51
|
Zhang Z, Liu Q, Yang J, Yao H, Fan R, Cao C, Liu C, Zhang S, Lei X, Xu S. The proteomic profiling of multiple tissue damage in chickens for a selenium deficiency biomarker discovery. Food Funct 2020; 11:1312-1321. [PMID: 32022057 DOI: 10.1039/c9fo02861g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ruifeng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Changyu Cao
- College of Life and Science, Foshan University, Foshan, 528000, P. R. China
| | - Ci Liu
- College of Animal Technology, Shanxi Agricultural University, Jinzhong, 030600, P. R. China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14583, USA
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14583, USA
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
52
|
Dong N, Xue C, Zhang L, Zhang T, Wang C, Bi C, Shan A. Oleanolic acid enhances tight junctions and ameliorates inflammation in Salmonella typhimurium-induced diarrhea in mice via the TLR4/NF-κB and MAPK pathway. Food Funct 2020; 11:1122-1132. [PMID: 31825448 DOI: 10.1039/c9fo01718f] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Salmonella typhimurium (S.T) is a common cause of acute, self-limiting food-borne diarrhea with severe intestinal inflammation and intestinal barrier damage. Oleanolic acid (OA), isolated from almost 2000 plant species, has been shown to have anti-inflammatory roles. The purpose of this study was to investigate the potential protective effects of OA on S.T-induced diarrhea and enteritis and to elucidate its anti-inflammatory mechanisms. A total of eighty BALB/c mice (4-week-old) were randomly divided into the control group (no S.T, no OA), the S.T group (S.T only), the S.T + OA group (S.T plus 100 mg kg-1 OA) and the OA group (100 mg kg-1 OA only). Compared with the S.T group, OA administration significantly reduced clinical symptoms and weight loss, and the severity of diarrhea and intestinal structural damage was significantly alleviated, which was confirmed by a decrease in the diarrhea index (DI) and jejunal histological damage. In addition, in the infected jejunum, OA maintained the expression and localization of occludin, claudin-1 and ZO-1 to protect the jejunal barrier, thereby maintaining the integrity of the gut barrier. Finally, OA treatment not only reduced the levels of COX-2 and iNOS but also inhibited the secretion of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Furthermore, western blotting results showed that OA treatment significantly inhibited IκB phosphorylation and degradation in intestinal tissues and the nuclear translocation of p65, and OA also decreased the level of TLR4 and the activation of the MAPK pathway. To summarise, OA can maintain the intestinal tight junction barrier and prevent diarrhea caused by S.T. as well as reduce intestinal inflammation through the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Sun W, Cheng Z, Chen H, Lin G, Chen H. Tetrahydropyrimidines, ZL-5015 Alleviated Lipopolysaccharide (LPS)-Induced Acute Pneumonia in Rats by Activating the NRF-2/HO-1 Pathway. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e924482. [PMID: 32844782 PMCID: PMC8147033 DOI: 10.12659/msm.924482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute pneumonia is a severe inflammatory disease of the respiratory system. Drugs used to treat acute pneumonia often have strong side effects. Recent studies have shown that tetrahydropyrimidines, ZL-5015 has anti-inflammatory and antitumor effects. However, whether ZL-5015 can relieve symptoms of acute pneumonia is unclear. MATERIAL AND METHODS In this study, we used lipo-polysaccharide (LPS) to stimulate SD rats to simulate conditions of acute pneumonia. Diverse doses of ZL-5015 were used for treatment of these rats. After the rates were sacrificed, serum, lung tissue, and bronchoalveolar lavage fluid were collected for the next study. Hematoxylin-eosin (H&E) staining then was used to detect pathologic changes in lung tissues. Enzyme-linked immunosorbent assay was performed to assess levels of inflammatory factors in serum. Commercial kits were used to assess levels of reactive oxygen species (ROS) in bronchoalveolar lavage fluid. RESULTS Treatment of ZL-5015 relieved stenosis of the alveolar space and pulmonary edema. Furthermore, levels of inflammatory factors (TNF-alpha, IL-1ß and IL-18) in the lung tissues and serum were downregulated after treatment with ZL-5015. Production of ROS also was suppressed after application of ZL-5015. Moreover, inhibition of expression of NRF-2 and HO-1 was relieved after treatment with ZL-5015. The therapeutic effect of ZL-5015 showed a dose-response relationship. CONCLUSIONS ZL-5015 alleviated LPS-induced inflammatory injury and oxidative damage by activating the NRF-2/HO-1 pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Zhou Cheng
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Hanyan Chen
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Guifen Lin
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Hongxing Chen
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
54
|
Chen D, Ning F, Zhang J, Tang Y, Teng X. NF-κB pathway took part in the development of apoptosis mediated by miR-15a and oxidative stress via mitochondrial pathway in ammonia-treated chicken splenic lymphocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139017. [PMID: 32380330 DOI: 10.1016/j.scitotenv.2020.139017] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ammonia, a kind of gas with pungent smell, is harmful to livestock and people, and has bad influence on the atmosphere. However, the mechanism of splenic toxicity caused by ammonia is still poorly understood. The aim of present study was to investigate the effect of ammonia on chicken splenic lymphocytes from the perspective of apoptosis. Chicken splenic lymphocytes were divided into the control group and the two ammonium treatment groups (1 mmol/L and 5 mmol/L ammonia), and were cultured for 24 h. CCK-8, flow cytometry (FC), fluorescence microscope, quantitative real-time PCR (qRT-PCR), and Western blot were used to study the differences between different groups. The results showed that ammonia exposure increased the release of calcium (Ca)2+ and reactive oxygen species (ROS) from mitochondrion. Besides, we found an increase in mRNA levels of glutathione peroxidase (GPx), inflammation-related genes (nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric (iNOS), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β)), apoptosis-related genes (B-cell lymphoma-2 (BCL-2), Bcl-2 associated X protein (BAX), Cytochrome c (Cytc), apoptotic protease activating factor 1 (APAF1), Caspase-9, and Caspase-3), and an increase in protein levels of NF-κB, iNOS, BAX, Cytc, Caspase-9, and Caspase-3. At the same time, we found a decrease level of GPx protein expression, and a decrease level of glutathione S-transferase (GST) mRNA expression, and a decrease level of heme oxygenase-1 (HO-1) and BCL-2 mRNA and protein expression in splenic lymphocytes exposed to ammonia. Meanwhile, miR-15a expression increased under ammonia exposure. In summary, these results indicated that ammonia induced oxidative stress, promoted the release of Ca2+, Cytc, and ROS from mitochondria, and then induced mitochondria-mediated inflammatory response, finally triggered apoptosis in chicken splenic lymphocytes.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
55
|
Cao C, Zhu X, Li X, Ouyang H, Wang K, Li X. Assessment of ionic homeostasis imbalance and cytochrome P450 system disturbance in mice during fumonisin B1 (FB1) exposure. CHEMOSPHERE 2020; 251:126393. [PMID: 32155496 DOI: 10.1016/j.chemosphere.2020.126393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Fumonisin B1 (FB1) is a mycotoxin frequently found in agricultural commodities, and poses a considerable risk for human and animal health. The aim of this study was to investigate the toxic effect of FB1 in mice intestine. Male Kunming mice (n = 40) were treated with FB1 diet for 42 days. Histopathological and biochemical analyses, including ion concentrations, transcription of ATPase subunits and mRNA expression of cytochrome P450s (CYP450s) analyses were performed on duodenum, cecum and colon of mice. The results revealed that FB1 caused histological alterations, including partial shedding of villous epithelial cells and inflammatory cell infiltration. Furthermore, a significant change in Na+, K+ and Ca2+ in serum, and the mRNA expression of ATPase subunits and CYP450s in intestinal tracts were observed in FB1-exposed mice. Our results suggested that FB1 exposure induce histopathological injury via disrupting CYP isoforms transcription and triggering ion homeostasis imbalance in mice intestinal tracts.
Collapse
Affiliation(s)
- Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China.
| | - Xingyi Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Xiaowen Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Huimin Ouyang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Kai Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China.
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China.
| |
Collapse
|
56
|
Liu Q, Yang J, Gong Y, Cai J, Zheng Y, Zhang Y, Yu D, Zhang Z. MicroRNA profiling identifies biomarkers in head kidneys of common carp exposed to cadmium. CHEMOSPHERE 2020; 247:125901. [PMID: 31951951 DOI: 10.1016/j.chemosphere.2020.125901] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is an increasingly important environmental pollutant due to its high toxicity to fish and aquatic animals. In the present study, we cultured common carp (Cyprinus carpio L.) in two groups, a control group and a Cd group, with the Cd group being exposed to Cd for 30 d. The antioxidant enzyme activities of T-AOC and CAT and the GSH content were differentially decreased during Cd exposure. miRNAome profiling indicated that 23 differentially expressed miRNAs were potential biomarkers for Cd exposure; 7 miRNAs were up-regulated, and 16 miRNAs were down-regulated. The expression levels of miR-122, novel-miR6, miR-193a-3p and miR-27a-5p in the Cd group were 0.43-fold, 0.47-fold, 0.49-fold and 2.4-fold greater than in the control group, respectively. qRT-PCR further detected that the expression levels of apoptosis-related genes, including BAX, BAD, BAK, CASPASE9 and PIDD, were differentially increased, while BCL2 was decreased. Western blot analysis showed that the protein expression levels of BAX and BAD were increased and that of BCL2 was differentially decreased during Cd exposure. Alterations in the levels of miR-122, novel-miR6, miR-193a-3p and miR-27a-5p expression may play an important role in diagnosing oxidative stress-induced apoptosis during Cd exposure in the head kidney. These markers may contribute to diagnosing the early stage of Cd exposure in common carp.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dahai Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
57
|
Yin K, Cui Y, Qu Y, Zhang J, Zhang H, Lin H. Hydrogen sulfide upregulates miR-16-5p targeting PiK3R1 and RAF1 to inhibit neutrophil extracellular trap formation in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110412. [PMID: 32155482 DOI: 10.1016/j.ecoenv.2020.110412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic air pollutant that causes immune damage. Recent studies have found that neutrophil extracellular trap (NET) formation is one way in which neutrophils exert immune functions. In addition, the formation of NETs is also related to thrombosis and autoimmune diseases. Recent studies have shown that miRNAs are involved in the regulation of a variety of pathophysiological processes. Here, we investigated the role of H2S in regulating the formation of NETs by affecting miR-16-5p. Our study established an in vitro H2S exposure model for neutrophils using phorbol-myristate-acetate (PMA) to induce NET formation. We observed the morphological changes of cells with scanning electron microscopy and fluorescence microscopy. Then, the content of extracellular DNA and the expression of MPO and NE in each group were detected. The results showed that H2S inhibited the formation of NETs. The expression of miR-16-5p and its target genes PiK3R1 and RAF1 was then measured by qRT-PCR. H2S upregulated miR-16-5p and inhibited expression of the target genes PiK3R1 and RAF1, and it subsequently inhibited the Pi3K/AKT and ERK pathways and decreased respiratory burst levels. Furthermore, H2S attenuated inositol 1,4,5-trisphosphate receptor (IP3R)-mediated endoplasmic reticulum calcium outflow as well as autophagy caused by PMA. This study enriches H2S immunotoxicity research and provides a possible solution for the treatment of NET-related diseases.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Number 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingying Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongfu Zhang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Number 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
58
|
Yin K, Cui Y, Sun T, Qi X, Zhang Y, Lin H. Antagonistic effect of selenium on lead-induced neutrophil apoptosis in chickens via miR-16-5p targeting of PiK3R1 and IGF1R. CHEMOSPHERE 2020; 246:125794. [PMID: 31918102 DOI: 10.1016/j.chemosphere.2019.125794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by heavy metals, such as lead (Pb), can lead to severe immune dysfunction. MicroRNAs (miRNAs) are involved in regulating immunity. Whether Pb can regulate neutrophil apoptosis through miRNA, and whether selenium (Se) can antagonize this response are still unknown. We treated neutrophils with 12.5 μM (CH3OO)2Pb and 1 μM Na2SeO3 for 3 h, after which apoptosis was evaluated using acrideine orange/ethidium bromide (AO/EB) dual fluorescent staining and flow cytometry. The results showed that neutrophil apoptosis was significantly increased following Pb exposure, and that this response was prevented upon Se addition. Pb up-regulates miR-16-5p and leads to the subsequent down-regulation of the target genes phosphoinositide-3-kinase regulatory subunit 1 (PiK3R1), insulin-like growth factor 1 receptor (IGF1R), and phosphatidylinositol 3 kinase (Pi3K)-protein kinase B (AKT), followed by activation of the tumor protein P53 (P53)-B-cell lymphoma-2 (Bcl-2)/Bcl-2-Associated X protein (Bax)-cytochrome c (Cytc)-Caspase 9 (mitochondrial apoptotic pathway) and the tumor necrosis factor receptor superfamily member 6 (Fas)-Fas-associated death domain protein (Fadd)-Caspase 8 (death receptor pathway). Pb also triggered oxidative stress and indirectly activated the mitochondrial apoptotic pathway. We conclude that miR-16-5p plays a key role in the apoptosis of neutrophils exposed to Pb by down-regulating the expression of PiK3R1 and IGFR1, thereby activating the mitochondrial apoptotic pathway and death receptor pathway. Se can prevent Pb-induced apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Sun
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163002, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
59
|
Wang W, Shi Q, Wang S, Zhang H, Xu S. Ammonia regulates chicken tracheal cell necroptosis via the LncRNA-107053293/MiR-148a-3p/FAF1 axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121626. [PMID: 31791863 DOI: 10.1016/j.jhazmat.2019.121626] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is a known harmful gas that causes injury to the respiratory system. Ammonia also exists in haze, forming secondary organic aerosols. However, the specific damage caused by NH3 in chicken trachea has not been determined. The regulatory mechanism of ceRNA and its multiple roles have been proposed in many pathomechanisms; therefore, we investigated the functional role of ceRNA in chicken trachea after NH3 inhalation. Broiler chicken trachea exposed to NH3 was selected as the research object. The pathological ultrastructure was observed by transmission electron microscopy. Transcriptome analyses were applied and referenced, and lncRNA-107053293 and miR-148a-3p and FAF1 were selected. A dual-luciferase reporter assay verified the target relationship. Real-time quantitative PCR (RT-PCR) and western blotting were performed to examine the expression levels of necroptosis genes, such as RIPK1, RIPK3, MLKL, caspase 8, and FADD. Our results indicated that lncRNA-107053293 regulated necroptosis by acting as a competing endogenous RNA of miR-148a-3p. FAF1, as a gene target of miR-148a-3p, also affects necroptosis.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
60
|
Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis. Proc Natl Acad Sci U S A 2020; 117:6663-6674. [PMID: 32139610 PMCID: PMC7104411 DOI: 10.1073/pnas.1919211117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1β, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1β, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.
Collapse
|
61
|
Wang L, Shi X, Zheng S, Xu S. Selenium deficiency exacerbates LPS-induced necroptosis by regulating miR-16-5p targeting PI3K in chicken tracheal tissue. Metallomics 2020; 12:562-571. [PMID: 32125337 DOI: 10.1039/c9mt00302a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple tissue necrosis is one of the morphological features of selenium deficiency-mediated injury. MicroRNA (miRNA) participates in the occurrence and development of necroptosis by regulating target genes. Necroptosis is a programmed form of necrosis, and it is closely related to lipopolysaccharide (LPS)-induced injury. Our aim was to investigate whether Se deficiency can promote tracheal injury caused by LPS through miRNA-induced necroptosis. By establishing models of tracheal injury in Se-deficient chickens, we verified the targeting relationship between chicken-derived miR-16-5p and PI3K through bioinformatics, qRT-PCR and WB analyses, and we measured the changes in the expression of genes related to the PI3K/AKT pathway, RIP3/MLKL pathway and MAPK pathway and of heat shock proteins. Under the condition of Se deficiency, the following results were observed: PI3K/AKT expression decreased with the upregulation of miR-16-5p, the expression of necroptosis-related factors (TNF-α, RIP1, FADD, RIP3 and MLKL) increased, and the expression of Caspase 8 significantly decreased (p < 0.05). Light microscopy observations indicated that cell necrosis was the main pathological change due to Se deficiency injury in the tracheal epithelium. The MAPK pathway was activated, and HSP expression was upregulated, indicating that the MAPK pathway and HSPs are both involved in Se deficiency-mediated necroptosis. In addition, Se deficiency promoted the expression of necroptosis-related genes in LPS-treated chickens (p < 0.05), and the pathological changes of cell necrosis were more obvious. In conclusion, we demonstrated that Se deficiency regulates the miR-16-5p-PI3K/AKT pathway and exacerbates LPS-induced necroptosis in chicken tracheal epithelial cells by activating necroptosis-related genes.
Collapse
Affiliation(s)
- Lanqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | | | | | | |
Collapse
|
62
|
Li X, Chen M, Shi Q, Zhang H, Xu S. Hydrogen sulfide exposure induces apoptosis and necroptosis through lncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134296. [PMID: 31683218 DOI: 10.1016/j.scitotenv.2019.134296] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant, has toxic effects on respiratory tract. However, the underlying mechanisms of H2S induced respiratory toxicity and the roles of long non-coding RNAs (lncRNA) and microRNA (miRNA) in this process remain poorly understood. To clear this, we investigated the change of tracheal tissue ultrastructure and the expression profiles of lncRNAs and miRNAs of chicken trachea exposed to H2S for 42 days. Results showed that H2S exposure triggered apoptosis, necroptosis, and differential expression of 16 lncRNAs and 18 miRNAs in broiler tracheas. The results of LMH cells stimulated by NaHS in vitro also showed the occurrence of apoptosis and necroptosis. LncRNA3037 is down-regulated and miR-15a is up-regulated in tracheal tissue and LMH cells under H2S exposure. Bioinformatics analysis and dual luciferase reporter system showed lncRNA3037 bound directly to miR-15a and negatively regulates each other. A20 and BCL2 are the target genes of miR-15a and negatively regulated by it. Overexpression of miR-15a caused apoptosis and necroptosis and its inhibition partially reversed apoptosis and necroptosis of LMH cells caused by NaHS stimulation and lncRNA3037 knockdown. Taken together, we concluded that H2S exposure mediates apoptosis and necroptosis through lncRNA3037/miR-15/A20-BCL2. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
63
|
Xu Y, Li Z, Zhang S, Zhang H, Teng X. miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicol Appl Pharmacol 2019; 388:114869. [PMID: 31863799 DOI: 10.1016/j.taap.2019.114869] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Ammonia (NH3), a toxic gas, is an important cause of atmospheric haze and one of the main pollutants in air environment of poultry houses, threatening the health of human beings and poultry. However, little is known about the effect of NH3 on liver apoptotic damage. This study aimed to investigate the mechanism of oxidative stress-mediated apoptosis caused by NH3 in chicken livers and whether miR-187-5p/apaf-1 axis was involved in this mechanism. Here we duplicated NH3 poisoning model of chickens for fattening to study the ultrastructure of chicken livers, apoptosis rate, oxidative stress indexes, miR-187-5p, and apoptosis-related genes. Obvious apoptotic characteristics of liver tissues exposed to excess NH3 were observed, and the apoptosis rate increased. Excess NH3 decreased the activities of catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde (MDA), suggesting that oxidative stress occurred. miR-187-5p decreased, and apoptotic protease activating factor-1 (apaf-1) increased, indicating that excess NH3 dysregulated miR-187-5p/apaf-1 axis. The expression of tumor protein p53 (p53), Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), Cytochrome-c (Cyt-c), Caspase-9, Caspase-8, and Caspase-3 was promoted, and the expression of B-cell lymphoma-2 (Bcl-2) was inhibited, resulting in apoptosis. Moreover, oxidative stress indexes, miR-187-5p, and apoptosis-related genes changed in dose- and time-dependent manner. Altogether, miR-187-5p/apaf-1 axis participated in oxidative stress-mediated apoptosis caused by NH3 via mitochondrial pathway in the livers of chickens for fattening. This study may provide new ideas to study the mechanism of liver apoptotic damage induced by NH3 exposure.
Collapse
Affiliation(s)
- Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
64
|
Wang S, Chi Q, Hu X, Cong Y, Li S. Hydrogen sulfide-induced oxidative stress leads to excessive mitochondrial fission to activate apoptosis in broiler myocardia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109578. [PMID: 31442807 DOI: 10.1016/j.ecoenv.2019.109578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S), as an environmental gas pollutant, has harmful effects on many tissues and organs, including myocardium. However, the underlying mechanisms of H2S-induced myocardia toxicity remain poorly understood. The present study was designed to investigate the effect of H2S on myocardia injury in broilers from the perspective of apoptosis. 30 ppm H2S was administered in the broiler chamber for 2, 4 and 6 week, respectively, and the myocardial samples in control groups and H2S groups were collected immediately after euthanized broilers. Transmission electron microscope, test kits, qRT-PCR and western blot were performed. Results showed that H2S exposure decreased the activities of catalase (CAT) and total antioxidant capability (T-AOC), whereas the content of hydrogen peroxide (H2O2) and the activity of inducible nitric oxide synthase (iNOS) enhanced. Besides, we found the excessive expression of mitochondrial fission genes (Drp1 and Mff) by H2S, the dynamic balance of mitochondrial fission and fusion is destroyed. Furthermore, the levels of pro-apoptotic gene (including CytC, Cas3, Cas8, Cas9, TNF-α and Bax) increased after H2S exposure, as well as the expression level of anti-apoptotic gene bcl-2 decreased. At the same time, the activities of ATPase (including Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) weakened under H2S exposure. Therefore, we conclude that H2S induced oxidative stress and then leaded to excessive mitochondrial fission, which involved in apoptosis and damage broiler myocardia.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilingjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
65
|
Teng X, Zhang W, Song Y, Wang H, Ge M, Zhang R. Protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23967-23980. [PMID: 31222655 DOI: 10.1007/s11356-019-05638-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a heavy metal that poses a huge potential threat to human and animal health. Therefore, it is necessary to study its damage mechanism. In the present study, we have examined the protective effects of Ganoderma lucidum triterpenoids on oxidative stress and apoptosis in the spleen of chickens induced by Cd. One hundred and twenty healthy Hailan white chickens (7-day-old) were randomly divided into the following four groups: control group, Cd group, triterpenoid group, and Cd-triterpenoid group. The chickens were euthanized on the 20th, 40th, and 60th days, and the spleens were removed. Cd and malondialdehyde (MDA) content, antioxidant enzyme (superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) activities, and inflammatory factor (tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β and IL-6)) and apoptotic factor (caspase-3, BAX, and Bcl-2) expressions were detected. The results showed that Ganoderma lucidum triterpenoids could reduce the content of Cd and MDA; increase the antioxidant enzyme activities (SOD and GSH-Px); decrease the expression of inflammatory factors (TNF-α) and interleukin (IL-1β and IL-6); increase the expression of apoptotic factor (Bcl-2); and decrease the expression of apoptotic factors (caspase-3 and Bax). It showed that the triterpenoids of Ganoderma lucidum had significant protective effects on oxidative stress and apoptosis of chicken spleen, which provided a theoretical basis for further prevention and treatment of cadmium poisoning.
Collapse
Affiliation(s)
- Xiangqi Teng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Weiqian Zhang
- Quality and Standard Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yangyang Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|