51
|
Galicia-Moreno M, Rosique-Oramas D, Medina-Avila Z, Álvarez-Torres T, Falcón D, Higuera-de la tijera F, Béjar YL, Cordero-Pérez P, Muñoz-Espinosa L, Pérez-Hernández JL, Kershenobich D, Gutierrez-Reyes G. Behavior of Oxidative Stress Markers in Alcoholic Liver Cirrhosis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9370565. [PMID: 28074118 PMCID: PMC5198187 DOI: 10.1155/2016/9370565] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Alcohol is the most socially accepted addictive substance worldwide, and its metabolism is related with oxidative stress generation. The aim of this work was to evaluate the role of oxidative stress in alcoholic liver cirrhosis (ALC). This study included 187 patients divided into two groups: ALC, classified according to Child-Pugh score, and a control group. We determined the levels of reduced and oxidized glutathione (GSH and GSSG) and the GSH/GSSG ratio by an enzymatic method in blood. Also, protein carbonyl and malondialdehyde (MDA) content were estimated in serum. MDA levels increased in proportion to the severity of damage, whereas the GSH and GSSG levels decreased and increased, respectively, at different stages of cirrhosis. There were no differences in the GSH/GSSG ratio and carbonylated protein content between groups. We also evaluated whether the active consumption of or abstinence from alcoholic beverages affected the behavior of these oxidative markers and only found differences in the MDA, GSH, and GSSG determination and the GSH/GSSG ratio. Our results suggest that alcoholic cirrhotic subjects have an increase in oxidative stress in the early stages of disease severity and that abstinence from alcohol consumption favors the major antioxidant endogen: GSH in patients with advanced disease severity.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
- Departamento de Farmacología, Facultad de Medicina Mexicali, UABC, Mexicali, BC, Mexico
| | - Dorothy Rosique-Oramas
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Zaira Medina-Avila
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Tania Álvarez-Torres
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Dalia Falcón
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | | | - Yadira L. Béjar
- Blood Bank Service, Hospital General de México, Mexico City, Mexico
| | - Paula Cordero-Pérez
- Liver Unit and Molecular Medicine, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Linda Muñoz-Espinosa
- Liver Unit and Molecular Medicine, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | | | - David Kershenobich
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gabriela Gutierrez-Reyes
- HIPAM Lab, Experimental Medicine Unit, School of Medicine, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
52
|
Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
53
|
Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 2015; 16:26087-26124. [PMID: 26540040 PMCID: PMC4661801 DOI: 10.3390/ijms161125942] [Citation(s) in RCA: 1038] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chi-Woon Wong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
54
|
Palipoch S, Koomhin P, Punsawad C, Na-Ek P, Sattayakhom A, Suwannalert P. Heme oxygenase-1 alleviates alcoholic liver steatosis: histopathological study. J Toxicol Pathol 2015; 29:7-15. [PMID: 26989297 PMCID: PMC4766524 DOI: 10.1293/tox.2015-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption is one of the most important causes of hepatic steatosis, which involves oxidative stress. In particular, increased oxidative stress has been strongly linked to stimulation of the expression of heme oxygenase-1 (HO-1). This study aimed to investigate whether HO-1 could alleviates alcoholic steatosis in rats. Male Wistar rats were randomly divided into 4 groups: 1) the control group, 2) the EtOH group, 3) the EtOH + ZnPP-IX group and 4) the EtOH + Hemin group. Liver histopathology was investigated in weeks 1 and 4 after the start of the treatment period. Alcohol treatment significantly increased the hepatic malondialdehyde (MDA) levels, an oxidative stress marker. In addition, it increased the triglyceride, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in both weeks. Gross examination demonstrated a yellowish and slightly enlarged liver in the alcohol-treated rats. Hematoxylin and eosin (H&E) and Oil Red O staining indicated hepatic steatosis, which was characterized by diffuse, extensive fatty accumulation and discrete lipid droplets of variable size in hepatocytes of the alcohol-treated rats. Administration of the HO-1 inducer hemin resulted in upregulation of hepatic HO-1 gene expression, reduced the MDA, triglyceride, ALT and AST levels and alleviated alcoholic hepatic steatosis, whereas administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX) resulted in downregulation of hepatic HO-1 gene expression and could not alleviate alcoholic hepatic steatosis either week. In conclusion, HO-1 could alleviate alcoholic hepatic steatosis in male Wistar rats and may be useful in development of a new therapeutic approach.
Collapse
Affiliation(s)
- Sarawoot Palipoch
- School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; The Pathobiology of the Cell and Tissue Research Group, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Phanit Koomhin
- School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; The Pathobiology of the Cell and Tissue Research Group, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; The Pathobiology of the Cell and Tissue Research Group, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Prasit Na-Ek
- School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; The Pathobiology of the Cell and Tissue Research Group, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Apsorn Sattayakhom
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat 80161, Thailand; The Pathobiology of the Cell and Tissue Research Group, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
55
|
Madrigal-Santillán E, Bautista M, Gayosso-De-Lucio JA, Reyes-Rosales Y, Posadas-Mondragón A, Morales-González &A, Soriano-Ursúa MA, García-Machorro J, Madrigal-Bujaidar E, Álvarez-González I, Morales-González JA. Hepatoprotective effect of Geranium schiedeanum against ethanol toxicity during liver regeneration. World J Gastroenterol 2015; 21:7718-7729. [PMID: 26167072 PMCID: PMC4491959 DOI: 10.3748/wjg.v21.i25.7718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effect of an extract of Geranium schiedeanum (Gs) as a hepatoprotective agent against ethanol (EtOH)-induced toxicity in rats. METHODS Male Wistar rats weighing 200-230 g were subjected to a 70% partial hepatectomy (PH); they were then divided into three groups (groups 1-3). During the experiment, animals in group 1 drank only water. The other two groups (2-3) drank an aqueous solution of EtOH (40%, v/v). Additionally, rats in group 3 received a Gs extract daily at a dose of 300 mg/kg body weight intragastically. Subsequently, to identify markers of liver damage in serum, alanine aminotransferase, aspartate aminotransferase, albumin and bilirubin were measured by colorimetric methods. Glucose, triglyceride and cholesterol concentrations were also determined. In addition, oxidative damage was estimated by measuring lipid peroxidation [using thiobarbituric-acid reactive substances (TBARS)] in both plasma and the liver and by measuring the total concentration of antioxidants in serum and the total antioxidant capacity in the liver. In addition, a liver mass gain assessment, total DNA analysis and a morpho-histological analysis of the liver from animals in all three groups were performed and compared. Finally, the number of deaths observed in the three groups was analyzed. RESULTS Administration of the Geranium shiedeanum extract significantly reduced the unfavorable effect of ethanol on liver regeneration (restitution liver mass: PH-EtOH group 60.68% vs PH-Gs-EtOH group 69.22%). This finding was congruent with the reduced levels of hepatic enzymes and the sustained or increased levels of albumin and decreased bilirubin in serum. The extract also modified the metabolic processes that regulate glucose and lipid levels, as observed from the serum measurements. Lower antioxidant levels and the liver damage induced by EtOH administration appeared to be mitigated by the extract, as observed from the TBARs (PH-EtOH group 200.14 mmol/mg vs PH-Gs-EtOH group 54.20 mmol/mg; P < 0.05), total status of antioxidants (PH-EtOH group 1.43 mmol/L vs PH-Gs-EtOH group 1.99 mmol/L; P < 0.05), total antioxidant capacity values, liver mass gain and total DNA determination (PH-EtOH group 4.80 mg/g vs PH-Gs-EtOH 9.10 mg/g; P < 0.05). Overall, these processes could be related to decreased mortality in these treated animals. CONCLUSION The administered extract showed a hepatoprotective effect, limiting the EtOH-induced hepatotoxic effects. This effect can be related to modulating oxido-reduction processes.
Collapse
|
56
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
57
|
Qu BG, Wang H, Jia YG, Su JL, Wang ZD, Wang YF, Han XH, Liu YX, Pan JD, Ren GY. Changes in tumor necrosis factor-α, heat shock protein 70, malondialdehyde, and superoxide dismutase in patients with different severities of alcoholic fatty liver disease: a prospective observational study. Medicine (Baltimore) 2015; 94:e643. [PMID: 25789959 PMCID: PMC4602479 DOI: 10.1097/md.0000000000000643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 01/26/2023] Open
Abstract
The relationships among inflammation, oxidative balance, and the severity of alcoholic fatty liver disease (AFLD) remain unknown. The aim of this study is to explore the relationships among tumor necrosis factor alpha (TNF-α), heat shock protein 70 (HSP70), malondialdehyde (MDA), superoxide dismutase (SOD), and the severity of AFLD.From January 2012 to December 2013, 162 participants were enrolled in this study and divided into 4 groups: 44 cases of mild AFLD (group A), 55 cases of moderate-to-severe AFLD (group B), 44 cases of alcohol consumption without AFLD (group C), and 20 cases of no alcohol consumption without AFLD (group D). A cross-sectional study was conducted by detecting the serum levels of TNF-α, HSP70, MDA, and SOD by enzyme-linked immunosorbent assay.The median serum levels of TNF-α and HSP70 among the 4 groups were statistically significant (P = 0.000 and 0.001, respectively). The median serum levels of TNF-α in groups A and B were significantly lower than in group C (P = 0.002 and 0.000, respectively), and the median serum level of TNF-α in group B was significantly lower than in group D (P = 0.023). In addition, the median serum level of HSP70 in group B was significantly lower than in groups A and C (P = 0.002 and 0.000, respectively), and the median serum level of HSP70 in group C was significantly higher than in group D (P = 0.044). However, the median serum level of MDA in group B was significantly lower than only group C (P = 0.008).Chronic alcohol ingestion without AFLD may result in a significant increase in the circulation of certain inflammatory markers; the severity of AFLD is associated with circulating inflammatory markers, and moderate-to-severe AFLD may result in a more significant reduction of these markers. However, moderate-to-severe AFLD may also result in a significant downregulation of oxidative stress products.
Collapse
Affiliation(s)
- Bao-Ge Qu
- From the Department of Gastroenterology (BQ, HW, YJ, JS, ZW, YW, XH, YL, JP, GR), Taishan Hospital, Taian, Shandong, and Taishan Medical College, Taian, Shandong, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 2015; 7:682-96. [PMID: 25608939 PMCID: PMC4303861 DOI: 10.3390/nu7010682] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.
Collapse
|