51
|
Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115:52. [PMID: 32748089 PMCID: PMC7398957 DOI: 10.1007/s00395-020-0816-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.
Collapse
|
52
|
Velayutham N, Alfieri CM, Agnew EJ, Riggs KW, Baker RS, Ponny SR, Zafar F, Yutzey KE. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine. J Mol Cell Cardiol 2020; 146:95-108. [PMID: 32710980 DOI: 10.1016/j.yjmcc.2020.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rodent cardiomyocytes (CM) undergo mitotic arrest and decline of mononucleated-diploid population post-birth, which are implicated in neonatal loss of heart regenerative potential. However, the dynamics of postnatal CM maturation are largely unknown in swine, despite a similar neonatal cardiac regenerative capacity as rodents. Here, we provide a comprehensive analysis of postnatal cardiac maturation in swine, including CM cell cycling, multinucleation and hypertrophic growth, as well as non-CM cardiac factors such as extracellular matrix (ECM), immune cells, capillaries, and neurons. Our study reveals discordance in postnatal pig heart maturational events compared to rodents. METHODS AND RESULTS Left-ventricular myocardium from White Yorkshire-Landrace pigs at postnatal day (P)0 to 6 months (6mo) was analyzed. Mature cardiac sarcomeric characteristics, such as fetal TNNI1 repression and Cx43 co-localization to cell junctions, were not evident until P30 in pigs. In CMs, appreciable binucleation is observed by P7, with extensive multinucleation (4-16 nuclei per CM) beyond P15. Individual CM nuclei remain predominantly diploid at all ages. CM mononucleation at ~50% incidence is observed at P7-P15, and CM mitotic activity is measurable up to 2mo. CM cross-sectional area does not increase until 2mo-6mo in pigs, though longitudinal CM growth proportional to multinucleation occurs after P15. RNAseq analysis of neonatal pig left ventricles showed increased expression of ECM maturation, immune signaling, neuronal remodeling, and reactive oxygen species response genes, highlighting significance of the non-CM milieu in postnatal mammalian heart maturation. CONCLUSIONS CM maturational events such as decline of mononucleation and cell cycle arrest occur over a 2-month postnatal period in pigs, despite reported loss of heart regenerative potential by P3. Moreover, CMs grow primarily by multinucleation and longitudinal hypertrophy in older pig CMs, distinct from mice and humans. These differences are important to consider for preclinical testing of cardiovascular therapies using swine, and may offer opportunities to study aspects of heart regeneration unavailable in other models.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina M Alfieri
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Agnew
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kyle W Riggs
- Division of Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Scott Baker
- Division of Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sithara Raju Ponny
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Farhan Zafar
- Division of Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW This review summarizes the important role that metabolism plays in driving maturation of human pluripotent stem cell-derived cardiomyocytes. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes provide a model system for human cardiac biology. However, these models have been unable to fully recapitulate the maturity observed in the adult heart. By simulating the glucose to fatty acid transition observed in neonatal mammals, human pluripotent stem cell-derived cardiomyocytes undergo structural and functional maturation also accompanied by transcriptional changes and cell cycle arrest. The role of metabolism in energy production, signaling, and epigenetic modifications illustrates that metabolism and cellular phenotype are intimately linked. Further understanding of key metabolic factors driving cardiac maturation will facilitate the generation of more mature human pluripotent stem cell-derived cardiomyocyte models. This will increase our understanding of cardiac biology and potentially lead to novel therapeutics to enhance heart function.
Collapse
|
54
|
Li J, Jia L, Hao Z, Xu Y, Shen J, Ma C, Wu J, Zhao T, Zhi Y, Li P, Li J, Zhu B, Sun S. Site-Specific N-Glycoproteomic Analysis Reveals Upregulated Sialylation and Core Fucosylation during Transient Regeneration Loss in Neonatal Mouse Hearts. J Proteome Res 2020; 19:3191-3200. [PMID: 32425043 DOI: 10.1021/acs.jproteome.0c00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths worldwide. Because of the incapability of regeneration, the cardiomyocyte loss with MI is replaced by fibrotic scar tissue, which eventually leads to heart failure. Reconstructing regeneration of an adult human heart has been recognized as a promising strategy for cardiac therapeutics. A neonatal mouse heart, which possesses transient regenerative capacity at the first week after birth, represents an ideal model to investigate processes associated with cardiac regeneration. In this work, an integrated glycoproteomic and proteomic analysis was performed to investigate the differences in glycoprotein abundances and site-specific glycosylation between postneonatal day 1 (P1) and day 7 (P7) of mouse hearts. By large-scale profiling and quantifying more than 2900 intact N-glycopeptides in neonatal mouse hearts, we identified 227 altered N-glycopeptides between P1 and P7 hearts. By extracting protein changes from the global proteome data, the normalized glycosylation changes for site-specific glycans were obtained, which showed heterogeneity on glycosites and glycoproteins. Systematic analysis of the glycosylation changes demonstrated an overall upregulation of sialylation and core fucosylation in P7 mice. Notably, the upregulated sialylation was a comprehensive result of increased sialylated glycans with Neu5Gc, with both Neu5Gc and core fucose, and decreased sialylated glycans with Neu5Ac. The upregulated core fucosylation resulted from the increase of glycans containing both core fucose and Neu5Gc but not glycans containing sole core fucose. These data provide a valuable resource for future functional and mechanism studies on heart regeneration and discovery of novel therapeutic targets. All mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD017139.
Collapse
Affiliation(s)
- Jun Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Ting Zhao
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Yuan Zhi
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jing Li
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, Shaanxi province 710069, China
| |
Collapse
|
55
|
Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev 2020; 24:133-142. [PMID: 30421074 DOI: 10.1007/s10741-018-9750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic cardiomyopathy is the cardiovascular condition with the highest impact on the Western population. In mammals (humans included), prolonged ischemia in the ventricular walls causes the death of cardiomyocytes (myocardial infarction, MI). The loss of myocardial mass is soon compensated by the formation of a reparative, non-contractile fibrotic scar that ultimately affects heart performance. Despite the enormous clinical relevance of MI, no effective therapy is available for the long-term treatment of this condition. Moreover, since the human heart is not able to undergo spontaneous regeneration, many researchers aim at designing cell-based therapies that allow for the substitution of dead cardiomyocytes by new, functional ones. So far, the majority of such strategies rely on the injection of different progenitor/stem cells to the infarcted heart. These cardiovascular progenitors, which are expected to differentiate into cardiomyocytes de novo, seldom give rise to new cardiac muscle. In this context, the most important challenge in the field is to fully disclose the molecular and cellular mechanisms that could promote active myocardial regeneration after cardiac damage. Accordingly, we suggest that such strategy should be inspired by the unique regenerative and reparative responses displayed by non-human animal models, from the restricted postnatal myocardial regeneration abilities of the murine heart to the full ventricular regeneration of some bony fishes (e.g., zebrafish). In this review article, we will discuss about current scientific approaches to study cardiac reparative and regenerative phenomena using animal models.
Collapse
|
56
|
|
57
|
Bywater MJ, Burkhart DL, Straube J, Sabò A, Pendino V, Hudson JE, Quaife-Ryan GA, Porrello ER, Rae J, Parton RG, Kress TR, Amati B, Littlewood TD, Evan GI, Wilson CH. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat Commun 2020; 11:1827. [PMID: 32286286 PMCID: PMC7156407 DOI: 10.1038/s41467-020-15552-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.
Collapse
Affiliation(s)
- Megan J Bywater
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Arianna Sabò
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Pharmacology, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
58
|
Lv L, Liao Z, Luo J, Chen H, Guo H, Yang J, Huang R, Pu Q, Zhao H, Yuan Z, Feng S, Qi X, Cai D. Cardiac telocytes exist in the adult Xenopus tropicalis heart. J Cell Mol Med 2020; 24:2531-2541. [PMID: 31930692 PMCID: PMC7028868 DOI: 10.1111/jcmm.14947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar‐free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three‐dimensional network. CTs might play a role in the regeneration of injured myocardium.
Collapse
Affiliation(s)
- Luocheng Lv
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Zhaofu Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiali Luo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jifeng Yang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ruijin Huang
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany.,Department of Anatomy and Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ziqiang Yuan
- Department of Medical Oncology, Cancer Institute of New Jersey, Robert Wood Johnson of Medical School, New Brunswick, NJ, USA
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| |
Collapse
|
59
|
Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. CONCEPTS AND APPLICATIONS OF STEM CELL BIOLOGY 2020. [DOI: 10.1007/978-3-030-43939-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Castellan RFP, Thomson A, Moran CM, Gray GA. Electrocardiogram-gated Kilohertz Visualisation (EKV) Ultrasound Allows Assessment of Neonatal Cardiac Structural and Functional Maturation and Longitudinal Evaluation of Regeneration After Injury. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:167-179. [PMID: 31699549 PMCID: PMC6900752 DOI: 10.1016/j.ultrasmedbio.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
The small size and high heart rate of the neonatal mouse heart makes structural and functional characterisation particularly challenging. Here, we describe application of electrocardiogram-gated kilohertz visualisation (EKV) ultrasound imaging with high spatio-temporal resolution to non-invasively characterise the post-natal mouse heart during normal growth and regeneration after injury. The 2-D images of the left ventricle (LV) acquired across the cardiac cycle from post-natal day 1 (P1) to P42 revealed significant changes in LV mass from P8 that coincided with a switch from hyperplastic to hypertrophic growth and correlated with ex vivo LV weight. Remodelling of the LV was indicated between P8 and P21 when LV mass and cardiomyocyte size increased with no accompanying change in LV wall thickness. Whereas Doppler imaging showed the expected switch from LV filling driven by atrial contraction to filling by LV relaxation during post-natal week 1, systolic function was retained at the same level from P1 to P42. EKV ultrasound imaging also revealed loss of systolic function after induction of myocardial infarction at P1 and regain of function associated with regeneration of the myocardium by P21. EKV ultrasound imaging thus offers a rapid and convenient method for routine non-invasive characterisation of the neonatal mouse heart.
Collapse
Affiliation(s)
- Raphael F P Castellan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Adrian Thomson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Carmel M Moran
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
61
|
Re-enforcing hypoxia-induced polyploid cardiomyocytes enter cytokinesis through activation of β-catenin. Sci Rep 2019; 9:17865. [PMID: 31780774 PMCID: PMC6883062 DOI: 10.1038/s41598-019-54334-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cardiomyocyte (CM) loss is a characteristic of various heart diseases, including ischaemic heart disease. Cardiac regeneration has been suggested as a promising strategy to address CM loss. Although many studies of regeneration have focused mainly on mononucleated or diploid CM, the limitations associated with the cytokinesis of polyploid and multinucleated CMs remain less well known. Here, we show that β-catenin, a key regulator in heart development, can increase cytokinesis in polyploid multinucleated CMs. The activation of β-catenin increases the expression of the cytokinesis-related factor epithelial cell transforming 2 (ECT2), which regulates the actomyosin ring and thus leads to the completion of cytokinesis in polyploid CMs. In addition, hypoxia can induce polyploid and multinucleated CMs by increasing factors related to the G1-S-anaphase of the cell cycle, but not those related to cytokinesis. Our study therefore reveals that the β-catenin can promote the cytokinesis of polyploid multinucleated CMs via upregulation of ECT2. These findings suggest a potential field of polyploid CM research that may be exploitable for cardiac regeneration therapy.
Collapse
|
62
|
Abstract
The investment of nearly 2 decades of clinical investigation into cardiac cell therapy has yet to change cardiovascular practice. Recent insights into the mechanism of cardiac regeneration help explain these results and provide important context in which we can develop next-generation therapies. Non-contractile cells such as bone marrow or adult heart derivatives neither engraft long-term nor induce new muscle formation. Correspondingly, these cells offer little functional benefit to infarct patients. In contrast, preclinical data indicate that transplantation of bona fide cardiomyocytes derived from pluripotent stem cells induces direct remuscularization. This new myocardium beats synchronously with the host heart and induces substantial contractile benefits in macaque monkeys, suggesting that regeneration of contractile myocardium is required to fully recover function. Through a review of the preclinical and clinical trials of cardiac cell therapy, distinguishing the primary mechanism of benefit as either contractile or non-contractile helps appreciate the barriers to cardiac repair and establishes a rational path to optimizing therapeutic benefit.
Collapse
Affiliation(s)
- Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Center for Cardiovascular Biology, University of Washington
- Department of Medicine/Cardiology, University of Washington
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Center for Cardiovascular Biology, University of Washington
- Department of Medicine/Cardiology, University of Washington
- Department of Pathology, University of Washington
- Department of Bioengineering, University of Washington
| |
Collapse
|
63
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
64
|
Velayutham N, Agnew EJ, Yutzey KE. Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatr Cardiol 2019; 40:1345-1358. [PMID: 31346664 PMCID: PMC6786953 DOI: 10.1007/s00246-019-02163-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
The neonatal capacity for cardiac regeneration in mice is well studied and has been used to develop many potential strategies for adult cardiac regenerative repair following injury. However, translating these findings from rodents to designing regenerative therapeutics for adult human heart disease remains elusive. Large mammals including pigs, dogs, and sheep are widely used as animal models of humans in preclinical trials of new cardiac drugs and devices. However, very little is known about the fundamental cardiac cell biology and the timing of postnatal cardiac events that influence cardiomyocyte proliferation in these animals. There is emerging evidence that external physiological and environmental cues could be the key to understanding cardiomyocyte proliferative behavior. In this review, we survey available literature on postnatal development in various large mammal models to offer a perspective on the physiological and cellular characteristics that could be regulating cardiomyocyte proliferation. Similarities and differences between developmental milestones, cardiomyocyte maturational events, as well as environmental cues regulating cardiac development, are discussed for various large mammals, with a focus on postnatal cardiac regenerative potential and translatability to the human heart.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emma J Agnew
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA.
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
65
|
Wang Z, Koenig AL, Lavine KJ, Apte RS. Macrophage Plasticity and Function in the Eye and Heart. Trends Immunol 2019; 40:825-841. [PMID: 31422901 DOI: 10.1016/j.it.2019.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Macrophages are important mediators of inflammation and tissue remodeling. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in homeostasis and disease. In addition, their plasticity enables them to perform a variety of functions in response to changing tissue contexts, such as those imposed by aging. These qualities make macrophages particularly intriguing cells given their dichotomous role in protecting against, or accelerating, diseases of the cardiovascular system and the eye, two tissues that are particularly susceptible to the effects of aging. We review novel perspectives on macrophage biology, as informed by recent studies detailing the diversity of macrophage identity and function, as well as mechanisms influencing macrophage behavior that might offer opportunities for new therapeutic strategies.
Collapse
Affiliation(s)
- Zelun Wang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
66
|
Zheng Y, Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell 2019; 50:264-282. [PMID: 31386861 PMCID: PMC6748048 DOI: 10.1016/j.devcel.2019.06.003] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.
Collapse
Affiliation(s)
- Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
67
|
Malek Mohammadi M, Abouissa A, Azizah I, Xie Y, Cordero J, Shirvani A, Gigina A, Engelhardt M, Trogisch FA, Geffers R, Dobreva G, Bauersachs J, Heineke J. Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight 2019; 5:128336. [PMID: 31335322 DOI: 10.1172/jci.insight.128336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac pressure overload (for example due to aortic stenosis) induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy and interstitial fibrosis in patients. In contrast to adult, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the non-regenerative stage (at postnatal day P7) induced cardiac dysfunction, myocardial fibrosis and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was in particular associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus non-regenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene-program. Indeed, cardiomyocyte specific deletion of GATA4 converted the regenerative nTAC into a non-regenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Mona Malek Mohammadi
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Aya Abouissa
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isyatul Azizah
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yinuo Xie
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, and
| | - Amir Shirvani
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Maren Engelhardt
- Institute for Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Robert Geffers
- Department Genome Analytics, Helmholtz-Center for Infection Research GmbH, Braunschweig, Germany
| | - Gergana Dobreva
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
68
|
Hertig V, Brezai A, Bergeron A, Villeneuve L, Gillis MA, Calderone A. p38α MAPK inhibition translates to cell cycle re-entry of neonatal rat ventricular cardiomyocytes and de novo nestin expression in response to thrombin and after apex resection. Sci Rep 2019; 9:8203. [PMID: 31160695 PMCID: PMC6547723 DOI: 10.1038/s41598-019-44712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The present study tested the hypothesis that p38α MAPK inhibition leads to cell cycle re-entry of neonatal ventricular cardiomyocytes (NNVMs) and de novo nestin expression in response to thrombin and after apex resection of the neonatal rat heart. Thrombin (1 U/ml) treatment of 1-day old NNVMs did not induce cell cycle re-entry or nestin expression. Acute exposure of NNVMs to thrombin increased p38α MAPK and HSP27 phosphorylation and p38α/β MAPK inhibitor SB203580 abrogated HSP27 phosphorylation. Thrombin and SB203580 co-treatment of NNVMs led to bromodeoxyuridine incorporation and nestin expression. SB203580 (5 mg/kg) administration immediately after apex resection of 1-day old neonatal rat hearts and continued for two additional days shortened the fibrin clot length sealing the exposed left ventricular chamber. SB203580-treatment increased the density of troponin-T(+)-NNVMs that incorporated bromodeoxyuridine and expressed nuclear phosphohistone-3. Nestin(+)-NNVMs were selectively detected at the border of the fibrin clot and SB203580 potentiated the density that re-entered the cell cycle. These data suggest that the greater density of ventricular cardiomyocytes and nestin(+)-ventricular cardiomyocytes that re-entered the cell cycle after SB203580 treatment of the apex-resected neonatal rat heart during the acute phase of fibrin clot formation may be attributed in part to inhibition of thrombin-mediated p38α MAPK signalling.
Collapse
Affiliation(s)
- Vanessa Hertig
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Andra Brezai
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Bergeron
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | - Angelino Calderone
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
69
|
Huang K, Li Z, Su T, Shen D, Hu S, Cheng K. Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Teng Su
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Deliang Shen
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
70
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
71
|
|
72
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
73
|
Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 2018; 127:154-164. [PMID: 30571978 DOI: 10.1016/j.yjmcc.2018.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.
Collapse
|
74
|
Jung M, Dodsworth M, Thum T. Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol 2018; 114:4. [PMID: 30523422 PMCID: PMC6290728 DOI: 10.1007/s00395-018-0712-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Myocardial infarction triggers infiltration of several types of immune cells that coordinate both innate and adaptive immune responses. These play a dual role in post-infarction cardiac remodeling by initiating and resolving inflammatory processes, which needs to occur in a timely and well-orchestrated way to ensure a reestablishment of normalized cardiac functions. Thus, therapeutic modulation of immune responses might have benefits for infarct patients. While such strategies have shown great potential in treating cancer, applications in the post-infarction context have been disappointing. One challenge has been the complexity and plasticity of immune cells and their functions in cardiac regulation and healing. The types appear in patterns that are temporally and spatially distinct, while influencing each other and the surrounding tissue. A comprehensive understanding of the immune cell repertoire and their regulatory functions following infarction is sorely needed. Processes of cardiac remodeling trigger additional genetic changes that may also play critical roles in the aftermath of cardiovascular disease. Some of these changes involve non-coding RNAs that play crucial roles in the regulation of immune cells and may, therefore, be of therapeutic interest. This review summarizes what is currently known about the functions of immune cells and non-coding RNAs during post-infarction wound healing. We address some of the challenges that remain and describe novel therapeutic approaches under development that are based on regulating immune responses through non-coding RNAs in the aftermath of the disease.
Collapse
Affiliation(s)
- Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Dodsworth
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
75
|
Lock MC, Tellam RL, Botting KJ, Wang KCW, Selvanayagam JB, Brooks DA, Seed M, Morrison JL. The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 2018; 596:5625-5640. [PMID: 29785790 PMCID: PMC6265572 DOI: 10.1113/jp276072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Ross L. Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley J. Botting
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley C. W. Wang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- School of Human SciencesUniversity of Western AustraliaCrawleyWA 6009Australia
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart HealthSouth Australian Health & Medical Research Institute, and Flinders UniversityGPO Box 2100AdelaideSA 5001Australia
| | - Doug A. Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Mike Seed
- Hospital for Sick Children, Division of Cardiology555 University AvenueTorontoON M5G 1X8Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
76
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
77
|
Richardson RJ. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. NPJ Regen Med 2018; 3:21. [PMID: 30416753 PMCID: PMC6220283 DOI: 10.1038/s41536-018-0059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular events that contribute to tissue healing of non-sterile wounds to the skin and ischaemic injury to internal organs such as the heart share remarkable similarities despite the differences between these injury types and organs. In adult vertebrates, both injuries are characterised by a complex series of overlapping events involving multiple different cell types and cellular interactions. In adult mammals both tissue-healing processes ultimately lead to the permanent formation of a fibrotic, collagenous scar, which can have varying effects on tissue function depending on the site and magnitude of damage. Extensive scarring in the heart as a result of a severe myocardial infarction contributes to ventricular dysfunction and the progression of heart failure. Some vertebrates such as adult zebrafish, however, retain a more embryonic capacity for scar-free tissue regeneration in many tissues including the skin and heart. In this review, the similarities and differences between these different types of wound healing are discussed, with special attention on recent advances in regenerative, non-scarring vertebrate models such as the zebrafish.
Collapse
Affiliation(s)
- Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
78
|
Abstract
Ischaemic heart disease is a leading cause of death worldwide. Injury to the heart is followed by loss of the damaged cardiomyocytes, which are replaced with fibrotic scar tissue. Depletion of cardiomyocytes results in decreased cardiac contraction, which leads to pathological cardiac dilatation, additional cardiomyocyte loss, and mechanical dysfunction, culminating in heart failure. This sequential reaction is defined as cardiac remodelling. Many therapies have focused on preventing the progressive process of cardiac remodelling to heart failure. However, after patients have developed end-stage heart failure, intervention is limited to heart transplantation. One of the main reasons for the dramatic injurious effect of cardiomyocyte loss is that the adult human heart has minimal regenerative capacity. In the past 2 decades, several strategies to repair the injured heart and improve heart function have been pursued, including cellular and noncellular therapies. In this Review, we discuss current therapeutic approaches for cardiac repair and regeneration, describing outcomes, limitations, and future prospects of preclinical and clinical trials of heart regeneration. Substantial progress has been made towards understanding the cellular and molecular mechanisms regulating heart regeneration, offering the potential to control cardiac remodelling and redirect the adult heart to a regenerative state.
Collapse
Affiliation(s)
- Hisayuki Hashimoto
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
79
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
80
|
Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, Guo S, Yang F, Han Z, Li Y, Yan G, Yu Y, Bao Z, Yu M, Li F, Tian Y, Pan Z, Yang B. The Long Noncoding RNA CAREL Controls Cardiac Regeneration. J Am Coll Cardiol 2018; 72:534-550. [PMID: 30056829 DOI: 10.1016/j.jacc.2018.04.085] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adult mammalian heart loses regeneration ability following ischemic injury due to the loss of cardiomyocyte mitosis. However, the molecular mechanisms underlying the post-mitotic nature of cardiomyocytes remain largely unknown. OBJECTIVES The purpose of this study was to define the essential role of long noncoding ribonucleic acids (lncRNAs) in heart regeneration during postnatal and adult injury. METHODS Myh6-driving cardiomyocyte-specific lncRNA-CAREL transgenic mice and adenovirus-mediated in vivo silencing of endogenous CAREL were used in this study. The effect of CAREL on cardiomyocyte replication and heart regeneration after apical resection or myocardial infarction was assessed by detecting mitosis and cytokinesis. RESULTS An lncRNA CAREL was found significantly up-regulated in cardiomyocytes from neonatal mice (P7) in parallel with loss of regenerative capacity. Cardiac-specific overexpression of CAREL in mice reduced cardiomyocyte division and proliferation and blunted neonatal heart regeneration after injury. Conversely, silencing of CAREL in vivo markedly promoted cardiac regeneration and improved heart functions after myocardial infarction in neonatal and adult mice. CAREL acted as a competing endogenous ribonucleic acid for miR-296 to derepress the expression of Trp53inp1 and Itm2a, the target genes of miR-296. Consistently, overexpression of miR-296 significantly increased cardiomyocyte replication and cardiac regeneration after injury. Decline of cardiac regenerative ability in CAREL transgenic mice was also rescued by miR-296. A short fragment containing the conserved sequence of CAREL reduced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes as the full-length CAREL. CONCLUSIONS LncRNA CAREL regulates cardiomyocyte proliferation and heart regeneration in postnatal and adult heart after injury by acting as a competing endogenous ribonucleic acid on miR-296 that targets Trp53inp1 and Itm2a.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China; Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China.
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bingjie Hua
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin, China
| | - Jiamin Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chongwei Bi
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuyuan Guo
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixi Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ye Tian
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
81
|
Grajevskaja V, Camerota D, Bellipanni G, Balciuniene J, Balciunas D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018; 13:e0197293. [PMID: 29933372 PMCID: PMC6014646 DOI: 10.1371/journal.pone.0197293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Diana Camerota
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Jorune Balciuniene
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
82
|
Iismaa SE, Li M, Kesteven S, Wu J, Chan AY, Holman SR, Calvert JW, Haq AU, Nicks AM, Naqvi N, Husain A, Feneley MP, Graham RM. Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice. Sci Rep 2018; 8:6114. [PMID: 29666426 PMCID: PMC5904135 DOI: 10.1038/s41598-018-24525-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023] Open
Abstract
We have previously demonstrated that adult transgenic C57BL/6J mice with CM-restricted overexpression of the dominant negative W v mutant protein (dn-c-kit-Tg) respond to pressure overload with robust cardiomyocyte (CM) cell cycle entry. Here, we tested if outcomes after myocardial infarction (MI) due to coronary artery ligation are improved in this transgenic model. Compared to non-transgenic littermates (NTLs), adult male dn-c-kit-Tg mice displayed CM hypertrophy and concentric left ventricular (LV) hypertrophy in the absence of an increase in workload. Stroke volume and cardiac output were preserved and LV wall stress was markedly lower than that in NTLs, leading to a more energy-efficient heart. In response to MI, infarct size in adult (16-week old) dn-c-kit-Tg hearts was similar to that of NTL after 24 h but was half that in NTL hearts 12 weeks post-MI. Cumulative CM cell cycle entry was only modestly increased in dn-c-kit-Tg hearts. However, dn-c-kit-Tg mice were more resistant to infarct expansion, adverse LV remodelling and contractile dysfunction, and suffered no early death from LV rupture, relative to NTL mice. Thus, pre-existing cardiac hypertrophy lowers wall stress in dn-c-kit-Tg hearts, limits infarct expansion and prevents death from myocardial rupture.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ming Li
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Scott Kesteven
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Jianxin Wu
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Andrea Y Chan
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Sara R Holman
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Ahtesham Ul Haq
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Amy M Nicks
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Nawazish Naqvi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ahsan Husain
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael P Feneley
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert M Graham
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
83
|
Lalowski MM, Björk S, Finckenberg P, Soliymani R, Tarkia M, Calza G, Blokhina D, Tulokas S, Kankainen M, Lakkisto P, Baumann M, Kankuri E, Mervaala E. Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quantitative Combinatorial Omics Approach. Front Physiol 2018; 9:365. [PMID: 29695975 PMCID: PMC5904546 DOI: 10.3389/fphys.2018.00365] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 01/19/2023] Open
Abstract
The heart of a newborn mouse has an exceptional capacity to regenerate from myocardial injury that is lost within the first week of its life. In order to elucidate the molecular mechanisms taking place in the mouse heart during this critical period we applied an untargeted combinatory multiomics approach using large-scale mass spectrometry-based quantitative proteomics, metabolomics and mRNA sequencing on hearts from 1-day-old and 7-day-old mice. As a result, we quantified 1.937 proteins (366 differentially expressed), 612 metabolites (263 differentially regulated) and revealed 2.586 differentially expressed gene loci (2.175 annotated genes). The analyses pinpointed the fructose-induced glycolysis-pathway to be markedly active in 1-day-old neonatal mice. Integrated analysis of the data convincingly demonstrated cardiac metabolic reprogramming from glycolysis to oxidative phosphorylation in 7-days old mice, with increases of key enzymes and metabolites in fatty acid transport (acylcarnitines) and β-oxidation. An upsurge in the formation of reactive oxygen species and an increase in oxidative stress markers, e.g., lipid peroxidation, altered sphingolipid and plasmalogen metabolism were also evident in 7-days mice. In vitro maintenance of physiological fetal hypoxic conditions retained the proliferative capacity of cardiomyocytes isolated from newborn mice hearts. In summary, we provide here a holistic, multiomics view toward early postnatal changes associated with loss of a tissue regenerative capacity in the neonatal mouse heart. These results may provide insight into mechanisms of human cardiac diseases associated with tissue regenerative incapacity at the molecular level, and offer a prospect to discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Maciej M Lalowski
- Department of Biochemistry, Department of Developmental Biology, Faculty of Medicine, Helsinki Institute of Life Science (HiLIFE) and Medicum, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Susann Björk
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Piet Finckenberg
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Department of Biochemistry, Department of Developmental Biology, Faculty of Medicine, Helsinki Institute of Life Science (HiLIFE) and Medicum, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Miikka Tarkia
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Giulio Calza
- Department of Biochemistry, Department of Developmental Biology, Faculty of Medicine, Helsinki Institute of Life Science (HiLIFE) and Medicum, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Daria Blokhina
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Sari Tulokas
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Medicum, Department of Clinical Chemistry and Hematology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Department of Biochemistry, Department of Developmental Biology, Faculty of Medicine, Helsinki Institute of Life Science (HiLIFE) and Medicum, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Medicum, Department of Pharmacology, Faculty of Medicine, PB63, University of Helsinki, Helsinki, Finland
| |
Collapse
|
84
|
Castellan RFP, Meloni M. Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap. Front Cardiovasc Med 2018; 5:7. [PMID: 29459901 PMCID: PMC5807373 DOI: 10.3389/fcvm.2018.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.
Collapse
Affiliation(s)
- Raphael F. P. Castellan
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Marco Meloni
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
85
|
Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM, Sharpe M, Uygur A, Cocco-Delgado LH, Ho NN, Gerard NP, Gerard CJ, MacRae CA, Burns CE, Burns CG, Whited JL, Lee RT. Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation 2018; 137:2152-2165. [PMID: 29348261 PMCID: PMC5953786 DOI: 10.1161/circulationaha.117.030801] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Defining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Insight into the transcriptomic landscape of early cardiac regeneration from model organisms will shed light on evolutionarily conserved pathways in successful cardiac regeneration. METHODS Here we describe a cross-species transcriptomic screen in 3 model organisms for cardiac regeneration: axolotl, neonatal mice, and zebrafish. Apical resection to remove ≈10% to 20% of ventricular mass was carried out in these model organisms. RNA-sequencing analysis was performed on the hearts harvested at 3 time points: 12, 24, and 48 hours after resection. Sham surgery was used as internal control. RESULTS Genes associated with inflammatory processes were found to be upregulated in a conserved manner. Complement receptors (activated by complement components, part of the innate immune system) were found to be highly upregulated in all 3 species. This approach revealed induction of gene expression for complement 5a receptor 1 in the regenerating hearts of zebrafish, axolotls, and mice. Inhibition of complement 5a receptor 1 significantly attenuated the cardiomyocyte proliferative response to heart injury in all 3 species. Furthermore, after left ventricular apical resection, the cardiomyocyte proliferative response was diminished in mice with genetic deletion of complement 5a receptor 1. CONCLUSIONS These data reveal that activation of complement 5a receptor 1 mediates an evolutionarily conserved response that promotes cardiomyocyte proliferation after cardiac injury and identify complement pathway activation as a common pathway of successful heart regeneration.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.)
| | - Yamen Abbas
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.)
| | - Donald M Bryant
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.).,Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA (D.M.B., J.L.W.).,Allen Discovery Center, Tufts University, Medford, MA (D.M.B., J.L.W.)
| | - Juan Manuel Gonzalez-Rosa
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (J.M.G.-R., M.S., C.E.B., C.G.B.)
| | - Michka Sharpe
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (J.M.G.-R., M.S., C.E.B., C.G.B.)
| | - Aysu Uygur
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.)
| | - Lucas H Cocco-Delgado
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.)
| | - Nhi Ngoc Ho
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.)
| | - Norma P Gerard
- Division of Respiratory Diseases, Boston Children's Hospital, MA (C.J.G., N.P.G.).,Department of Medicine, Harvard Medical School, Boston, MA (C.J.G., N.P.G.).,Beth Israel Deaconess Medical Center, Boston, MA (C.J.G., N.P.G.)
| | - Craig J Gerard
- Division of Respiratory Diseases, Boston Children's Hospital, MA (C.J.G., N.P.G.).,Department of Medicine, Harvard Medical School, Boston, MA (C.J.G., N.P.G.).,Beth Israel Deaconess Medical Center, Boston, MA (C.J.G., N.P.G.)
| | - Calum A MacRae
- Department of Medicine, Cardiovascular Division, Brigham & Women's Hospital and Harvard Medical School, Boston, MA (C.A.M., R.T.L.)
| | - Caroline E Burns
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (J.M.G.-R., M.S., C.E.B., C.G.B.)
| | - C Geoffrey Burns
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (J.M.G.-R., M.S., C.E.B., C.G.B.)
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.).,Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA (D.M.B., J.L.W.).,Allen Discovery Center, Tufts University, Medford, MA (D.M.B., J.L.W.)
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (N.N., Y.A., D.M.B., A.U., L.H.C.-D., N.N.H., J.L.W., R.T.L.) .,Department of Medicine, Cardiovascular Division, Brigham & Women's Hospital and Harvard Medical School, Boston, MA (C.A.M., R.T.L.)
| |
Collapse
|
86
|
Sahún-Español Á, Clemente C, Arroyo AG. 3D Image Analysis of the Microvasculature in Healthy and Diseased Tissues. Methods Mol Biol 2018; 1731:193-212. [PMID: 29318555 DOI: 10.1007/978-1-4939-7595-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body. The ability to respond to changing tissue demands requires constant reshaping of the vascular network through modulation of its density, diameter, or patterning. These processes are especially prominent after tissue damage or in tumors. The matrix metalloproteinase (MMP) family of endopeptidases are key contributors to vascular remodeling, able to cleave all extracellular matrix components and also soluble factors and membrane receptors. Observations recorded over several decades have established that the vasculature changes in pathological contexts, and this has formed the basis for developing angiotherapies as a novel approach to treating disease. For example, inhibition of angiogenesis or normalization of the vasculature has been proposed as treatment for cancer and chronic inflammatory diseases. In contrast, boosting angiogenesis may be helpful in ischemic conditions such as myocardial infarction and in regenerative medicine. Classical histological methods for the analysis of tissue vasculature have relied on thin sections that do not capture the complex 3D structure of the vascular network. Given the importance of understanding disease-associated vascular changes for the development of rational angiotherapeutic interventions, we present a protocol for thick section-based 3D image analysis of vasculature structure and function.
Collapse
Affiliation(s)
- Álvaro Sahún-Español
- Matrix Metalloproteinases in Angiogenesis and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Cristina Clemente
- Matrix Metalloproteinases in Angiogenesis and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alicia G Arroyo
- Matrix Metalloproteinases in Angiogenesis and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
87
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
88
|
Strange K. Drug Discovery in Fish, Flies, and Worms. ILAR J 2017; 57:133-143. [PMID: 28053067 DOI: 10.1093/ilar/ilw034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies.
Collapse
Affiliation(s)
- Kevin Strange
- Kevin Strange, Ph.D., is President and CEO of the MDI Biological Laboratory and CEO of Novo Biosciences, Inc
| |
Collapse
|
89
|
Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, Huang R, Yuan Z, Chen Y, Feng S, Zheng X, Huang J, Huang W, Qi X, Cai D. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci 2017; 7:70. [PMID: 29255592 PMCID: PMC5727962 DOI: 10.1186/s13578-017-0199-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background Myocardium regeneration in adult mammals is very limited, but has enormous therapeutic potentials. However, we are far from complete understanding the cellular and molecular mechanisms by which heart tissue can regenerate. The full functional ability of amphibians to regenerate makes them powerful animal models for elucidating how damaged mature organs are naturally reconstituted in an adult organism. Like other amphibians, such as newts and axolotls, adult Xenopus displays high regenerative capacity such as retina. So far, whether the adult frog heart processes regenerative capacity after injury has not been well delineated. Results We examined the regeneration of adult cardiac tissues of Xenopus tropicalis after resection of heart apex. We showed, for the first time, that the adult X. tropicalis heart can regenerate perfectly in a nearly scar-free manner approximately 30 days after injury via apical resection. We observed that the injured heart was sealed through coagulation immediately after resection, which was followed by transient fibrous tissue production. Finally, the amputated area was regenerated by cardiomyocytes. During the regeneration process, the cardiomyocytes in the border area of the myocardium adjacent to the wound exhibited high proliferation after injury, thus contribute the newly formed heart tissue. Conclusions Establishing a cardiac regeneration model in adult X. tropicalis provides a powerful tool for recapitulating a perfect regeneration phenomenon and elucidating the underlying molecular mechanisms of cardiac regeneration in an adult heart, and findings from this model may be applicable in mammals. Electronic supplementary material The online version of this article (10.1186/s13578-017-0199-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Souqi Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Wenyan Dong
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Luocheng Lv
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Jifeng Yang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ruijin Huang
- Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Ziqiang Yuan
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, USA
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Junqi Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Weihuan Huang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632 People's Republic of China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, 510632 China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, 510632 Guangdong Province China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
90
|
Serpooshan V, Liu YH, Buikema JW, Galdos FX, Chirikian O, Paige S, Venkatraman S, Kumar A, Rawnsley DR, Huang X, Pijnappels DA, Wu SM. Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Sci Rep 2017; 7:12590. [PMID: 28974782 PMCID: PMC5626718 DOI: 10.1038/s41598-017-12869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro. Genome-wide expression profile of neonatal Nkx2.5+ cardiomyoblasts showed the absence of sarcomeric gene and the presence of cardiac transcription factors. To determine the lineage contribution of the Nkx2.5+ cardiomyoblasts, we generated a doxycycline suppressible Cre transgenic mouse under the regulation of the Nkx2.5 enhancer and showed that neonatal Nkx2.5+ cardiomyoblasts mature into cardiomyocytes in vivo. Ablation of neonatal cardiomyoblasts resulted in ventricular hypertrophy and dilation, supporting a functional requirement of the Nkx2.5+ cardiomyoblasts. This study provides direct lineage tracing evidence that a cardiomyoblast population contributes to cardiogenesis in the neonatal heart. The cell population identified here may serve as a promising therapeutic for pediatric cardiac regeneration.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Liu
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francisco X Galdos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Sharon Paige
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Venkatraman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Anusha Kumar
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Rawnsley
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Xiaojing Huang
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Daniël A Pijnappels
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, and Stanford University School of Medicine, Stanford, CA, USA. .,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
91
|
Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf-Klingebiel M, Gigina A, Schrameck U, Rudat C, Liang Q, Kispert A, Wollert KC, Bauersachs J, Heineke J. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med 2017; 9:265-279. [PMID: 28053183 PMCID: PMC5286367 DOI: 10.15252/emmm.201606602] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte‐specific Gata4 knockout (CM‐G4‐KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM‐G4‐KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM‐G4‐KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro‐regenerative genes (among them interleukin‐13, Il13) in the myocardium. Interestingly, systemic administration of IL‐13 rescued defective heart regeneration in CM‐G4‐KO mice and could be evaluated as therapeutic strategy in the future.
Collapse
Affiliation(s)
- Mona Malek Mohammadi
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Badder Kattih
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andrea Grund
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Natali Froese
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Anna Gigina
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ulrike Schrameck
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.,Cluster of Excellence REBIRTH, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kai C Wollert
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany.,Cluster of Excellence REBIRTH, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johann Bauersachs
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany.,Cluster of Excellence REBIRTH, Medizinische Hochschule Hannover, Hannover, Germany
| | - Joerg Heineke
- Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany .,Cluster of Excellence REBIRTH, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
92
|
Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, El-Osta A, Hudson JE, Porrello ER. Multicellular Transcriptional Analysis of Mammalian Heart Regeneration. Circulation 2017; 136:1123-1139. [PMID: 28733351 PMCID: PMC5598916 DOI: 10.1161/circulationaha.117.028252] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we assemble a transcriptomic framework of multiple cardiac cell populations during postnatal development and following injury, which enables comparative analyses of the regenerative (neonatal) versus nonregenerative (adult) state for the first time. METHODS Cardiomyocytes, fibroblasts, leukocytes, and endothelial cells from infarcted and noninfarcted neonatal (P1) and adult (P56) mouse hearts were isolated by enzymatic dissociation and fluorescence-activated cell sorting at day 3 following surgery. RNA sequencing was performed on these cell populations to generate the transcriptome of the major cardiac cell populations during cardiac development, repair, and regeneration. To complement our transcriptomic data, we also surveyed the epigenetic landscape of cardiomyocytes during postnatal maturation by performing deep sequencing of accessible chromatin regions by using the Assay for Transposase-Accessible Chromatin from purified mouse cardiomyocyte nuclei (P1, P14, and P56). RESULTS Profiling of cardiomyocyte and nonmyocyte transcriptional programs uncovered several injury-responsive genes across regenerative and nonregenerative time points. However, the majority of transcriptional changes in all cardiac cell types resulted from developmental maturation from neonatal stages to adulthood rather than activation of a distinct regeneration-specific gene program. Furthermore, adult leukocytes and fibroblasts were characterized by the expression of a proliferative gene expression network following infarction, which mirrored the neonatal state. In contrast, cardiomyocytes failed to reactivate the neonatal proliferative network following infarction, which was associated with loss of chromatin accessibility around cell cycle genes during postnatal maturation. CONCLUSIONS This work provides a comprehensive framework and transcriptional resource of multiple cardiac cell populations during cardiac development, repair, and regeneration. Our findings define a regulatory program underpinning the neonatal regenerative state and identify alterations in the chromatin landscape that could limit reinduction of the regenerative program in adult cardiomyocytes.
Collapse
Affiliation(s)
- Gregory A Quaife-Ryan
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Choon Boon Sim
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Mark Ziemann
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Antony Kaspi
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Haloom Rafehi
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Mirana Ramialison
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - Assam El-Osta
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.)
| | - James E Hudson
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.).
| | - Enzo R Porrello
- From School of Biomedical Sciences, University of Queensland, Brisbane, Australia (G.A.Q.-R., C.B.S., J.E.H., E.R.P.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M.Z., A.K., H.R., A.E.-O.); Australian Regenerative Medicine Institute, EMBL-Australia Collaborating Group, Systems Biology Institute Australia, Monash University, Melbourne, Victoria (M.R.); Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Chinese University of Hong Kong (A.E.-O.); Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia (E.R.P.); and Department of Physiology, School of Biomedical Sciences, University of Melbourne, Victoria, Australia (E.R.P.).
| |
Collapse
|
93
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
94
|
Graham E, Bergmann O. Dating the Heart: Exploring Cardiomyocyte Renewal in Humans. Physiology (Bethesda) 2017; 32:33-41. [PMID: 27927803 DOI: 10.1152/physiol.00015.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regenerative mechanisms reported in the hearts of lower vertebrates have been recapitulated in the mammalian milieu, and recent studies have provided strong evidence for cardiomyocyte turnover in humans. These findings speak to an emerging consensus that adult mammalian cardiomyocytes do have the ability to divide, and it stands to reason that enrichment of this innate proliferative capacity should prove essential for complete cardiac regeneration.
Collapse
Affiliation(s)
- Evan Graham
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; and
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; and.,DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
95
|
Fernández-Avilés F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D, Fuster V, Janssens S, Kastrup J, Kim HS, Lüscher TF, Martin JF, Menasché P, Simari RD, Stone GW, Terzic A, Willerson JT, Wu JC. Global position paper on cardiovascular regenerative medicine. Eur Heart J 2017; 38:2532-2546. [PMID: 28575280 PMCID: PMC5837698 DOI: 10.1093/eurheartj/ehx248] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Andreu M Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Lina Badimon
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Roberto Bolli
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dominique Charron
- LabEx TRANSPLANTEX; HLA & Médecine "Jean Dausset" Laboratory Network, Hôpital Saint-Louis AP-HP, Université Paris Diderot, 75013, France
| | - Valentin Fuster
- CIBERCV, ISCIII, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of medicine at Mount Sinai, New York, NY, USA
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Philippe Menasché
- Department of Cardiovascular Surgery Hôpital Européen Georges Pompidou; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert D Simari
- School of Medicine, University of Kansas, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Gregg W Stone
- Center for Clinical Trials, Cardiovascular Research Foundation, New York, New York; Center for Clinical Trials, NewYork-Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Department of Cardiovascular Diseases, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - James T Willerson
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine and Department of Radiology, Stanford University School of Medicine, CA, USA
| |
Collapse
|
96
|
Górnikiewicz B, Ronowicz A, Madanecki P, Sachadyn P. Genome-wide DNA methylation profiling of the regenerative MRL/MpJ mouse and two normal strains. Epigenomics 2017; 9:1105-1122. [DOI: 10.2217/epi-2017-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: We aimed to identify the pivotal differences in the DNA methylation profiles between the regeneration capable MRL/MpJ mouse and reference mouse strains. Materials & methods: Global DNA methylation profiling was performed in ear pinnae, bone marrow, spleen, liver and heart from uninjured adult females of the MRL/MpJ and C57BL/6J and BALB/c. Results & conclusion: A number of differentially methylated regions (DMRs) distinguishing between the MRL/MpJ mouse and both references were identified. In the ear pinnae, the DMRs were enriched in genes associated with development, inflammation and apoptosis, and in binding sites of transcriptional modulator Smad1. Several DMRs overlapped previously mapped quantitative trait loci of regenerative capability. The results suggest potential epigenetic determinants of regenerative phenomenon.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Madanecki
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
97
|
Wang J, Martin JF. Hippo Pathway: An Emerging Regulator of Craniofacial and Dental Development. J Dent Res 2017; 96:1229-1237. [PMID: 28700256 DOI: 10.1177/0022034517719886] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- J Wang
- 1 Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - J F Martin
- 1 Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,2 Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
98
|
Abstract
Stem cell mediated cardiac repair is an exciting and controversial area of cardiovascular research that holds the potential to produce novel, revolutionary therapies for the treatment of heart disease. Extensive investigation to define cell types contributing to cardiac formation, homeostasis and regeneration has produced several candidates, including adult cardiac c-Kit+ expressing stem and progenitor cells that have even been employed in a Phase I clinical trial demonstrating safety and feasibility of this therapeutic approach. However, the field of cardiac cell based therapy remains deeply divided due to strong disagreement among researchers and clinicians over which cell types, if any, are the best candidates for these applications. Research models that identify and define specific cardiac cells that effectively contribute to heart repair are urgently needed to resolve this debate. In this review, current c-Kit reporter models are discussed with respect to myocardial c-Kit cell biology and function, and future designs imagined to better represent endogenous myocardial c-Kit expression.
Collapse
|
99
|
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8:349-359. [PMID: 28130761 PMCID: PMC5413598 DOI: 10.1007/s13238-017-0371-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Collapse
Affiliation(s)
- Yu Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aijuan Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
100
|
Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1764549. [PMID: 28484495 PMCID: PMC5397648 DOI: 10.1155/2017/1764549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs) from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal). By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B) also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.
Collapse
|