51
|
Pino MR, Muñiz S, Val J, Navarro E. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22530-22541. [PMID: 27553001 DOI: 10.1007/s11356-016-7446-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170-5656 mg L-1 in the case of the radicle and 188-4558 mg L-1 for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L-1), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L-1. The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.
Collapse
Affiliation(s)
- Ma Rosa Pino
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Selene Muñiz
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Jonatan Val
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
52
|
Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds. CHEMOSPHERE 2016; 159:193-198. [PMID: 27289206 DOI: 10.1016/j.chemosphere.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Lúcia H M L M Santos
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Sandra Ramos
- CEAUL, Universidade de Lisboa, Portugal and LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Filipe Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 4050-123 Porto, Portugal
| | - Cristina Antão
- Equilibrium, Laboratório de Controlo de Qualidade e de Processo, Lda., Praceta João Villaret, n.º 183, 4460-337 Senhora da Hora, Portugal
| | - Susana R Sousa
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Laboratório de Biomateriais, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
53
|
Zhang R, Yang Y, Huang CH, Li N, Liu H, Zhao L, Sun P. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2573-2583. [PMID: 26840504 DOI: 10.1021/acs.est.5b05604] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elimination of pharmaceuticals in source-separated human urine is a promising approach to minimize the pharmaceuticals in the environment. Although the degradation kinetics of pharmaceuticals by UV/H2O2 and UV/peroxydisulfate (PDS) processes has been investigated in synthetic fresh and hydrolyzed urine, comprehensive evaluation of the advanced oxidation processes (AOPs), such as product identification and toxicity testing, has not yet been performed. This study identified the transformation products of two commonly used antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), by UV/H2O2 and UV/PDS in synthetic urine matrices. The effects of reactive species, including •OH, SO4(•-), CO3(•-), and reactive nitrogen species, on product generation were investigated. Multiple isomeric transformation products of TMP and SMX were observed, especially in the reaction with hydroxyl radical. SO4(•-) and CO3(•-) reacted with pharmaceuticals by electron transfer, thus producing similar major products. The main reactive species deduced on the basis of product generation are in good agreement with kinetic simulation of the advanced oxidation processes. A strain identified as a polyphosphate-accumulating organism was used to investigate the antimicrobial activity of the pharmaceuticals and their products. No antimicrobial property was detected for the transformation products of either TMP or SMX. Acute toxicity employing luminescent bacterium Vibrio qinghaiensis indicated 20-40% higher inhibitory effect of TMP and SMX after treatment. Ecotoxicity was estimated by quantitative structure-activity relationship analysis using ECOSAR.
Collapse
Affiliation(s)
- Ruochun Zhang
- School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Na Li
- Tianjin Institute of Agriculture Quality Standards and Testing Technology , Tianjin 300381, China
| | - Hang Liu
- School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Peizhe Sun
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
54
|
Zeng F, Yu X, Sherry JP, Dixon B, Duncker BP, Bols NC. The p53 inhibitor, pifithrin-α, disrupts microtubule organization, arrests growth, and induces polyploidy in the rainbow trout gill cell line, RTgill-W1. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:1-10. [PMID: 26291498 DOI: 10.1016/j.cbpc.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022]
Abstract
Pifithrin-α (PFT-α) blocks p53-dependent transcription and is an example of the many drugs being developed to target the p53 pathway in humans that could be released into the environment with potential impacts on aquatic animals if they were to become successful pharmaceuticals. In order to understand how p53 drugs might act on fish, the effects of PFT-α on rainbow trout gill epithelial cell line, RTgill-W1, were studied. PFT-α was not cytotoxic to RTgill-W1 in cultures with or without fetal bovine serum (FBS), but at 5.25μg/ml, PFT-α completely arrested proliferation. When FBS was present, PFT-α increased the number of polyploid cells over 12days. Those results suggest that like in mammals, p53 appears to regulate ploidy in fish. However, several effects were seen that have not been observed with mammalian cells. PFT-α caused a transient rise in the mitotic index and a disruption in cytoskeletal microtubules. These results suggest that in fish cells PFT-α affects microtubules either directly through an off-target action on tubulin or indirectly through an on-target action on p53-regulated transcription.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Xiang Yu
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
55
|
Carballo M, Aguayo S, González M, Esperon F, Torre ADL. Environmental Assessment of Tetracycline’s Residues Detected in Pig Slurry and Poultry Manure. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jep.2016.71008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|