increased synthesis of membrane-stabilizing sterols. Finally, OW induced an increase in FA unsaturation in phototrophic sponges but a decrease in heterotrophic species, providing support for a difference in the thermal response pathway between the sponge host and the associated photosymbionts. Here we have shown that sponge lipids and FA are likely to be an important component of the sponge stress response and may play a role in facilitating sponge survival under future climate conditions.
Collapse
Affiliation(s)
- Holly Bennett
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
70
|
Kato S, Tobe H, Matsubara H, Sawada M, Sasaki Y, Fukiya S, Morita N, Yokota A. The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131 T. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:403-412. [PMID: 29883797 DOI: 10.1016/j.bbalip.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/26/2023]
Abstract
Bile acids exhibit strong antimicrobial activity as natural detergents, and are involved in lipid digestion and absorption. We investigated the mechanism of bile acid adaptation in Lactobacillus gasseri JCM1131T. Exposure to sublethal concentrations of cholic acid (CA), a major bile acid in humans, resulted in development of resistance to otherwise-lethal concentrations of CA by this intestinal lactic acid bacterium. As this adaptation was accompanied by decreased cell-membrane damage, we analyzed the membrane lipid composition of L. gasseri. Although there was no difference in the proportions of glycolipids (~70%) and phospholipids (~20%), adaptation resulted in an increased abundance of long-sugar-chain glycolipids and a 100% increase in cardiolipin (CL) content (to ~50% of phospholipids) at the expense of phosphatidylglycerol (PG). In model vesicles, the resistance of PG vesicles to solubilization by CA increased with increasing CL/PG ratio. Deletion of the two putative CL synthase genes, the products of which are responsible for CL synthesis from PG, decreased the CL content of the mutants, but did not affect their ability to adapt to CA. Exposure to CA restored the CL content of the two single-deletion mutants, likely due to the activities of the remaining CL synthase. In contrast, the CL content of the double-deletion mutant was not restored, and the lipid composition was modified such that PG predominated (~45% of total lipids) at the expense of glycolipids. Therefore, CL plays important roles in bile acid resistance and maintenance of the membrane lipid composition in L. gasseri.
Collapse
Affiliation(s)
- Shinji Kato
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Haruhi Tobe
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Hiroki Matsubara
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Mariko Sawada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Yasuko Sasaki
- Laboratory of Fermented Foods, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan.
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
71
|
Belhaj I, Amara S, Parsiegla G, Sutto-Ortiz P, Sahaka M, Belghith H, Rousset A, Lafont D, Carrière F. Galactolipase activity of Talaromyces thermophilus lipase on galactolipid micelles, monomolecular films and UV-absorbing surface-coated substrate. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1006-1015. [PMID: 29859246 DOI: 10.1016/j.bbalip.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
Abstract
Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10 ng of enzymes, against 100 ng to 10 μg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.
Collapse
Affiliation(s)
- Inès Belhaj
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologies de Sfax, Université de Sfax, BP "1177", 3018 Sfax, Tunisia.
| | - Sawsan Amara
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; Lipolytech, Zone Luminy Biotech Entreprises Case 922, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Goetz Parsiegla
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Priscila Sutto-Ortiz
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Moulay Sahaka
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Hafedh Belghith
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologies de Sfax, Université de Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Audric Rousset
- Laboratoire de Chimie Organique II-Glycochimie, ICBMS UMR 5246, CNRS-Université Claude Bernard Lyon 1, Université de Lyon, Bâtiment Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Dominique Lafont
- Laboratoire de Chimie Organique II-Glycochimie, ICBMS UMR 5246, CNRS-Université Claude Bernard Lyon 1, Université de Lyon, Bâtiment Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Frédéric Carrière
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
72
|
Richardson MB, Smith DGM, Williams SJ. Quantitation in the regioselectivity of acylation of glycosyl diglycerides: total synthesis of a Streptococcus pneumoniae α-glucosyl diglyceride. Chem Commun (Camb) 2018; 53:1100-1103. [PMID: 28054047 DOI: 10.1039/c6cc09584d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fidelity of acylation regioselectivity in the synthesis of mixed glycosyl diacylglycerols can be accurately measured by quantitative 13C NMR spectroscopy using a 1-13C-labelled fatty acid and a paramagnetic relaxation enhancement agent. Exquisite regioselectivity is achieved using a stepwise acylation/substitution of a glycosyl β-bromohydrin, which is applied to the total synthesis of Streptococcus pneumoniae Glc-DAG-s2.
Collapse
Affiliation(s)
- Mark B Richardson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
73
|
Abstract
Glycans play diverse biological roles, ranging from structural and regulatory functions to mediating cellular interactions. For pathogens, they are also often required for virulence and survival in the host. In Cryptococcus neoformans, an opportunistic pathogen of humans, the acidic monosaccharide glucuronic acid (GlcA) is a critical component of multiple essential glycoconjugates. One of these glycoconjugates is the polysaccharide capsule, a major virulence factor that enables this yeast to modulate the host immune response and resist antimicrobial defenses. This allows cryptococci to colonize the lung and brain, leading to hundreds of thousands of deaths each year worldwide. Synthesis of most glycans, including capsule polysaccharides, occurs in the secretory pathway. However, the activated precursors for this process, nucleotide sugars, are made primarily in the cytosol. This topological problem is resolved by the action of nucleotide sugar transporters (NSTs). We discovered that Uut1 is the sole UDP-GlcA transporter in C. neoformans and is unique among NSTs for its narrow substrate range and high affinity for UDP-GlcA. Mutant cells with UUT1 deleted lack capsule polysaccharides and are highly sensitive to environmental stress. As a result, the deletion mutant is internalized and cleared by phagocytes more readily than wild-type cells are and is completely avirulent in mice. These findings expand our understanding of the requirements for capsule synthesis and cryptococcal virulence and elucidate a critical protein family.IMPORTANCECryptococcus neoformans causes lethal meningitis in almost two hundred thousand immunocompromised patients each year. Much of this fungal pathogen's ability to resist host defenses and cause disease is mediated by carbohydrate structures, including a complex polysaccharide capsule around the cell. Like most eukaryotic glycoconjugates, capsule polysaccharides are made within the secretory pathway, although their precursors are generated in the cytosol. Specific transporters are therefore required to convey these raw materials to the site of synthesis. One precursor of particular interest is UDP-glucuronic acid, which donates glucuronic acid to growing capsule polysaccharides. We discovered a highly specific, high-affinity transporter for this molecule. Deletion of the gene encoding this unusual protein abolishes capsule synthesis, alters stress resistance, and eliminates fungal virulence. In this work, we have identified a novel transporter, elucidated capsule synthesis and thereby aspects of fungal pathogenesis, and opened directions for potential antifungal therapy.
Collapse
|
74
|
Apdila ET, Awai K. Configuration of the sugar head of glycolipids in thylakoid membranes. Genes Genet Syst 2018; 92:235-242. [PMID: 29343668 DOI: 10.1266/ggs.17-00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glycolipids constitute the majority of membrane components in oxygenic photosynthetic organisms, whereas they are minor lipids in other organisms. In cyanobacteria, three glycolipids comprise ~90 mol% of the total lipids in thylakoid membranes, where photosynthetic electron transport occurs. Among these glycolipids, 80 mol% are galactolipids (monogalactosyldiacylglycerol and digalactosyldiacylglycerol). Galactolipids are well conserved in oxygenic photosynthetic organisms and are believed to be essential for the integrity of the membrane system. It remains unclear, however, which part(s) of the galactolipid structure is the key factor for their function, e.g., the sugar moiety and/or the anomeric configuration. To address this issue, several bacterial membrane glycolipid synthase genes have been introduced into cyanobacteria to test for complementation of knocked-out genes involved in galactolipid biosynthesis. In this review, we summarize recent advances in the analyses of sugar species and configurations of glycolipids heterologously synthesized in the thylakoid membrane and discuss their functional importance.
Collapse
Affiliation(s)
| | - Koichiro Awai
- Faculty of Science, Shizuoka University.,Research Institute of Electronics, Shizuoka University.,JST, CREST
| |
Collapse
|
75
|
Brady AL, Goordial J, Sun HJ, Whyte LG, Slater GF. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers. GEOBIOLOGY 2018; 16:62-79. [PMID: 29076278 DOI: 10.1111/gbi.12263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 05/28/2023]
Abstract
Cryptoendolithic lichens and cyanobacteria living in porous sandstone in the high-elevation McMurdo Dry Valleys are purported to be among the slowest growing organisms on Earth with cycles of death and regrowth on the order of 103 -104 years. Here, organic biomarker and radiocarbon analysis were used to better constrain ages and carbon sources of cryptoendoliths in University Valley (UV; 1,800 m.a.s.l) and neighboring Farnell Valley (FV; 1,700 m.a.s.l). Δ14 C was measured for membrane component phospholipid fatty acids (PLFA) and glycolipid fatty acids, as well as for total organic carbon (TOC). PLFA concentrations indicated viable cells comprised a minor (<0.5%) component of TOC. TOC Δ14 C values ranged from -272‰ to -185‰ equivalent to calibrated ages of 1,100-2,550 years old. These ages may be the result of fractional preservation of biogenic carbon and/or sudden large-scale community death and extended period(s) of inactivity prior to slow recolonization and incorporation of 14 C-depleted fossil material. PLFA Δ14 C values were generally more modern than the corresponding TOC and varied widely between sites; the FV PLFA Δ14 C value (+40‰) was consistent with modern atmospheric CO2 , while UV values ranged from -199‰ to -79‰ (calibrated ages of 1,665-610 years). The observed variability in PLFA Δ14 C depletions is hypothesized to reflect variations in the extent of fixation of modern atmospheric CO2 and the preservation and recycling of older organic carbon by the community in various stages of sandstone recolonization. PLFA profiles and microbial community compositions as determined by molecular genetic characterizations and microscopy differed between the two valleys (e.g., predominance of biomarker 18:2 [>50%] in FV compared to UV), representing microbial communities that may reflect distinct stages of sandstone recolonization and/or environmental conditions. It is thus proposed that Dry Valley cryptoendolithic microbial communities are faster growing than previously estimated.
Collapse
Affiliation(s)
- A L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - H J Sun
- Desert Research Institute, Las Vegas, NV, USA
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - G F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
76
|
Santos-Merino M, Garcillán-Barcia MP, de la Cruz F. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:239. [PMID: 30202434 PMCID: PMC6123915 DOI: 10.1186/s13068-018-1243-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The microbial production of fatty acids has received great attention in the last few years as feedstock for the production of renewable energy. The main advantage of using cyanobacteria over other organisms is their ability to capture energy from sunlight and to transform CO2 into products of interest by photosynthesis, such as fatty acids. Fatty acid synthesis is a ubiquitous and well-characterized pathway in most bacteria. However, the activity of the enzymes involved in this pathway in cyanobacteria remains poorly explored. RESULTS To characterize the function of some enzymes involved in the saturated fatty acid synthesis in cyanobacteria, we genetically engineered Synechococcus elongatus PCC 7942 by overexpressing or deleting genes encoding enzymes of the fatty acid synthase system and tested the lipid profile of the mutants. These modifications were in turn used to improve alpha-linolenic acid production in this cyanobacterium. The mutant resulting from fabF overexpression and fadD deletion, combined with the overexpression of desA and desB desaturase genes from Synechococcus sp. PCC 7002, produced the highest levels of this omega-3 fatty acid. CONCLUSIONS The fatty acid composition of S. elongatus PCC 7942 can be significantly modified by genetically engineering the expression of genes coding for the enzymes involved in the first reactions of fatty acid synthesis pathway. Variations in fatty acid composition of S. elongatus PCC 7942 mutants did not follow the pattern observed in Escherichia coli derivatives. Some of these modifications can be used to improve omega-3 fatty acid production. This work provides new insights into the saturated fatty acid synthesis pathway and new strategies that might be used to manipulate the fatty acid content of cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria—Consejo Superior de Investigaciones Científicas), Santander, Cantabria Spain
| |
Collapse
|
77
|
Li J, Hua J, Zhou Q, Dong C, Wang J, Deng Y, Yuan H, Jiang Y. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10131-10140. [PMID: 29058896 DOI: 10.1021/acs.jafc.7b03875] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology , Hangzhou 310014, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310008, China
| |
Collapse
|
78
|
López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287-1299. [DOI: 10.1016/j.bbalip.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
79
|
Rey F, Costa ED, Campos AM, Cartaxana P, Maciel E, Domingues P, Domingues MRM, Calado R, Cruz S. Kleptoplasty does not promote major shifts in the lipidome of macroalgal chloroplasts sequestered by the sacoglossan sea slug Elysia viridis. Sci Rep 2017; 7:11502. [PMID: 28904377 PMCID: PMC5597624 DOI: 10.1038/s41598-017-12008-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/31/2017] [Indexed: 01/19/2023] Open
Abstract
Sacoglossan sea slugs, also known as crawling leaves due to their photosynthetic activity, are highly selective feeders that incorporate chloroplasts from specific macroalgae. These “stolen” plastids - kleptoplasts - are kept functional inside animal cells and likely provide an alternative source of energy to their host. The mechanisms supporting the retention and functionality of kleptoplasts remain unknown. A lipidomic mass spectrometry-based analysis was performed to study kleptoplasty of the sacoglossan sea slug Elysia viridis fed with Codium tomentosum. Total lipid extract of both organisms was fractionated. The fraction rich in glycolipids, exclusive lipids from chloroplasts, and the fraction rich in betaine lipids, characteristic of algae, were analysed using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-LC-MS). This approach allowed the identification of 81 molecular species, namely galactolipids (8 in both organisms), sulfolipids (17 in C. tomentosum and 13 in E. viridis) and betaine lipids (51 in C. tomentosum and 41 in E. viridis). These lipid classes presented similar lipidomic profiles in C. tomentosum and E. viridis, indicating that the necessary mechanisms to perform photosynthesis are preserved during the process of endosymbiosis. The present study shows that there are no major shifts in the lipidome of C. tomentosum chloroplasts sequestered by E. viridis.
Collapse
Affiliation(s)
- Felisa Rey
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Elisabete da Costa
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Campos
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paulo Cartaxana
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete Maciel
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário M Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sónia Cruz
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
80
|
Su J, Ye M, Lou Y, Yang Z, Sun T, Zhang R, Xu J, Zhou C, Yan X. Low-molecular-mass organic acid and lipid responses of Isochrysis galbana Parke to high temperature stress during the entire growth stage. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Rozentsvet O, Kosobryukhov A, Zakhozhiy I, Tabalenkova G, Nesterov V, Bogdanova E. Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:385-393. [PMID: 28710946 DOI: 10.1016/j.plaphy.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Structural and functional parameters and redox homeostasis in leaves of Artemisia santonica L. under environment conditions of Elton lake (the southeast region of the European part of Russia) were measured. The highest photosynthetic apparatus (PA) activity in A. santonica leaves on CO2 gas exchange as well as the highest content of green pigments was observed in the morning. Maximum share of violaxanthin cycle key pigments - zeaxanthin (Zx) and antheraxanthin (Ax) was observed in the afternoon and decreased in the evening. Lipids/chlorophyll (Chl) ratio increased in the evening due to the decrease in Chl concentration, and content of linolenic acid (С18:3n3) was decreased in the middle of the day. The content of TBA-reacting products increased 1.4-fold in the middle of the day, and decreased approximately 2-fold in the evening. The decrease of the activity was observed in diurnal dynamics of superoxide dismutase (SOD) and polyphenol oxidase (PPO). Increased accumulation of phenols and flavonoids, as well as free amino acids (FAA) in A. santonica leaves was observed in the middle of the day. Thus, the ability of A. santonica plants to resist the soil salinization, high levels of solar illumination and temperature consists of a number of protectively-adaptive reactions of metabolic and photosynthetic control.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia.
| | - Anatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institutskaya St., 142290 Pushchino, Moscow region, Russia
| | - Ilya Zakhozhiy
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Galina Tabalenkova
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Viktor Nesterov
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| | - Elena Bogdanova
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| |
Collapse
|
82
|
Guillotin L, Cancellieri P, Lafite P, Landemarre L, Daniellou R. Chemo-enzymatic synthesis of 3-O- (β-d-glycopyranosyl)-sn-glycerols and their evaluation as preservative in cosmetics. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstractd-Glycopyranosyl glycerols are common natural products and exhibit strong biological properties, notably as moisturizing agents in cosmetics. Their chemical synthesis remains tedious thus decreasing their potential industrial and economic development, as well as the study of their structure-function relationships. In this work, the chemo-enzymatic synthesis of three enantiopure 3-O-(β-d-glycopyranosyl)-sn-glycerols was efficiently performed using an original glycosidase from Dictyoglomus thermophilum and their preservatives properties were assessed using a challenge test method. Amongst them, the 3-O-(β-d-glucopyranosyl)-sn-glycerol exhibited a specific anti-fungus activity.
Collapse
Affiliation(s)
- Laure Guillotin
- Institut de Chimie Organique et Analytique (ICOA) UMR CNRS 7311, University of Orléans, Rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | - Perrine Cancellieri
- Glycodiag, Bâtiment Physique-Chimie, Rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA) UMR CNRS 7311, University of Orléans, Rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | - Ludovic Landemarre
- Glycodiag, Bâtiment Physique-Chimie, Rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA) UMR CNRS 7311, University of Orléans, Rue de Chartres, BP6759, 45067 Orléans cedex 2, France
| |
Collapse
|
83
|
Řezanka T, Nedbalová L, Lukavský J, Procházková L, Sigler K. Lipidomic analysis of two closely related strains of the microalga Parietochloris (Trebouxiophyceae, Chlorophyta). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Wang Q, Kuramoto Y, Okazaki Y, Ota E, Morita M, Hirai G, Saito K, Sodeoka M. Synthesis of polyunsaturated fatty acid-containing glucuronosyl-diacylglycerol through direct glycosylation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8:515. [PMID: 28487674 PMCID: PMC5403934 DOI: 10.3389/fmicb.2017.00515] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, Institute of Biology, University of BialystokBialystok, Poland
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Govt. Ramanuj Pratap Singhdev Post-Graduate CollegeBaikunthpur, Koriya, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
86
|
Parveez Ahamed AA, Rasheed MU, Peer Muhamed Noorani K, Reehana N, Santhoshkumar S, Mohamed Imran YM, Alharbi NS, Arunachalam C, Alharbi SA, Akbarsha MA, Thajuddin N. In vitro antibacterial activity of MGDG-palmitoyl from Oscillatoria acuminata NTAPC05 against extended-spectrum β-lactamase producers. J Antibiot (Tokyo) 2017; 70:754-762. [PMID: 28377637 DOI: 10.1038/ja.2017.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/29/2016] [Accepted: 02/01/2017] [Indexed: 11/09/2022]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing bacteria pose a big challenge in clinical practices, warranting a new therapeutic strategy. In this study, methanol extract of the marine cyanobacterium Oscillatoria acuminata NTAPC05 was fractionated under bioassay guidance and the fractions were tested against three well-characterized ESBL-producing bacteria Escherichia coli U655, Stenotrophomonas maltophilia B929 and Enterobacter asburiae B938. Out of the four HPLC fractions, fraction 2 showed bactericidal activity against all the three ESBL producers much more efficiently (MIC 100 μg ml-1) than the fourth-generation cephalosporin (MIC >125 μg ml-1). The active fraction was subjected to time-kill test at concentrations of 1/2 × MIC, 1 × MIC and 2 × MIC, and the results substantiated the bactericidal property of the fraction against the ESBL producers. Spectral analysis revealed monogalactosyldiacylglycerol containing a palmitoyl (MGDG-palmitoyl), being reported for the first time, as the active fraction, and its bactericidal property against ESBL producers was determined. The active fraction appears to damage the bacterial membrane leading to lysis of the cell, as revealed in confocal laser scanning microscopy (CLSM) analysis, that was confirmed in scanning electron microscopic analysis. Cytotoxicity assay revealed the O. acuminata compound to be safe to a normal cell line HEK293 (human embryonic kidney cell). The in silico analysis of MGDG-palmitoyl revealed two successive H-bonding interactions with Leu198 of TEM1 β-lactamase. Taken together, the MGDG-palmitoyl from O. acuminata NTAPC05 offers potential to develop analogs as a therapeutic for bacteremia caused by ESBL producers.
Collapse
Affiliation(s)
- Abdul Azees Parveez Ahamed
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, Bharathidasan University, Tiruchirappalli, India
| | - Mohammed Uddin Rasheed
- Centre for Biotechnology and Bioinformatics, Jawaharlal Nehru Institute of Advanced Studies, Secunderabad, India
| | | | - Nazar Reehana
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, Bharathidasan University, Tiruchirappalli, India.,P.G. and Research Department of Microbiology, Jamal Mohamed College (Autonomous), Tiruchirappalli, India
| | | | - Yousuff Mohamed Mohamed Imran
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, Bharathidasan University, Tiruchirappalli, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Chinnathambi Arunachalam
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, Bharathidasan University, Tiruchirappalli, India.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.,National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
87
|
Tipthara P, Kunacheva C, Soh YNA, Wong SCC, Pin NS, Stuckey DC, Boehm BO. Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC-MS E. J Proteome Res 2017; 16:559-570. [PMID: 28067053 DOI: 10.1021/acs.jproteome.6b00681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled. Certain classes of SMPs have previously been studied by GC-MS, LC-MS, and MALDI-ToF MS; however, a more comprehensive LC-MS-based method for SMP identification is currently lacking. Here we develop a UPLC-MS approach to profile and identify metabolite SMPs in the supernatant of an anaerobic batch bioreactor. The small biomolecules were extracted into two fractions based on their polarity, and separate methods were then used for the polar and nonpolar metabolites in the aqueous and lipid fractions, respectively. SMPs that increased in the supernatant after feed addition were identified primarily as phospholipids, ceramides, with cardiolipins in the highest relative abundance, and these lipids have not been previously reported in wastewater effluent.
Collapse
Affiliation(s)
- Phornpimon Tipthara
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - Chinagarn Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Yan Ni Annie Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Stephen C C Wong
- Waters Pacific Pte. Ltd. , Singapore Science Park 2, Singapore 117528
| | - Ng Sean Pin
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141.,Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| |
Collapse
|
88
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
89
|
Rozentsvet O, Grebenkina T, Nesterov V, Bogdanova E. Seasonal dynamic of morpho-physiological properties and the lipid composition of Plantago media (Plantaginaceae) in the Middle Volga region. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:92-98. [PMID: 27017435 DOI: 10.1016/j.plaphy.2016.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
The changes in morpho-physiological properties and lipid composition have been studied in the leaves of the plant Plantago media collected from two different places in the Middle Volga region during the summer of 2010. The plants gathered from the first plot (P1 plants) grew on plain ground in the midst of typical meadow-steppe perennial plants. The plants of the second group (P2 plants) grew on a flat slope of the South-West exposition, in the grass community. The leaves of the plants Р1 had lower specific area densities but larger areas and masses; they accumulated more levels lipid peroxide products. The changes in lipid compositions depended on the growth phase and habitats. Correlations between morpho-physiological parameters and certain lipids have been established. The amounts of galactolipids (GL) have been shown to correlate with the leaf areas. When the leaf areas were reduced, a ratio between phosphatidylcholines (PC) and phosphatidylethanolamines (PE) decreased. The result of our study showed that gradual changes of morphometrical parameters were accompanied by the alterations in biomass structure and modifications in lipids and fatty acids (FA).
Collapse
Affiliation(s)
- Olga Rozentsvet
- Russian Academy of Sciences, Institute of Ecology of the Volga River Basin, Russia
| | - Tatyana Grebenkina
- Russian Academy of Sciences, Institute of Ecology of the Volga River Basin, Russia
| | - Viktor Nesterov
- Russian Academy of Sciences, Institute of Ecology of the Volga River Basin, Russia
| | - Elena Bogdanova
- Russian Academy of Sciences, Institute of Ecology of the Volga River Basin, Russia.
| |
Collapse
|
90
|
Assessment of the effects of As(III) treatment on cyanobacteria lipidomic profiles by LC-MS and MCR-ALS. Anal Bioanal Chem 2016; 408:5829-5841. [DOI: 10.1007/s00216-016-9695-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022]
|
91
|
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar Drugs 2016; 14:md14050101. [PMID: 27213410 PMCID: PMC4882575 DOI: 10.3390/md14050101] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Silva
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Sofia Hoffman Mendonça
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Maria Helena Abreu
- ALGAplus-Produção e Comercialização de Algas e Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
92
|
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1294-1308. [PMID: 27108062 DOI: 10.1016/j.bbalip.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023]
Abstract
In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Koichi Hori
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Takashi Nobusawa
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Tei Watanabe
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa 226-8501, Japan
| | - Yuka Madoka
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mie Shimojima
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan; Tokyo Institute of Technology, Earth-Life Science Institute, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
93
|
Hoyo J, Guaus E, Torrent-Burgués J. Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:39. [PMID: 27021656 DOI: 10.1140/epje/i2016-16039-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
The relevance of biomimetic membranes using galactolipids has not been expressed in any extensive experimental study of these lipids. Thus, on the one hand, we present an in-depth article about the presence and role of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) in thylakoid membranes, their physical states and their applications. On the other hand, we use the Langmuir and Langmuir-Blodgett (LB) techniques to prepare biomimetic monolayers of saturated galactolipids MGDG, DGDG and MGDG:DGDG 2:1 mixture (MD)--biological ratio--. These monolayers are studied using surface pressure-area isotherms and their data are processed to enlighten their physical states and mixing behaviour. These monolayers, once transferred to a solid substrate at several surface pressures are topographically studied on mica using atomic force microscopy (AFM) and using cyclic voltammetry for studying the electrochemical behaviour of the monolayers once transferred to indium-tin oxide (ITO), which has good optical and electrical properties. Moreover, MD presents other differences in comparison with its pure components that are explained by the presence of different kinds of galactosyl headgroups that restrict the optimal orientation of the MGDG headgroups.
Collapse
Affiliation(s)
- Javier Hoyo
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain.
| | - Ester Guaus
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| | - Juan Torrent-Burgués
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
94
|
Lipids in plant-microbe interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1379-1395. [PMID: 26928590 DOI: 10.1016/j.bbalip.2016.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.
Collapse
|
95
|
Valero-Guillén PL, Fernández-Natal I, Marrodán-Ciordia T, Tauch A, Soriano F. Ether-linked lipids of Dermabacter hominis, a human skin actinobacterium. Chem Phys Lipids 2016; 196:24-32. [PMID: 26867985 DOI: 10.1016/j.chemphyslip.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Dermabacter hominis is a medically important actinobacterial inhabitant of human skin, although it is rarely implicated in infections. The lipid composition of D. hominis is revisited in this study in the context of its natural resistance to daptomycin, an antibiotic whose activity is influenced by membrane lipids. Thin layer chromatography and mass spectrometry revealed that this species contains phospholipids and glycolipids. Using electrospray ionization time of flight mass spectrometry (exact mass) and gas chromatography-mass spectrometry, the major phospholipid of D. hominis was identified as plasmanyl-phosphatidylglycerol (pPG), because it presented one alkyl chain and one acyl chain in the glycerol moiety of the molecule. The structure of the major glycolipid (GL1) was studied by combined gas-liquid chromatography, mass spectrometry and nuclear magnetic resonance, and was established as galactosyl-α-(1→2)-glucosyl-alkyl-acyl-glycerol. Lipid analyses showed differences between one daptomycin-resistant (DAP-R) strain and one daptomycin-sensitive (DAP-S) strain growing in the presence of the antibiotic: DAP-R tended to accumulate GL1 and to reduce pPG, whereas DAP-S maintained high proportions of pPG. The results demonstrate the existence of ether-linked lipids in D. hominis and reveal a differential distribution of phospholipids and glycolipids according to the sensitivity or resistance to daptomycin, although the mechanism(s) operating in the resistance to the antibiotic remain(s) to be elucidated.
Collapse
Affiliation(s)
- Pedro L Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB), Spain.
| | - Isabel Fernández-Natal
- Departamento de Microbiología Clínica, Complejo Asistencial Universitario de León-Sacyl, León, Spain; Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Teresa Marrodán-Ciordia
- Departamento de Microbiología Clínica, Complejo Asistencial Universitario de León-Sacyl, León, Spain
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
96
|
Yao M, Elling FJ, Jones C, Nomosatryo S, Long CP, Crowe SA, Antoniewicz MR, Hinrichs KU, Maresca JA. Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environ Microbiol 2016; 18:656-67. [PMID: 26415900 PMCID: PMC5872838 DOI: 10.1111/1462-2920.13063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
Heterotrophic Proteobacteria and Actinobacteria were isolated from Lake Matano, Indonesia, a stratified, ferruginous (iron-rich), ultra-oligotrophic lake with phosphate concentrations below 50 nM. Here, we describe the growth of eight strains of heterotrophic bacteria on a variety of soluble and insoluble sources of phosphorus. When transferred to medium without added phosphorus (P), the isolates grow slowly, their RNA content falls to as low as 1% of cellular dry weight, and 86-100% of the membrane lipids are replaced with amino- or glycolipids. Similar changes in lipid composition have been observed in marine photoautotrophs and soil heterotrophs, and similar flexibility in phosphorus sources has been demonstrated in marine and soil-dwelling heterotrophs. Our results demonstrate that heterotrophs isolated from this unusual environment alter their macromolecular composition, which allows the organisms to grow efficiently even in their extremely phosphorus-limited environment.
Collapse
Affiliation(s)
- Mengyin Yao
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716
| | - Felix J. Elling
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - CarriAyne Jones
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Sulung Nomosatryo
- Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong, West Java, Indonesia 16911
| | - Christopher P. Long
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE 19716
| | - Sean A. Crowe
- Departments of Microbiology & Immunology and Earth, Ocean, and Atmosphere Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Maciek R. Antoniewicz
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE 19716
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Julia A. Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
97
|
Gerasimenko N, Logvinov S. Seasonal Composition of Lipids, Fatty Acids Pigments in the Brown Alga <i>Sargassum pallidum</i>: The Potential for Health. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojms.2016.64041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Perlikowski D, Kierszniowska S, Sawikowska A, Krajewski P, Rapacz M, Eckhardt Ä, Kosmala A. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex. FRONTIERS IN PLANT SCIENCE 2016; 7:1027. [PMID: 27486462 PMCID: PMC4950141 DOI: 10.3389/fpls.2016.01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/30/2016] [Indexed: 05/22/2023]
Abstract
Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed. HIGHLIGHTS A higher drought tolerance of grasses could be associated with an earlier lipidome response to a stress signal and with a membrane regeneration after stress cessation accompanied by a turnover of chloroplast lipids.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | | | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture in KrakowKrakow, Poland
| | - Änne Eckhardt
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Arkadiusz Kosmala
| |
Collapse
|
99
|
da Costa E, Melo T, Moreira AS, Alves E, Domingues P, Calado R, Abreu MH, Domingues MR. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
100
|
Hansen MLRW, Clausen A, Ejsing CS, Risbo J. Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions. MICROBIOLOGY-SGM 2015. [PMID: 26197785 DOI: 10.1099/mic.0.000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.
Collapse
Affiliation(s)
| | | | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Denmark
| | - Jens Risbo
- Department of Food Science, University of Copenhagen, Denmark
| |
Collapse
|