51
|
Bouthelier A, Fernández-Arroyo L, Mesa-Ciller C, Cibrian D, Martín-Cófreces NB, Castillo-González R, Calero M, Herráez-Aguilar D, Guajardo-Grence A, Pacheco AM, Marcos-Jiménez A, Quiroga B, Morado M, Monroy F, Muñoz-Calleja C, Sánchez-Madrid F, Urrutia AA, Aragonés J. Erythroid SLC7A5/SLC3A2 amino acid carrier controls red blood cell size and maturation. iScience 2022; 26:105739. [PMID: 36582828 PMCID: PMC9792907 DOI: 10.1016/j.isci.2022.105739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.
Collapse
Affiliation(s)
- Antonio Bouthelier
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Danay Cibrian
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Castillo-González
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain,Pathology Anatomy Department, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Diego Herráez-Aguilar
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana María Pacheco
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Borja Quiroga
- Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Morado
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Andrés A. Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain,Corresponding author
| |
Collapse
|
52
|
Targeting L-type amino acid transporter 1 in urological malignancy: Current status and future perspective. J Pharmacol Sci 2022; 150:251-258. [DOI: 10.1016/j.jphs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
53
|
Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Glutamine transporters transport different amino acids for cell growth and metabolism. In tumor cells, glutamine transporters are often highly expressed and play a crucial role in their growth. By inhibiting the amino acid transport of these transporters, the growth of cancer cells can be inhibited. In recent years, more and more attention has been paid to the study of glutamine transporter. In this article, the differences between the ASC system amino acid transporter 2 (ASCT2), L-type amino acid transporter 1 (LAT1), and the cystine–glutamate exchange (xCT) transporters research progress on the mechanism of action and corresponding small molecule inhibitors are summarized. This article introduces 62 related small molecule inhibitors of different transporters of ASCT2, LAT1, and xCT. These novel chemical structures provide ideas for the research and design of targeted inhibitors of glutamine transporters, as well as important references and clues for the design of new anti-tumor drugs.
Collapse
Affiliation(s)
- Jiye Zhao
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Jiayi Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Yang Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Qile Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| | - Hao Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| |
Collapse
|
54
|
Radiolabeling and Biological Evaluation of Novel 99mTc-Nitrido and 99mTc-Oxo Complexes with 4-Methoxy- L-Phenylalanine Dithiocarbamate for Tumor Imaging. Pharmaceutics 2022; 14:pharmaceutics14102196. [PMID: 36297631 PMCID: PMC9607073 DOI: 10.3390/pharmaceutics14102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
To develop novel radiolabeled amino acid tumor imaging agents, 4-methoxy-L-phenylalanine dithiocarbamate (MOPADTC) was synthesized successfully, and two kinds of 99mTc-labeled complexes ([99mTc]TcN-MOPADTC and [99mTc]TcO-MOPADTC) with high radiochemical purities (RCP > 95%) were obtained. The in vitro stability and partition coefficient were determined, and the results show that both of these complexes have good in vitro stability; [99mTc]TcO-MOPADTC is hydrophilic, while [99mTc]TcN-MOPADTC is slightly lipophilic. The biodistribution of [99mTc]TcN-MOPADTC and [99mTc]TcO-MOPADTC in mice bearing S180 tumors shows that the tumor uptake and tumor/muscle ratio of [99mTc]TcO-MOPADTC were higher than the tumor uptake and tumor/muscle ratio of [99mTc]TcN-MOPADTC. In addition, the tumor retention of [99mTc]TcO-MOPADTC is better than the tumor retention of [99mTc]TcN-MOPADTC. A competitive inhibition assay was performed, and the results indicate that [99mTc]TcO-MOPADTC may enter cells primarily via the L-alanine/L-serine/L-cysteine (ASC) system. Single-photon emission computed tomography (SPECT) imaging of [99mTc]TcO-MOPADTC shows obvious accumulation in tumor sites, suggesting that [99mTc]TcO-MOPADTC is a novel potential tumor-imaging agent.
Collapse
|
55
|
Hawkey NM, Broderick A, George DJ, Sartor O, Armstrong AJ. The Value of Phenotypic Precision Medicine in Prostate Cancer. Oncologist 2022; 28:93-104. [PMID: 36200788 PMCID: PMC9907055 DOI: 10.1093/oncolo/oyac198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Prostate cancer is the most common cancer among men and the second leading cause of cancer-related death. For patients who develop metastatic disease, tissue-based and circulating-tumor-based molecular and genomic biomarkers have emerged as a means of improving outcomes through the application of precision medicine. However, the benefit is limited to a minority of patients. An additional approach to further characterize the biology of advanced prostate cancer is through the use of phenotypic precision medicine, or the identification and targeting of phenotypic features of an individual patient's cancer. In this review article, we will discuss the background, potential clinical benefits, and limitations of genomic and phenotypic precision medicine in prostate cancer. We will also highlight how the emergence of image-based phenotypic medicine may lead to greater characterization of advanced prostate cancer disease burden and more individualized treatment approaches in patients.
Collapse
Affiliation(s)
- Nathan M Hawkey
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Amanda Broderick
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA,Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, NC, USA
| | - Oliver Sartor
- Tulane Cancer Center, Division of Genitourinary Oncology, New Orleans, LA, USA
| | - Andrew J Armstrong
- Corresponding author: Andrew J. Armstrong, MD, ScM, FACP, Department of Medicine, Surgery, Pharmacology and Cancer Biology, Director of Research, the Duke Cancer Institute Center for Prostate and Urologic Cancers, Divisions of Medical Oncology and Urology, Duke University, DUMC Box 103861, Durham, NC 27710, USA;
| |
Collapse
|
56
|
Bulbul JE, Hashem A, Grybowski D, Joyce C, Rashad E, Gabriel MS, Wagner RH, Savir-Baruch B. Effect of hormonal therapy on 18F-fluciclovine PET/CT in the detection of prostate cancer recurrence, localization of metastatic disease, and correlation with prostate-specific antigen. Urol Oncol 2022; 40:379.e9-379.e16. [DOI: 10.1016/j.urolonc.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023]
|
57
|
Srisongkram T, Bahrami K, Järvinen J, Timonen J, Rautio J, Weerapreeyakul N. Development of Sesamol Carbamate-L-Phenylalanine Prodrug Targeting L-Type Amino Acid Transporter1 (LAT1) as a Potential Antiproliferative Agent against Melanoma. Int J Mol Sci 2022; 23:ijms23158446. [PMID: 35955600 PMCID: PMC9369069 DOI: 10.3390/ijms23158446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Sesamol is a compound reported to have anti-melanogenesis and anti-melanoma actions. Sesamol, however, has low intracellular drug concentration and fast excretion, which can limit its benefits in the clinic. To overcome this drawback and increase intracellular delivery of sesamol into the target melanoma, research has focused on L-type amino acid transporter 1 (LAT1)-mediated prodrug delivery into melanoma cells. The sesamol prodrug was designed by conjugating sesamol with L-phenylalanine at the para position with a carbamate bond. LAT1 targeting was evaluated vis-à-vis a competitive [14C]-leucine uptake inhibition. The sesamol prodrug has a higher [14C]-leucine uptake inhibition than sesamol in human LAT1-transfected HEK293 cells. Moreover, the sesamol prodrug was taken up by LAT1-mediated transport into SK-MEL-2 cells more effectively than sesamol. The sesamol prodrug underwent complete hydrolysis, releasing the active sesamol at 72 h, which significantly exerted its cytotoxicity (IC50 of 29.3 µM) against SK-MEL-cells more than sesamol alone. Taken together, the strategy for LAT1-mediated prodrug delivery has utility for the selective uptake of sesamol, thereby increasing its intracellular concentration and antiproliferation activity, targeting melanoma SK-MEL-2 cells that overexpress the LAT1 protein. The sesamol prodrug thus warrants further evaluation in an in vivo model.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Katayun Bahrami
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Juri Timonen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
- Correspondence: (J.R.); (N.W.)
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (J.R.); (N.W.)
| |
Collapse
|
58
|
Huang Y, Zhang L, Wang M, Li C, Zheng W, Chen H, Liang Y, Wu Z. Optimization of Precursor Synthesis Conditions of (2S,4S)4–[18F]FPArg and Its Application in Glioma Imaging. Pharmaceuticals (Basel) 2022; 15:ph15080946. [PMID: 36015094 PMCID: PMC9416586 DOI: 10.3390/ph15080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Although the tracer (2S,4S)4–[18F]FPArg is expected to provide a powerful imaging method for the diagnosis and treatment of clinical tumors, it has not been realized due to the low yield of chemical synthesis and radiolabeling. A simple synthetic method for the radiolabeled precursor of (2S,4S)4–[18F]FPArg in stable yield was obtained by adjusting the sequence of the synthetic steps. Furthermore, the biodistribution experiments confirmed that (2S,4S)4–[18F]FPArg could be cleared out quickly in wild type mouse. Cell uptake experiments and U87MG tumor mouse microPET–CT imaging experiments showed that the tumor had high uptake of (2S,4S)4–[18F]FPArg and the clearance was slow, but (2S,4S)4–[18F]FPArg was rapidly cleared in normal brain tissue. MicroPET–CT imaging of nude mice bearing orthotopic HS683–Luc showed that (2S,4S)4–[18F]FPArg can penetrate blood–brain barrier and image gliomas with a high contrast. Therefore, (2S,4S)4–[18F]FPArg is expected to be further applied in the diagnosis and efficacy evaluation of clinical glioma.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
- Correspondence: (Y.L.); (Z.W.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
- Correspondence: (Y.L.); (Z.W.)
| |
Collapse
|
59
|
Fatania K, Frood R, Tyyger M, McDermott G, Fernandez S, Shaw GC, Boissinot M, Salvatore D, Ottobrini L, Teh I, Wright J, Bailey MA, Koch-Paszkowski J, Schneider JE, Buckley DL, Murray L, Scarsbrook A, Short SC, Currie S. Exploratory Analysis of Serial 18F-fluciclovine PET-CT and Multiparametric MRI during Chemoradiation for Glioblastoma. Cancers (Basel) 2022; 14:3485. [PMID: 35884545 PMCID: PMC9315674 DOI: 10.3390/cancers14143485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1-6) and grouped according to overall survival (OS)-short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Russell Frood
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
| | - Marcus Tyyger
- Department of Medical Physics, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK; (M.T.); (G.M.)
| | - Garry McDermott
- Department of Medical Physics, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK; (M.T.); (G.M.)
| | - Sharon Fernandez
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Gary C. Shaw
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Marjorie Boissinot
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Daniela Salvatore
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Segrate, Italy; (D.S.); (L.O.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Segrate, Italy; (D.S.); (L.O.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 20054 Segrate, Italy
| | - Irvin Teh
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - John Wright
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Marc A. Bailey
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
- Leeds Vascular Institute, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Joanna Koch-Paszkowski
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Jurgen E. Schneider
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - David L. Buckley
- Biomedical Imaging Science Department, and Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9TJ, UK; (I.T.); (J.W.); (M.A.B.); (J.K.-P.); (J.E.S.); (D.L.B.)
| | - Louise Murray
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| | - Susan C. Short
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
- Department of Clinical Oncology, Leeds Teaching Hospitals Trust, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Stuart Currie
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds General Infirmary, Leeds LS1 3EX, UK; (R.F.); (A.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK; (G.C.S.); (M.B.); (L.M.); (S.C.S.)
| |
Collapse
|
60
|
Kirbas Cilingir E, Sankaran M, Garber JM, Vallejo FA, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. Surface modification of carbon nitride dots by nanoarchitectonics for better drug loading and higher cancer selectivity. NANOSCALE 2022; 14:9686-9701. [PMID: 35766148 DOI: 10.1039/d2nr02063g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon Dots (CDs) have recently attracted a considerable amount of attention thanks to their well-documented biocompatibility, tunable photoluminescence, and excellent water solubility. However, CDs need further analysis before their potential use in clinical trials. Previously, we reported a new type of carbon nitride dot (CND) that displayed selective cancer uptake traits attributed to structural resemblances between CNDs and glutamine. Here, the effects of surface structural differences on the cellular uptake of CNDs are further investigated to understand their selective cancer cell uptake trend. Beyond enhanced drug loading on modified CNDs, our cytotoxicity, western blotting and bioimaging studies proposed that modified CNDs' cellular uptake mechanism is thoroughly linked with ASCT2 and LAT1 transporters. Therefore, CNDs have a promising trait of selective cancer cell targeting by utilizing highly expressed transporters on cancer cells. Additionally, drug loaded CNDs exhibited improved anti-cancer efficacies towards cancer cells along with good non-tumor biocompatibilities.
Collapse
Affiliation(s)
- Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
| | - Meghana Sankaran
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | - Jordan M Garber
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
| | - Frederic Anthony Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
- University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | | | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
- HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314-7796, USA
| | - Regina M Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
- University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
| |
Collapse
|
61
|
Khavinson V, Linkova N, Kozhevnikova E, Dyatlova A, Petukhov M. Transport of Biologically Active Ultrashort Peptides Using POT and LAT Carriers. Int J Mol Sci 2022; 23:ijms23147733. [PMID: 35887081 PMCID: PMC9323678 DOI: 10.3390/ijms23147733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrashort peptides (USPs), consisting of 2–7 amino-acid residues, are a group of signaling molecules that regulate gene expression and protein synthesis under normal conditions in various diseases and ageing. USPs serve as a basis for the development of drugs with a targeted mechanism of action. The purpose of this review is to systematize the available data on USP transport involving POT and LAT transporters in various organs and tissues under normal, pathological and ageing conditions. The carriers of the POT family (PEPT1, PEPT2, PHT1, PHT2) transport predominantly di- and tripeptides into the cell. Methods of molecular modeling and physicochemistry have demonstrated the ability of LAT1 to transfer not only amino acids but also some di- and tripeptides into the cell and out of it. LAT1 and 2 are involved in the regulation of the antioxidant, endocrine, immune and nervous systems’ functions. Analysis of the above data allows us to conclude that, depending on their structure, di- and tripeptides can be transported into the cells of various tissues by POT and LAT transporters. This mechanism is likely to underlie the tissue specificity of peptides, their geroprotective action and effectiveness in the case of neuroimmunoendocrine system disorders.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence: or ; Tel.: +7-(921)-9110800
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- The Laboratory “Problems of Aging”, Belgorod National Research University, 308015 Belgorod, Russia
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Mikhael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Peter the Great St. Petersburg Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
62
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
63
|
Effect of Androgen Deprivation Therapy on the Results of PET/CT with 18F-Fluciclovine in Patients with Metastatic Prostate Cancer. Tomography 2022; 8:1477-1484. [PMID: 35736868 PMCID: PMC9230844 DOI: 10.3390/tomography8030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background: 18F-fluciclovine is a positron emission tomography (PET) radiotracer approved for the detection of prostate cancer recurrence. No effect of androgen deprivation therapy (ADT) on its performance has been established. Purpose: To study the impact of concurrent ADT on disease detection with 18F-fluciclovine PET in patients with prostate cancer. Materials and Methods: Data from patients with prostate cancer who had been receiving ADT for ≥3 months at the time of undergoing an 18F-fluciclovine PET/CT at our institution were retrospectively reviewed. Seventy-three scans from 71 patients were included. The scans indicated rising prostate-specific antigen (n = 58), staging advanced disease (n = 4) or therapeutic monitoring (n = 9). Patients’ medical records provided baseline clinical data and post-scan outcomes (median follow-up 40 months). Results: Malignant lesions with increased uptake of 18F-fluciclovine were detected in 60/73 (82%) scans; 33 (45%) had lesions in the prostate/bed and 46 (63%) in extraprostatic sites. Patients received ADT for a median of 2 years (range 3 months to >10 years) pre-scan. The time on ADT did not influence detection; the detection rates were 89% for patients who had received ADT for <1 year, 63% for a treatment period of 1−<2 years, 83% for 2−4 years, 78% for >4−10 years, and 67% for a treatment period of >10 years. Conclusion: 18F-fluciclovine detected recurrent or metastatic lesions in 82% of patients with prostate cancer receiving ADT. The rates achieved in the present study are consistent with widely reported data for 18F-fluciclovine PET/CT, suggesting that withdrawal of ADT before scanning is not necessary.
Collapse
|
64
|
Da Cunha PA, Nitusca D, Canto LMD, Varghese RS, Ressom HW, Willey S, Marian C, Haddad BR. Metabolomic Analysis of Plasma from Breast Cancer Patients Using Ultra-High-Performance Liquid Chromatography Coupled with Mass Spectrometry: An Untargeted Study. Metabolites 2022; 12:447. [PMID: 35629952 PMCID: PMC9147455 DOI: 10.3390/metabo12050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer mortality in women worldwide, and therefore, novel biomarkers for early disease detection are critically needed. We performed herein an untargeted plasma metabolomic profiling of 55 BC patients and 55 healthy controls (HC) using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Pre-processed data revealed 2494 ions in total. Data matrices’ paired t-tests revealed 792 ions (both positive and negative) which presented statistically significant changes (FDR < 0.05) in intensity levels between cases versus controls. Metabolites identified with putative names via MetaboQuest using MS/MS and mass-based approaches included amino acid esters (i.e., N-stearoyl tryptophan, L-arginine ethyl ester), dipeptides (ile-ser, met-his), nitrogenous bases (i.e., uracil derivatives), lipid metabolism-derived molecules (caproleic acid), and exogenous compounds from plants, drugs, or dietary supplements. LASSO regression selected 16 metabolites after several variables (TNM Stage, Grade, smoking status, menopausal status, and race) were adjusted. A predictive conditional logistic regression model on the 16 LASSO selected ions provided a high diagnostic performance with an area-under-the-curve (AUC) value of 0.9729 (95% CI 0.96−0.98) on all 55 samples. This study proves that BC possesses a specific metabolic signature that could be exploited as a novel metabolomics-based approach for BC detection and characterization. Future studies of large-scale cohorts are needed to validate these findings.
Collapse
Affiliation(s)
- Patricia A. Da Cunha
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (C.M.)
- Center for Complex Networks Science, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania
| | - Luisa Matos Do Canto
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
| | - Rency S. Varghese
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
| | - Habtom W. Ressom
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
| | - Shawna Willey
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
- Department of Surgery, Georgetown University Medical Center, Georgetown University, Washington, DC 20007, USA
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (C.M.)
- Center for Complex Networks Science, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania
| | - Bassem R. Haddad
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA; (P.A.D.C.); (L.M.D.C.); (R.S.V.); (H.W.R.); (S.W.)
| |
Collapse
|
65
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
66
|
Wang G, Chen L, Qin S, Zhang T, Yao J, Yi Y, Deng L. Mechanistic Target of Rapamycin Complex 1: From a Nutrient Sensor to a Key Regulator of Metabolism and Health. Adv Nutr 2022; 13:1882-1900. [PMID: 35561748 PMCID: PMC9526850 DOI: 10.1093/advances/nmac055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a multi-protein complex widely found in eukaryotes. It serves as a central signaling node to coordinate cell growth and metabolism by sensing diverse extracellular and intracellular inputs, including amino acid-, growth factor-, glucose-, and nucleotide-related signals. It is well documented that mTORC1 is recruited to the lysosomal surface, where it is activated and, accordingly, modulates downstream effectors involved in regulating protein, lipid, and glucose metabolism. mTORC1 is thus the central node for coordinating the storage and mobilization of nutrients and energy across various tissues. However, emerging evidence indicated that the overactivation of mTORC1 induced by nutritional disorders leads to the occurrence of a variety of metabolic diseases, including obesity and type 2 diabetes, as well as cancer, neurodegenerative disorders, and aging. That the mTORC1 pathway plays a crucial role in regulating the occurrence of metabolic diseases renders it a prime target for the development of effective therapeutic strategies. Here, we focus on recent advances in our understanding of the regulatory mechanisms underlying how mTORC1 integrates metabolic inputs as well as the role of mTORC1 in the regulation of nutritional and metabolic diseases.
Collapse
Affiliation(s)
- Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, China
| | - Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanglei Yi
- Address correspondence to YLY (e-mail: )
| | - Lu Deng
- Address correspondence to LD (e-mail: )
| |
Collapse
|
67
|
Yu W, Huang J, Dong Q, Li W, Jiang L, Zhang Q, Sun L, Yuan S, He X. Ag120-Mediated Inhibition of ASCT2-Dependent Glutamine Transport has an Anti-Tumor Effect on Colorectal Cancer Cells. Front Pharmacol 2022; 13:871392. [PMID: 35418865 PMCID: PMC8996072 DOI: 10.3389/fphar.2022.871392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is considered to be a hallmark of cancer, and increased glutamine metabolism plays an important role in the progression of many tumors, including colorectal cancer (CRC). Targeting of glutamine uptake via the transporter protein ASCT2/SLC1A5 (solute carrier family 1 member 5) is considered to be an effective strategy for the treatment of malignant tumors. Here, we demonstrate that Ag120 (ivosidenib), a mutant isocitrate dehydrogenase 1 (IDH1) inhibitor approved for the treatment of certain cancers, acts as an ASCT2 inhibitor in CRC cells. Ag120 blocked glutamine uptake and metabolism, leading to reduced cell proliferation, elevated autophagy, and increased oxidative stress in CRC cells in vitro and in vivo, potentially via the ERK and mTOR signaling pathways. These effects occurred independently of mutant IDH1 activity and were supported by experiments with ASCT2-depleted or -overexpressing cells. These data identify a novel mechanism of Ag120 anti-tumor activity and support further exploration of ASCT2 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Wei Yu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jianwen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Qichao Dong
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Lei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Qian Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|
68
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
69
|
Santo G, Laudicella R, Linguanti F, Nappi AG, Abenavoli E, Vergura V, Rubini G, Sciagrà R, Arnone G, Schillaci O, Minutoli F, Baldari S, Quartuccio N, Bisdas S. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics (Basel) 2022; 12:844. [PMID: 35453892 PMCID: PMC9027186 DOI: 10.3390/diagnostics12040844] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
AIM In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared to magnetic resonance imaging (MRI). METHODS A literature search extended until June 2020 on the PubMed/MEDLINE literature database was conducted using the terms "high-grade glioma", "glioblastoma", "brain tumors", "positron emission tomography", "PET", "amino acid PET", "[11C]methyl-l-methionine", "[18F]fluoroethyl-tyrosine", "[18F]fluoro-l-dihydroxy-phenylalanine", "MET", "FET", "DOPA", "magnetic resonance imaging", "MRI", "advanced MRI", "magnetic resonance spectroscopy", "perfusion-weighted imaging", "diffusion-weighted imaging", "MRS", "PWI", "DWI", "hybrid PET/MR", "glioma recurrence", "pseudoprogression", "PSP", "treatment-related change", and "radiation necrosis" alone and in combination. Only original articles edited in English and about humans with at least 10 patients were included. RESULTS Forty-four articles were finally selected. Conventional amino acid PET tracers were demonstrated to be reliable diagnostic techniques in differentiating tumor recurrence thanks to their high uptake from tumor tissue and low background in normal grey matter, giving additional and early information to standard modalities. Among them, MET-PET seems to present the highest diagnostic value but its use is limited to on-site cyclotron facilities. [18F]labelled amino acids, such as FDOPA and FET, were developed to provide a more suitable PET tracer for routine clinical applications, and demonstrated similar diagnostic performance. When compared to the gold standard MRI, amino acid PET provides complementary and comparable information to standard modalities and seems to represent an essential tool in the differentiation between tumor recurrence and other entities such as pseudoprogression, radiation necrosis, and pseudoresponse. CONCLUSIONS Despite the introduction of new advanced imaging techniques, the diagnosis of glioma recurrence remains challenging. In this scenario, the growing knowledge about imaging techniques and analysis, such as the combined PET/MRI and the application of artificial intelligence (AI) and machine learning (ML), could represent promising tools to face this difficult and debated clinical issue.
Collapse
Affiliation(s)
- Giulia Santo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Anna Giulia Nappi
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Vittoria Vergura
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Fabio Minutoli
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
| |
Collapse
|
70
|
Scanga R, Scalise M, Rovella F, Regina TMR, Galluccio M, Indiveri C. The Nutraceutical Alliin From Garlic Is a Novel Substrate of the Essential Amino Acid Transporter LAT1 (SLC7A5). Front Pharmacol 2022; 13:877576. [PMID: 35401172 PMCID: PMC8987110 DOI: 10.3389/fphar.2022.877576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The plasma membrane transporter LAT1 (SLC7A5) is a crucial player for cell homeostasis because it is responsible for providing cells with essential amino acids and hormones. LAT1 forms a functional heterodimer with the cell surface antigen heavy chain CD98 (also known as 4F2hc and SLC3A2), a type II membrane glycoprotein, which is essential for LAT1 stability and localization to the plasma membrane. The relevance of LAT1 for human metabolism is also related to its altered expression in human diseases, such as cancer and diabetes. These features boosted research toward molecules that are able to interact with LAT1; in this respect, the recent resolution of the LAT1-CD98 3D structure by Cryo-EM has opened important perspectives in the study of the interaction with different molecules in order to identify new drugs to be used in therapy or new substrates of natural origin to be employed as adjuvants and food supplements. In this work, the interaction of LAT1 with alliin, a garlic derivative, has been investigated by using a combined approach of bioinformatics and in vitro transport assays. Alliin is a nutraceutical that has several beneficial effects on human health, such as antidiabetic, anticarcinogenic, antioxidant, and anti-inflammatory properties. The computational analysis suggested that alliin interacts with the substrate binding site of LAT1, to which alliin was docked. These data were then confirmed by the competitive type inhibition measured in proteoliposomes. Interestingly, in the same experimental model, alliin was also revealed to be a substrate of LAT1.
Collapse
Affiliation(s)
- Raffaella Scanga
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Filomena Rovella
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Teresa Maria Rosaria Regina
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- *Correspondence: Cesare Indiveri,
| |
Collapse
|
71
|
Zhu D, Wu S, Li Y, Zhang Y, Chen J, Ma J, Cao L, Lyu Z, Hou T. Ferroptosis-related gene SLC1A5 is a novel prognostic biomarker and correlates with immune infiltrates in stomach adenocarcinoma. Cancer Cell Int 2022; 22:124. [PMID: 35305616 PMCID: PMC8933927 DOI: 10.1186/s12935-022-02544-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is associated with high morbidity and mortality rates. Ferroptosis is an iron-dependent form of cell death, which plays an important role in the development of many cancers. Tumor-associated competing endogenous RNAs (ceRNAs) regulate tumorigenesis and development. Our study aimed to construct ceRNA networks and explore the relationship between ferroptosis-related genes in the ceRNA network and immune infiltration in STAD. METHODS Based on the interactions among long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), a ceRNA network was constructed to illustrate the relationships among lncRNAs, miRNAs, and mRNAs. Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) functional enrichment analyses were carried out to explore the functions and interactions of the differentially expressed (DE) mRNAs related to the ceRNA network. Differential expression and prognostic analysis of ferroptosis-related genes in the ceRNA network were performed using the R package "limma" and "survminer." The correlation between ferroptosis-related genes and tumor-infiltrating immune cells was analyzed using Spearman correlation analysis and CIBERSORT. Quantitative real-time PCR (qRT-PCR) was used to validate the expression of ferroptosis-related genes in STAD cells lines. RESULTS A ceRNA network consisting of 29 DElncRNAs, 31 DEmiRNAs, and 182 DEmRNAs was constructed. These DEmRNAs were significantly enriched in pathways related to the occurrence and development of STAD. The ferroptosis-related gene SLC1A5 was upregulated in STAD (P < 0.001) and was associated with better prognosis (P = 0.049). The CIBERSORT database and Spearman correlation analysis indicated that SLC1A5 was correlated with eight types of tumor-infiltrating immune cells and immune checkpoints, including PD-L1(CD-274) and PD-1(PDCD1). The SLC1A5 mRNA was found to be highly expressed in STAD cells lines. CONCLUSIONS Our study provides insights into the function of ceRNAs in STAD and identifies biomarkers for the development of therapies for STAD. The ferroptosis-related gene SLC1A5 in the ceRNA network was associated with both tumor-infiltrating immune cells and immune checkpoints in the tumor microenvironment, suggesting that SLC1A5 may be a novel prognostic marker and a potential target for STAD immunotherapy in the future.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Sifan Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yafang Li
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yu Zhang
- Medical Department, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jianhong Ma
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Lixue Cao
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Tieying Hou
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Clinical Laboratory Center, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Medical Department, Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
72
|
Scarpelli ML, Healey DR, Mehta S, Quarles CC. Imaging Glioblastoma With 18F-Fluciclovine Amino Acid Positron Emission Tomography. Front Oncol 2022; 12:829050. [PMID: 35174096 PMCID: PMC8841434 DOI: 10.3389/fonc.2022.829050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionConventional methods of imaging brain tumors fail to assess metabolically active tumor regions, which limits their capabilities for tumor detection, localization, and response assessment. Positron emission tomography (PET) with 18F-fluciclovine (fluciclovine) provides regional assessment of amino acid uptake in tumors that could overcome some of the limitations of conventional imaging. However, the biological basis of enhanced fluciclovine uptake is insufficiently characterized in brain tumors, which confounds clinical interpretation and application. This study sought to address this gap by correlating multiple biologic quantities with fluciclovine PET uptake across a range of human glioblastoma xenograft models.MethodsThirty-one rats underwent orthotopic implantations with one of five different human glioblastoma cell lines. After tumors were established, fluciclovine PET and magnetic resonance imaging (MRI) scans were performed. The fluciclovine tumor-to-normal-brain (TN) uptake ratio was used to quantify fluciclovine uptake. MRI scans were used to assess tumor volume and gadolinium enhancement status. Histologic assessments quantified tumor cell proliferation, tumor cell density, and tumor cell amino acid transporters (LAT1 and ASCT2). Multivariate linear regression models related fluciclovine uptake with the other measured quantities.ResultsWithin the multivariate regression, the fluciclovine TN uptake ratio (measured 15 to 35 minutes after fluciclovine injection) was most strongly associated with tumor ASCT2 levels (β=0.64; P=0.001). The fluciclovine TN uptake ratio was also significantly associated with tumor volume (β=0.45; P=0.001) and tumor enhancement status (β=0.40; P=0.01). Tumor cell proliferation, tumor cell density, and LAT1 levels were not significantly associated with fluciclovine uptake in any of the multivariate models. In general, both enhancing and non-enhancing tumors could be visualized on fluciclovine PET images, with the median TN uptake ratio across the five tumor lines being 2.4 (range 1.1 to 8.9).ConclusionsIncreased fluciclovine PET uptake was associated with increased levels of the amino acid transporter ASCT2, suggesting fluciclovine PET may be useful for assessing brain tumor amino acid metabolism. Fluciclovine PET uptake was elevated in both enhancing and non-enhancing tumors but the degree of uptake was greater in larger tumors and tumors with enhancement, indicating these variables could confound fluciclovine metabolic measurements if not accounted for.
Collapse
Affiliation(s)
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- *Correspondence: C. Chad Quarles,
| |
Collapse
|
73
|
Morath V, Heider M, Mittelhäuser M, Rolbieski H, Stroh J, Calais J, Eiber M, Bassermann F, Weber WA. Initial evaluation of [ 18F]-FACBC for PET imaging of multiple myeloma. EJNMMI Res 2022; 12:4. [PMID: 35099620 PMCID: PMC8804025 DOI: 10.1186/s13550-022-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
RATIONALE Multiple myeloma (MM) cells synthesize large amounts of paraproteins, making radiolabeled amino acids promising candidates for PET imaging of MM patients. METHODS We compare tumor uptake of the two amino acid analogs [18F]-fluoroethyltyrosine and [18F]-FACBC in a MM xenograft model and show the feasibility of PET imaging with [18F]-FACBC in a MM patient. RESULTS Preclinically [18F]-FACBC showed superior performance, mainly due to the uptake via the ASC-system. In a subsequent proof-of-concept investigation [18F]-FACBC PET was performed in a MM patient. It allowed identification of both lesions with and without CT correlate (SUVmean 8.0 or 7.9) based on higher uptake compared to normal bone marrow (SUVmean 5.7). Bone signal was elevated compared to non-MM patients, and, thus [18F]-FACBC potentially allows the assessment of bone marrow infiltration. CONCLUSION The FDA/EMA approved PET agent [18F]-FACBC is promising for imaging MM and should be further evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Volker Morath
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Michael Heider
- Department of Medicine III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Markus Mittelhäuser
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Hannes Rolbieski
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Jacob Stroh
- Department of Medicine III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Jérémie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
74
|
Expression of 3-Methylcrotonyl-CoA Carboxylase in Brain Tumors and Capability to Catabolize Leucine by Human Neural Cancer Cells. Cancers (Basel) 2022; 14:cancers14030585. [PMID: 35158853 PMCID: PMC8833481 DOI: 10.3390/cancers14030585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Leucine is an essential, ketogenic amino acid with proteinogenic, metabolic, and signaling roles. It is readily imported from the bloodstream into the brain parenchyma. Therefore, it could serve as a putative substrate that is complementing glucose for sustaining the metabolic needs of brain tumor cells. Here, we investigated the ability of cultured human cancer cells to metabolize leucine. Indeed, cancer cells dispose of leucine from their environment and enrich their media with the metabolite 2-oxoisocaproate. The enrichment of the culture media with a high level of leucine stimulated the production of 3-hydroxybutyrate. When 13C6-leucine was offered, it led to an increased appearance of the heavier citrate isotope with a molar mass greater by two units in the culture media. The expression of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme characteristic for the irreversible part of the leucine catabolic pathway, was detected in cultured cancer cells and human tumor samples by immunoprobing methods. Our results demonstrate that these cancer cells can catabolize leucine and furnish its carbon atoms into the tricarboxylic acid (TCA) cycle. Furthermore, the release of 3-hydroxybutyrate and citrate by cancer cells suggests their capability to exchange these metabolites with their milieu and the capability to participate in their metabolism. This indicates that leucine could be an additional substrate for cancer cell metabolism in the brain parenchyma. In this way, leucine could potentially contribute to the synthesis of metabolites such as lipids, which require the withdrawal of citrate from the TCA cycle.
Collapse
|
75
|
Almeida C, Teixeira AL, Dias F, Machado V, Morais M, Martins G, Palmeira C, Sousa ME, Godinho I, Batista S, Costa-Silva B, Medeiros R. Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. BIOLOGY 2022; 11:biology11010145. [PMID: 35053143 PMCID: PMC8773288 DOI: 10.3390/biology11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5410)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Gabriela Martins
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Carlos Palmeira
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
- Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Maria Emília Sousa
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Inês Godinho
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Sílvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
76
|
Li Y, Qin G, Du J, Yue P, Zhang Y, Hou N. circRNA LDLRAD3 Enhances the Malignant Behaviors of NSCLC Cells via the miR-20a-5p-SLC7A5 Axis Activating the mTORC1 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2373580. [PMID: 35035814 PMCID: PMC8758255 DOI: 10.1155/2022/2373580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Circular RNA LDLRAD3 behaved as an oncogene in several malignancies, but its effects in NSCLC and the involvement of downstream molecules and activation of signaling pathways had not been fully reported. We planned to explore how LDLRAD3 facilitated the malignancy of NSCLC. QRT-PCR was performed to evaluate the expression levels of LDLRAD3, miR-20a-5p, and SLC7A5 in NSCLC tissues and cells. si-LDLRAD3 was transfected to A549 and H1299 cells to knock down intrinsic LDLRAD3 to determine its oncogenic roles. CCK-8 assay and transwell assay were executed to assess cell proliferative, migrative, and invasive abilities. Dual-luciferase reporter (DLR) assay was manipulated to verify the ENCORI-predicted relationships between LDLRAD3 and miR-20a-5p and between miR-20a-5p and SLC7A5. Western blot, immunofluorescent assay, and immunohistochemistry were applied to explore the expression levels of SLC7A5, and the levels of mTORC1 pathway-related proteins were evaluated using western blot. Rescue experiments were conducted by transfecting si-LDLRAD3, miR-20a-5p inhibitor, and si-SLC7A5 to explore the influence of the LDLRAD3-miR-20a-5p-SLC7A5 axis on the malignant behaviors of NSCLC cells. The expression levels of LDLRAD3 and SLC7A5 were boosted, whereas miR-20a-5p was impeded in NSCLC tissues and cell lines. Knockdown of LDLRAD3 weakened the proliferation, migration, and invasion of A549 and H1299 cells. LDLRAD3 was verified to sponge miR-20a-5p and miR-20a-5p targeted SLC7A5. LDLRAD3 activated the mTORC1 singling pathway via the miR-20a-5p-SLC7A5 axis to strengthen the malignant properties of A549 and H1299 cells. We concluded that LDLRAD3 exerted oncogenic effects via the miR-20a-5p-SLC7A5 axis to activate the mTORC1 signaling pathway in NSCLC. Our findings enlightened that LDLRAD3 could become a potential therapeutic target in the treatment and management of NSCLC.
Collapse
Affiliation(s)
- Yu Li
- Department of ICU Medicine, Shandong Province Zibo No. 1 Hospital, Zibo 255200, Shandong, China
| | - Guangle Qin
- Emergency Department, Shandong Province Zibo No. 1 Hospital, Zibo 255200, Shandong, China
| | - Jinyun Du
- Department of ICU Medicine, Shandong Province Zibo No. 1 Hospital, Zibo 255200, Shandong, China
| | - Peng Yue
- Emergency Department, Shandong Province Zibo No. 1 Hospital, Zibo 255200, Shandong, China
| | - Yanling Zhang
- Department of Intensive Care, Boxing County Hospital of Traditional Chinese Medicine, Binzhou 256500, Shandong, China
| | - Na Hou
- Oncology Dept. II, Shandong Province Zibo No. 1 Hospital, Zibo 255200, Shandong, China
| |
Collapse
|
77
|
Zhao X, Sakamoto S, Maimaiti M, Anzai N, Ichikawa T. Contribution of LAT1-4F2hc in Urological Cancers via Toll-like Receptor and Other Vital Pathways. Cancers (Basel) 2022; 14:cancers14010229. [PMID: 35008399 PMCID: PMC8750950 DOI: 10.3390/cancers14010229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary LAT1-4F2hc complex is an important amino acid transporter. It mainly transports specific amino acids through the cell membrane, provides nutrition for cells, and participates in a variety of metabolic pathways. LAT1 plays a role in transporting essential amino acids including leucine, which regulates the mTOR signaling pathway. However, the importance of SLCs is still not well known in the field of urological cancer. Therefore, the purpose of this review is to report the role of the LAT1-4F2hc complex in urological cancers, as well as their clinical significance and application. Moreover, the inhibitor of LAT1-4F2hc complex is a promising direction as a targeted therapy to improve the treatment and prognosis of urological cancers. Abstract Tumor cells are known for their ability to proliferate. Nutrients are essential for rapidly growing tumor cells. In particular, essential amino acids are essential for tumor cell growth. Tumor cell growth nutrition requires the regulation of membrane transport proteins. Nutritional processes require amino acid uptake across the cell membrane. Leucine, one of the essential amino acids, has recently been found to be closely associated with cancer, which activate mTOR signaling pathway. The transport of leucine into cells requires an L-type amino acid transporter protein 1, LAT1 (SLC7A5), which requires the 4F2 cell surface antigen heavy chain (4F2hc, SLC3A2) to form a heterodimeric amino acid transporter protein complex. Recent evidence identified 4F2hc as a specific downstream target of the androgen receptor splice variant 7 (AR-V7). We stressed the importance of the LAT1-4F2hc complex as a diagnostic and therapeutic target in urological cancers in this review, which covered the recent achievements in research on the involvement of the LAT1-4F2hc complex in urinary system tumors. In addition, JPH203, which is a selective LAT1 inhibitor, has shown excellent inhibitory effects on the proliferation in a variety of tumor cells. The current phase I clinical trials of JPH203 in patients with biliary tract cancer have also achieved good results, which is the future research direction for LAT1 targeted therapy drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Correspondence: ; Tel.: +81-43-226-2134; Fax: +81-43-226-2136
| | - Maihulan Maimaiti
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
| |
Collapse
|
78
|
Choubey P, Kaur H, Bansal K. Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Subcell Biochem 2022; 100:201-237. [PMID: 36301496 DOI: 10.1007/978-3-031-07634-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleic acid methylation is a fundamental epigenetic mechanism that impinges upon several cellular attributes, including metabolism and energy production. The dysregulation of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) methylation can lead to metabolic rewiring in the cell, which in turn facilitates tumor development. Here, we review the current knowledge on the interplay between DNA/RNA methylation and metabolic programs in cancer cells. We also discuss the mechanistic role of these pathways in tumor development and progression.
Collapse
Affiliation(s)
- Pallawi Choubey
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Harshdeep Kaur
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India.
| |
Collapse
|
79
|
Huttunen J, Agami M, Tampio J, Montaser AB, Huttunen KM. Comparison of Experimental Strategies to Study l-Type Amino Acid Transporter 1 (LAT1) Utilization by Ligands. Molecules 2021; 27:molecules27010037. [PMID: 35011270 PMCID: PMC8746705 DOI: 10.3390/molecules27010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
l-Type amino acid transporter 1 (LAT1), expressed abundantly in the brain and placenta and overexpressed in several cancer cell types, has gained a lot of interest in drug research and development, as it can be utilized for brain-targeted drug delivery, as well as inhibiting the essential amino acid supply to cancer cells. The structure of LAT1 is today very well-known and the interactions of ligands at the binding site of LAT1 can be modeled and explained. However, less is known of LAT1′s life cycle within the cells. Moreover, the functionality of LAT1 can be measured by several different methods, which may vary between the laboratories and make the comparison of the results challenging. In the present study, the usefulness of indirect cis-inhibition methods and direct cellular uptake methods and their variations to interpret the interactions of LAT1-ligands were evaluated. Moreover, this study also highlights the importance of understanding the intracellular kinetics of LAT1-ligands, and how they can affect the regular function of LAT1 in critical tissues, such as the brain. Hence, it is discussed herein how the selected methodology influences the outcome and created knowledge of LAT1-utilizing compounds.
Collapse
|
80
|
Route of intracellular uptake and cytotoxicity of sesamol, sesamin, and sesamolin in human melanoma SK-MEL-2 cells. Biomed Pharmacother 2021; 146:112528. [PMID: 34906777 DOI: 10.1016/j.biopha.2021.112528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The intracellular uptake concentration determines drug absorption, drug activity, and toxicity. Sesamol, sesamin, and sesamolin are promising bioactive components from Sesame indicum L. Their respective intracellular uptake pathway and cytotoxicity were evaluated using melanoma and non-cancerous cells. Quantitative structure-activity relationship (QSAR) models were built to identify the molecular features affecting drug uptake in cells. The respective intracellular uptake pathway for sesamol vs. sesamin and sesamolin was carrier-mediated vs. passive transport. Topological polar surface area (PSA) and 2D autocorrections increase the intracellular concentration (C/M ratio) of these compounds. Sesamol has the lowest C/M ratio compared to sesamin and sesamolin, but only sesamol inhibits the cell viability of melanoma and provides an inhibition concentration at 50% (IC50) against melanoma cells. The slightly aqueous solubility of sesamin and sesamolin, therefore, limits testing of their cytotoxicity. In conclusion, sesamol has the potential to inhibit melanoma cell growth, but requires improvement of the C/M ratio to increase its physicochemical properties. Thus, in order to investigate the cytotoxicity of sesamin and sesamolin against melanoma cells a solubility enhancer is needed.
Collapse
|
81
|
Krämer F, Gröner B, Hoffmann C, Craig A, Brugger M, Drzezga A, Timmer M, Neumaier F, Zlatopolskiy BD, Endepols H, Neumaier B. Evaluation of 3-l- and 3-d-[ 18F]Fluorophenylalanines as PET Tracers for Tumor Imaging. Cancers (Basel) 2021; 13:cancers13236030. [PMID: 34885141 PMCID: PMC8656747 DOI: 10.3390/cancers13236030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The early detection and treatment of malignant brain tumors can significantly improve the survival time and life quality of affected patients. Whereas positron emission tomography (PET) with O-(2-[18F]fluoroethyl)tyrosine ([18F]FET) offers improved diagnostic accuracy compared to other imaging methods, there is still a need for PET tracers with better tumor-specificity. A higher protein incorporation rate, as well as a higher affinity for the amino acid transporter LAT1, could provide probes with superior image quality compared to [18F]FET. The aim of the present study was a preclinical evaluation of the two enantiomeric phenylalanine (Phe) analogues, 3-l- and 3-d-[18F]fluorophenylalanine ([18F]FPhes), as possible alternatives to [18F]FET. Based on promising in vitro evaluation results, the radiolabeled amino acids were studied in vivo in two subcutaneous and one orthotopic rodent tumor xenograft models using µPET. The results show that 3-l- and 3-d-[18F]FPhe enable high-quality visualization of tumors with certain advantages over [18F]FET, making them promising candidates for further preclinical and clinical evaluations. Abstract Purpose: The preclinical evaluation of 3-l- and 3-d-[18F]FPhe in comparison to [18F]FET, an established tracer for tumor imaging. Methods: In vitro studies were conducted with MCF-7, PC-3, and U87 MG human tumor cell lines. In vivo µPET studies were conducted in healthy rats with/without the inhibition of peripheral aromatic l-amino acid decarboxylase by benserazide pretreatment (n = 3 each), in mice bearing subcutaneous MCF-7 or PC-3 tumor xenografts (n = 10), and in rats bearing orthotopic U87 MG tumor xenografts (n = 14). Tracer accumulation was quantified by SUVmax, SUVmean and tumor-to-brain ratios (TBrR). Results: The uptake of 3-l-[18F]FPhe in MCF-7 and PC-3 cells was significantly higher relative to [18F]FET. The uptake of all three tracers was significantly reduced by the suppression of amino acid transport systems L or ASC. 3-l-[18F]FPhe but not 3-d-[18F]FPhe exhibited protein incorporation. In benserazide-treated healthy rats, brain uptake after 42–120 min was significantly higher for 3-d-[18F]FPhe vs. 3-l-[18F]FPhe. [18F]FET showed significantly higher uptake into subcutaneous MCF-7 tumors (52–60 min p.i.), while early uptake into orthotopic U87 MG tumors was significantly higher for 3-l-[18F]FPhe (SUVmax: 3-l-[18F]FPhe, 107.6 ± 11.3; 3-d-[18F]FPhe, 86.0 ± 4.3; [18F]FET, 90.2 ± 7.7). Increased tumoral expression of LAT1 and ASCT2 was confirmed immunohistologically. Conclusion: Both novel tracers enable accurate tumor delineation with an imaging quality comparable to [18F]FET.
Collapse
Affiliation(s)
- Felicia Krämer
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Benedikt Gröner
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Chris Hoffmann
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Austin Craig
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
| | - Melanie Brugger
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn-Cologne, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Marco Timmer
- Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
82
|
Mazza T, Scalise M, Pappacoda G, Pochini L, Indiveri C. The involvement of sodium in the function of the human amino acid transporter ASCT2. FEBS Lett 2021; 595:3030-3041. [PMID: 34741534 DOI: 10.1002/1873-3468.14224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/19/2023]
Abstract
Alanine, serine, cysteine transporter 2 (ASCT2) is a membrane amino acid transporter with relevance to human physiology and pathology, such as cancer. Notwithstanding, the study on the ASCT2 transport cycle still has unknown aspects, such as the role of Na+ in this process. We investigate this issue using recombinant hASCT2 reconstituted in proteoliposomes. Changes in the composition of purification buffers show the crucial role of Na+ in ASCT2 functionality. The transport activity is abolished when Na+ is absent or substituted by Li+ or K+ in purification buffers. By employing a Na+ fluorometric probe, we measured an inwardly directed flux of Na+ and, by combining fluorometric and radiometric assays, determined a 2Na+ : 1Gln stoichiometry. Kinetics of Na+ transport suggest that pH-sensitive residues are involved in Na+ binding/transport. Our results clarify the role of Na+ on human ASCT2 transporter activity.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Gilda Pappacoda
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
83
|
Chemical Approaches for Studying the Biology and Pharmacology of Membrane Transporters: The Histidine/Large Amino Acid Transporter SLC7A5 as a Benchmark. Molecules 2021; 26:molecules26216562. [PMID: 34770970 PMCID: PMC8588388 DOI: 10.3390/molecules26216562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The localization of membrane transporters at the forefront of natural barriers makes these proteins very interesting due to their involvement in the absorption and distribution of nutrients and xenobiotics, including drugs. Over the years, structure/function relationship studies have been performed employing several strategies, including chemical modification of exposed amino acid residues. These approaches are very meaningful when applied to membrane transporters, given that these proteins are characterized by both hydrophobic and hydrophilic domains with a different degree of accessibility to employed chemicals. Besides basic features, the chemical targeting approaches can disclose information useful for pharmacological applications as well. An eminent example of this picture is the histidine/large amino acid transporter SLC7A5, known as LAT1 (Large Amino Acid Transporter 1). This protein is crucial in cell life because it is responsible for mediating the absorption and distribution of essential amino acids in peculiar body districts, such as the blood brain barrier and placenta. Furthermore, LAT1 can recognize a large variety of molecules of pharmacological interest and is also considered a hot target for drugs due to its over-expression in virtually all human cancers. Therefore, it is not surprising that the chemical targeting approach, coupled with bioinformatics, site-directed mutagenesis and transport assays, proved fundamental in describing features of LAT1 such as the substrate binding site, regulatory domains and interactions with drugs that will be discussed in this review. The results on LAT1 can be considered to have general applicability to other transporters linked with human diseases.
Collapse
|
84
|
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci 2021; 22:11654. [PMID: 34769082 PMCID: PMC8584083 DOI: 10.3390/ijms222111654] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) is a barrier that separates the blood from the brain tissue and possesses unique characteristics that make the delivery of drugs to the brain a great challenge. To achieve this purpose, it is necessary to design strategies to allow BBB passage, in order to reach the brain and target the desired anatomic region. The use of nanomedicine has great potential to overcome this problem, since one can modify nanoparticles with strategic molecules that can interact with the BBB and induce uptake through the brain endothelial cells and consequently reach the brain tissue. This review addresses the potential of nanomedicines to treat neurological diseases by using nanoparticles specially developed to cross the BBB.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Joyce Coutinho
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
85
|
Honda Y, Nomoto T, Takemoto H, Matsui M, Taniwaki K, Guo H, Miura Y, Nishiyama N. Systemically Applicable Glutamine-Functionalized Polymer Exerting Multivalent Interaction with Tumors Overexpressing ASCT2. ACS APPLIED BIO MATERIALS 2021; 4:7402-7407. [PMID: 35006695 DOI: 10.1021/acsabm.1c00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transporter ASCT2, which predominantly imports glutamine (Gln), is overexpressed in a variety of cancer cells, and targeting ASCT2 is expected to be a promising approach for tumor diagnosis and therapy. In this work, we designed a series of glutamine-modified poly(l-lysine) (PLys(Gln)) homopolymers and PEG-PLys(Gln) block copolymers and investigated their tumor-targeting abilities. With increasing degree of polymerization in the PLys(Gln) homopolymers, their cellular uptake was gradually enhanced through multivalent interactions with ASCT2. The performance of PEG-PLys(Gln) in blood circulation and tumor accumulation could be controlled by tuning of the molecular weight of PEG. Our results highlight the utility of molecular recognition in ASCT2/PLys(Gln) for tumor targeting through systemic administration.
Collapse
Affiliation(s)
- Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kaori Taniwaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Haochen Guo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
86
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
87
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
88
|
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021; 12:723798. [PMID: 34588983 PMCID: PMC8473699 DOI: 10.3389/fphar.2021.723798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Chisari
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sabrina Campisano
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
89
|
Wang YP, Wei T, Ma X, Zhu XL, Ren LF, Zhang L, Ding FH, Li X, Wang HP, Bai ZT, Zhu KX, Miao L, Yan J, Zhou WC, Meng WB, Liu YQ. Effect of Helicobacter Pylori on Plasma Metabolic Phenotype in Patients With Gastric Cancer. Cancer Control 2021; 28:10732748211041881. [PMID: 34569311 PMCID: PMC8477711 DOI: 10.1177/10732748211041881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Although Helicobacter pylori (Hp) as high risk factor for gastric cancer have been investigated from human trial, present data is inadequate to explain the effect of Hp on the changes of metabolic phenotype of gastric cancer in different stages. PURPOSE Herein, plasma of human superficial gastritis (Hp negative and positive), early gastric cancer and advanced gastric cancer analyzed by UPLC-HDMS metabolomics can not only reveal metabolic phenotype changes in patients with gastric cancer of different degrees (30 Hp negative, 30 Hp positive, 20 early gastric cancer patients, and 10 advanced gastric cancer patients), but also auxiliarily diagnose gastric cancer. RESULTS Combined with multivariate statistical analysis, the results represented biomarkers different from Hp negative, Hp positive, and the alterations of metabolic phenotype of gastric cancer patients. Forty-three metabolites are involved in amino acid metabolism, and lipid and fatty acid metabolism pathways in the process of cancer occurrence, especially 2 biomarkers glycerophosphocholine and neopterin, were screened in this study. Neopterin was consistently increased with gastric cancer progression and glycerophosphocholine tended to consistently decrease from Hp negative to advanced gastric cancer. CONCLUSION This method could be used for the development of rapid targeted methods for biomarker identification and a potential diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Yan-Ping Wang
- The Pharmacy Department, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Ting Wei
- The Pharmacy Department, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Ma
- The Traditional Chinese Medicine Laboratory, Gansu Institute for Drug Control, Lanzhou, China
| | - Xiao-Liang Zhu
- The Fifth Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The Fifth Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The Fifth Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Fang-Hui Ding
- The Fifth Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The Fifth Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Hai-Ping Wang
- The Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhong-Tian Bai
- The Second Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke-Xiang Zhu
- The Second Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Long Miao
- The Second Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Jun Yan
- The Second Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Wen-Bo Meng
- The Department of Minimally invasive surgery, 117741The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Qin Liu
- Cancer Epidemiology Research Center, Gansu Cancer Hospital, Lanzhou, China
| |
Collapse
|
90
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
91
|
Gauthier-Coles G, Vennitti J, Zhang Z, Comb WC, Xing S, Javed K, Bröer A, Bröer S. Quantitative modelling of amino acid transport and homeostasis in mammalian cells. Nat Commun 2021; 12:5282. [PMID: 34489418 PMCID: PMC8421413 DOI: 10.1038/s41467-021-25563-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell’s endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations. Cytosolic amino acid concentrations are carefully maintained, but how homeostasis occurs is unclear. Here, the authors show that amino acid transporters primarily determine intracellular amino acid levels and develop a model that predicts a perturbation response similar to experimental data.
Collapse
Affiliation(s)
| | - Jade Vennitti
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Zhiduo Zhang
- Division of Genome Science and Cancer, ACRF INCITe Centre - ANU Node, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | | | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
92
|
Zhang Q, Yang X, Liu H. Extracellular Vesicles in Cancer Metabolism: Implications for Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2021; 20:15330338211037821. [PMID: 34427131 PMCID: PMC8388228 DOI: 10.1177/15330338211037821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabolic reprogramming is one of the most common characteristics of cancer cells. The metabolic alterations of glucose, amino acids and lipids can support the aggressive phenotype of cancer cells. Exosomes, a kind of extracellular vesicles, participate in the intercellular communication through transferring bioactive molecules. Increasing evidence has demonstrated that enzymes, metabolites and non-coding RNAs in exosomes are responsible for the metabolic alteration of cancer cells. In this review, we summarize the past and recent findings of exosomes in altering cancer metabolism and elaborate on the role of the specific enzymes, metabolites and non-coding RNAs transferred by exosomes. Moreover, we give evidence of the role of exosomes in cancer diagnosis and treatment. Finally, we discuss the existing problems in the study and application of exosomes in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
93
|
Abstract
The role of PET imaging with 11C-choline and 18F-fluciclovine in evaluating patients with prostate cancer (PCa) has become more important over the years and has been incorporated into the NCCN guidelines. A new generation of PET radiotracers targeting the prostate-specific membrane antigen (PSMA) is widely used outside the United States to evaluate patients with primary PCa and PCa recurrence. PET imaging influences treatment planning and demonstrates a significantly higher disease detection rate than conventional imaging such as computed tomography and MR imaging. Early data indicate that using PET radiotracers such as 18F-fluciclovine and PSMA improves patient outcomes. 68-Ga-PSMA-11 and 18F-DCFPyL-PET/CT were recently approved by the US Food & Drug Administration (FDA) for clinical use. Other PSMA radiotracers, including fluorinated variants, will likely gain FDA approval in the not-too-distant future.
Collapse
|
94
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
95
|
Zhu Y, Zhang S, Sun J, Wang T, Liu Q, Wu G, Qian Y, Yang W, Wang Y, Wang W. Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and M2 polarization of macrophage. Int J Oral Sci 2021; 13:25. [PMID: 34373444 PMCID: PMC8352977 DOI: 10.1038/s41368-021-00128-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Oral immunosuppression caused by smoking creates a microenvironment to promote the occurrence and development of oral mucosa precancerous lesions. This study aimed to investigate the role of metabolism and macrophage polarization in cigarette-promoting oral leukoplakia. The effects of cigarette smoke extract (CSE) on macrophage polarization and metabolism were studied in vivo and in vitro. The polarity of macrophages was detected by flow cytometric analysis and qPCR. Liquid chromatography-mass spectrometry (LC-MS) was used to perform a metabolomic analysis of Raw cells stimulated with CSE. Immunofluorescence and flow cytometry were used to detect the polarity of macrophages in the condition of glutamine abundance and deficiency. Cell Counting Kit-8 (CCK-8), wound-healing assay, and Annexin V-FITC (fluorescein isothiocyanate)/PI (propidium iodide) double-staining flow cytometry were applied to detect the growth and transferability and apoptosis of Leuk-1 cells in the supernatant of Raw cells which were stimulated with CSE, glutamine abundance and deficiency. Hyperkeratosis and dysplasia of the epithelium were evident in smoking mice. M2 macrophages increased under CSE stimulation in vivo and in vitro. In total, 162 types of metabolites were detected in the CSE group. The metabolites of nicotine, glutamate, arachidic acid, and arginine changed significantly. The significant enrichment pathways were also selected, including nicotine addiction, glutamine and glutamate metabolism, and arginine biosynthesis. The results also showed that the supernatant of Raw cells stimulated by CSE could induce excessive proliferation of Leuk-1 and inhibit apoptosis. Glutamine abundance can facilitate this process. Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and macrophage M2 polarization.
Collapse
Affiliation(s)
- Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuo Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jiahui Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qin Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guanxi Wu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weidong Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
96
|
Zhang C, Xu J, Xue S, Ye J. Prognostic Value of L-Type Amino Acid Transporter 1 (LAT1) in Various Cancers: A Meta-Analysis. Mol Diagn Ther 2021; 24:523-536. [PMID: 32410110 DOI: 10.1007/s40291-020-00470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The L-type amino acid transporter 1 (LAT1, SLC7A5) is overexpressed in various types of cancer and has been thought to assist cancer progression through its uptake of neutral amino acids. However, the prognostic role of LAT1 in human cancers remains uncharacterized. Therefore, we conducted this meta-analysis to determine the prognostic significance of LAT1 in various cancers. METHODS We systematically searched the PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure, and WanFang databases to collect relevant cohort studies investigating the prognostic value of LAT1 expression in patients with cancer. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to clarify the association between the LAT1 expression and the survival of patients with cancer. Odds ratios (ORs) with 95% CIs were calculated to appraise the correlation between LAT1 and the clinicopathological characteristics in patients with cancer. RESULTS A total of 32 eligible articles, including 34 cohorts and 6410 patients, were enrolled in this meta-analysis. Our results demonstrated that high LAT1 expression was significantly associated with poor overall survival (HR = 1.66, 95% CI 1.41-1.96, P < 0.001), cancer-specific survival (HR = 1.64, 95% CI 1.31-2.05, P < 0.001), disease-free survival (HR = 1.55, 95% CI 1.31-1.83, P < 0.001), and progression-free survival (HR = 1.18, 95% CI 1.02-1.37, P = 0.026) in patients with cancer. In addition, we found that the elevated expression level of LAT1 was significantly related to certain phenotypes of tumor aggressiveness, such as tumor size, clinical stage, T stage, lymphatic invasion, vascular invasion, tumor differentiation, Ki-67, CD34, CD98, p53, and system ASC amino acid transporter-2. CONCLUSIONS Elevated expression of LAT1 is associated with poor prognosis in human cancers and may serve as a potential prognostic marker and therapeutic target for patients with malignancies.
Collapse
Affiliation(s)
- Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China.
| |
Collapse
|
97
|
Wang L, Sun X, Lu L, Marie A, Carrel D, Zhao S, Mille C, Song Q, Zhang Y, Ye S. Optoproteomics elucidates the interactome of L-type amino acid transporter 3 (LAT3). Chem Commun (Camb) 2021; 57:4734-4737. [PMID: 33977919 DOI: 10.1039/d0cc08423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane protein interactions are crucial for diverse biological processes. We report the application of genetic code expansion in combination with photo-crosslinking chemistry, as we termed "optoproteomics", to identify proteins interacting with the human L-type membrane amino acid transporter 3 (LAT3, also known as SLC43A1). The site-specifically incorporated photo-cross-linker p-azido-L-phenylalanine (AzF), which reacts with proteins in their proximity, enabled the capture of weak and transient partners of LAT3 in living cells. We identify 11 unique interacting proteins which are light-sensitive and 19 unique proteins that are site-specific, validating the approach and providing insights into the LAT3 protein-protein interaction network currently unavailable.
Collapse
Affiliation(s)
- Liquan Wang
- The Second Afiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiwen Sun
- The Second Afiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Linjie Lu
- INSERM U1195, Kremlin-Bicêtre Hospital, 80 Rue du Gal Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Arul Marie
- Molécules de Communication et Adaptation des Microorganisms (MCAM), UMR 7245 CNRS, Muséum National d'Histoire Naturelle, Paris cedex 05, France
| | - Damien Carrel
- Saint-Peres Paris Institute for the Neurosciences, CNRS UMR8003, Université de Paris, Paris 75006, France
| | - Shu Zhao
- INSERM U1195, Kremlin-Bicêtre Hospital, 80 Rue du Gal Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Clemence Mille
- INSERM U1195, Kremlin-Bicêtre Hospital, 80 Rue du Gal Leclerc, Le Kremlin-Bicêtre, 94276, France.
| | - Qiong Song
- Department of General Practice/VIP Medical Service, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Yan Zhang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, NUmber 195, Tongbai Road, Zhengzhou, Henan 450000, China
| | - Shixin Ye
- INSERM U1195, Kremlin-Bicêtre Hospital, 80 Rue du Gal Leclerc, Le Kremlin-Bicêtre, 94276, France.
| |
Collapse
|
98
|
SLC1A5 co-expression with TALDO1 associates with endocrine therapy failure in estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2021; 189:317-331. [PMID: 34282517 PMCID: PMC8357718 DOI: 10.1007/s10549-021-06298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/12/2021] [Indexed: 01/03/2023]
Abstract
Purpose Identification of effective biomarkers for the benefit of endocrine treatment and understanding the molecular pathways that contribute to the development of resistance are of crucial importance to the management of luminal breast cancer. The amino acid transporter SLC1A5 has emerging importance as a prognostic marker and potential therapeutic target in various types of cancer. This study aims to investigate its role in luminal breast cancer as a potential predictive marker for endocrine treatment. Methods SLC1A5 expression was assessed at the transcriptomic and proteomic levels in large, well-characterized cohorts of luminal breast cancer. The sensitivity to endocrine therapy after SLC1A5 knockdown was investigated in vitro, using MCF7 and MDA-MB-175 cell lines. Bioinformatic analyses were performed to study the interacting networks of SLC1A5 and to identify a key co-expressed gene with SLC1A5. Results Here, we showed that patients with tumors that highly expressed SLC1A5 associated with a high risk of relapse after endocrine treatment. In vitro, depletion of SLC1A5 increases the sensitivity of luminal breast cancer cells to tamoxifen. TALDO1 was identified as key co-expressed gene with SLC1A5, and in vitro knockdown of SLC1A5 showed reduction in TALDO1 expression. Indeed, TALDO1 was associated with poor clinical outcomes in patients who were subject to endocrine therapy. Conclusion These findings suggest that metabolic alterations, particularly the interaction between the key amino acid transporter SLC1A5 and metabolic enzyme TALDO1, could affect the sensitivity of endocrine therapy. This study demonstrated the prognostic value of both SLC1A5 and TALDO1 as biomarkers in luminal breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06298-1.
Collapse
|
99
|
Jiang Q, Shi L. Coordination of the Uptake and Metabolism of Amino Acids in Mycobacterium tuberculosis-Infected Macrophages. Front Immunol 2021; 12:711462. [PMID: 34326848 PMCID: PMC8315098 DOI: 10.3389/fimmu.2021.711462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/25/2021] [Indexed: 01/31/2023] Open
Abstract
Macrophage polarization to the M1-like phenotype, which is critical for the pro-inflammatory and antimicrobial responses of macrophages against intracellular pathogens, is associated with metabolic reprogramming to the Warburg effect and a high output of NO from increased expression of NOS2. However, there is limited understanding about the uptake and metabolism of other amino acids during M1 polarization. Based on functional analysis of a group of upregulated transporters and enzymes involved in the uptake and/or metabolism of amino acids in Mycobacterium tuberculosis-infected macrophages, plus studies of immune cell activation, we postulate a coherent scheme for amino acid uptake and metabolism during macrophage polarization to the M1-like phenotype. We describe potential mechanisms that the increased arginine metabolism by NOS2 is metabolically coupled with system L transporters LAT1 and LAT2 for the uptake of neutral amino acids, including those that drive mTORC1 signaling toward the M1-like phenotype. We also discuss the underappreciated pleiotropic roles of glutamine metabolism in the metabolic reprogramming of M1-like macrophages. Collectively, our analyses argue that a coordinated amino acid uptake and metabolism constitutes an integral component of the broad metabolic scheme required for macrophage polarization to M1-like phenotype against M. tuberculosis infection. This idea could stimulate future experimental efforts to elucidate the metabolic map of macrophage activation for the development of anti-tuberculosis therapies.
Collapse
Affiliation(s)
- Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey, Newark, NJ, United States
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
100
|
Mei R, Farolfi A, Castellucci P, Nanni C, Zanoni L, Fanti S. PET/CT variants and pitfalls in prostate cancer: What you might see on PET and should never forget. Semin Nucl Med 2021; 51:621-632. [PMID: 34266631 DOI: 10.1053/j.semnuclmed.2021.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
2-deoxy-2-[18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) gained an impressive role in the diagnostic management of many oncological diseases, even though its use in imaging prostate cancer (PC) is limited to selected cases, mostly advanced stage of PC and selection for prostate specific antigen membrane (PSMA) radioligand therapy (RLT). In the past years, several PET tracers have been developed for both staging and restaging PC. The three most employed PET molecules in daily practice are [11C] or [18F]F-Choline, [18F]F-Fluciclovine (Anti-1- amino-3-[18F]Fluorocyclobutane-1-Carboxylic Acid, also known as (Anti-[18F]FACBC), [68Ga]Ga-PSMA and recently FDA approved the first Fluorinated PSMA-based named [18F]F-DCFPyl. Each one has its own physiological and peculiarity which are worth exploring. Moreover, an increasing number of case reports and studies have reported tracers' variants, pitfalls, or even non-prostatic diseases (benign and malignant) incidentally detected. In prostate oncology, PET can be performed with several indications in different stages of disease, as highlighted in the EAU Guidelines on PC. A correct scan interpretation depends on the knowledge of both the physiological distribution of the tracers and the uptake of possible variants and pitfalls. The aim of this critical review is to provide a comprehensive knowledge of physiological distribution of these three tracers, as well as an updated overview of variants and pitfalls.
Collapse
Affiliation(s)
- Riccardo Mei
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Italy.
| | - Andrea Farolfi
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Italy
| |
Collapse
|