51
|
Muresanu DF, Sharma A, Tian ZR, Lafuente JV, Nozari A, Feng L, Buzoianu AD, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells Attenuates Heat Stress-Induced Exacerbation of Neuropathology Following Brain Blast Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:231-270. [PMID: 37480463 DOI: 10.1007/978-3-031-32997-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Blast brain injury (bBI) following explosive detonations in warfare is one of the prominent causes of multidimensional insults to the central nervous and other vital organs injury. Several military personnel suffered from bBI during the Middle East conflict at hot environment. The bBI largely occurs due to pressure waves, generation of heat together with release of shrapnel and gun powders explosion with penetrating and/or impact head trauma causing multiple brain damage. As a result, bBI-induced secondary injury causes breakdown of the blood-brain barrier (BBB) and edema formation that further results in neuronal, glial and axonal injuries. Previously, we reported endocrine imbalance and influence of diabetes on bBI-induced brain pathology that was significantly attenuated by nanowired delivery of cerebrolysin in model experiments. Cerebrolysin is a balanced composition of several neurotrophic factors, and active peptide fragment is capable of neuroprotection in several neurological insults. Exposure to heat stress alone causes BBB damage, edema formation and brain pathology. Thus, it is quite likely that hot environment further exacerbates the consequences of bBI. Thus, novel therapeutic strategies using nanodelivery of stem cell and cerebrolysin may further enhance superior neuroprotection in bBI at hot environment. Our observations are the first to show that combined nanowired delivery of mesenchymal stem cells (MSCs) and cerebrolysin significantly attenuated exacerbation of bBI in hot environment and induced superior neuroprotection, not reported earlier. The possible mechanisms of neuroprotection with MSCs and cerebrolysin in bBI are discussed in the light of current literature.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
52
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
53
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
54
|
Kann O, Almouhanna F, Chausse B. Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci 2022; 45:913-927. [PMID: 36283867 DOI: 10.1016/j.tins.2022.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Traditionally, lymphocytic interferon γ (IFN-γ) was considered to be a simple 'booster' of proinflammatory responses by microglia (brain-resident macrophages) during bacterial or viral infection. Recent slice culture (in situ) and in vivo studies suggest, however, that IFN-γ has a unique role in microglial activation. Priming by IFN-γ results in proliferation (microgliosis), enhanced synapse elimination, and moderate nitric oxide release sufficient to impair synaptic transmission, gamma rhythm activity, and cognitive functions. Moreover, IFN-γ is pivotal for driving Toll-like receptor (TLR)-activated microglia into neurotoxic phenotypes that induce energetic and oxidative stress, severe network dysfunction, and neuronal death. Pharmacological targeting of activated microglia could be beneficial during elevated IFN-γ levels, blood-brain barrier leakage, and parenchymal T lymphocyte infiltration associated with, for instance, encephalitis, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
55
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
56
|
Wang N, Wang M, Jeevaratnam S, Rosenberg C, Ikezu TC, Shue F, Doss SV, Alnobani A, Martens YA, Wren M, Asmann YW, Zhang B, Bu G, Liu CC. Opposing effects of apoE2 and apoE4 on microglial activation and lipid metabolism in response to demyelination. Mol Neurodegener 2022; 17:75. [PMID: 36419137 PMCID: PMC9682675 DOI: 10.1186/s13024-022-00577-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear. METHODS To determine how apoE isoforms impact microglial response to myelin damage, 2-month-old apoE2-, apoE3-, and apoE4-targeted replacement (TR) mice were fed with normal diet (CTL) or 0.2% cuprizone (CPZ) diet for four weeks to induce demyelination in the brain. To examine the effects on subsequent remyelination, the cuprizone diet was switched back to regular chow for an additional two weeks. After treatment, brains were collected and subjected to immunohistochemical and biochemical analyses to assess the myelination status, microglial responses, and their capacity for myelin debris clearance. Bulk RNA sequencing was performed on the corpus callosum (CC) to address the molecular mechanisms underpinning apoE-mediated microglial activation upon demyelination. RESULTS We demonstrate dramatic isoform-dependent differences in the activation and function of microglia upon cuprizone-induced demyelination. ApoE2 microglia were hyperactive and more efficient in clearing lipid-rich myelin debris, whereas apoE4 microglia displayed a less activated phenotype with reduced clearance efficiency, compared with apoE3 microglia. Transcriptomic profiling revealed that key molecules known to modulate microglial functions had differential expression patterns in an apoE isoform-dependent manner. Importantly, apoE4 microglia had excessive buildup of lipid droplets, consistent with an impairment in lipid metabolism, whereas apoE2 microglia displayed a superior ability to metabolize myelin enriched lipids. Further, apoE2-TR mice had a greater extent of remyelination; whereas remyelination was compromised in apoE4-TR mice. CONCLUSIONS Our findings provide critical mechanistic insights into how apoE isoforms differentially regulate microglial function and the maintenance of myelin dynamics, which may inform novel therapeutic avenues for targeting microglial dysfunctions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Wang
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Minghui Wang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Suren Jeevaratnam
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Cassandra Rosenberg
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Tadafumi C. Ikezu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Francis Shue
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Sydney V. Doss
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Alla Alnobani
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Melissa Wren
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yan W. Asmann
- grid.417467.70000 0004 0443 9942Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
57
|
Chen M, Zhang H, Chu YH, Tang Y, Pang XW, Qin C, Tian DS. Microglial autophagy in cerebrovascular diseases. Front Aging Neurosci 2022; 14:1023679. [PMID: 36275005 PMCID: PMC9582432 DOI: 10.3389/fnagi.2022.1023679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are considered core regulators for monitoring homeostasis in the brain and primary responders to central nervous system (CNS) injuries. Autophagy affects the innate immune functions of microglia. Recently some evidence suggests that microglial autophagy is closely associated with brain function in both ischemic stroke and hemorrhagic stroke. Herein, we will discuss the interaction between autophagy and other biological processes in microglia under physiological and pathological conditions and highlight the interaction between microglial metabolism and autophagy. In the end, we focus on the effect of microglial autophagy in cerebrovascular diseases.
Collapse
|
58
|
Lacoursiere SG, Safar J, Westaway D, Mohajerani MH, Sutherland RJ. The effect of Aβ seeding is dependent on the presence of knock-in genes in the App NL-G-F mice. FRONTIERS IN DEMENTIA 2022; 1:941879. [PMID: 39081481 PMCID: PMC11285652 DOI: 10.3389/frdem.2022.941879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by the prion-like propagation of amyloid-β (Aβ). However, the role of Aβ in cognitive impairment is still unclear. To determine the causal role of Aβ in AD, we intracerebrally seeded the entorhinal cortex of a 2-month-old App NL-G-F mouse model with an Aβ peptide derived from patients who died from rapidly progressing AD. When the mice were 3 months of age or 1 month following seeding, spatial learning and memory were tested using the Morris water task. Immunohistochemical labeling showed seeding with the Aβ was found accelerate Aβ plaque deposition and microgliosis in the App NL-G-F mice, but this was dependent on the presence of the knocked-in genes. However, we found no correlation between pathology and spatial performance. The results of the present study show the seeding effects in the App NL-G-F knock-in model, and how these are dependent on the presence of a humanized App gene. But these pathological changes were not initially causal in memory impairment.
Collapse
Affiliation(s)
- Sean G. Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jiri Safar
- Departments of Pathology, Neurology, Psychiatry, and National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
59
|
Reemst K, Broos JY, Abbink MR, Cimetti C, Giera M, Kooij G, Korosi A. Early-life stress and dietary fatty acids impact the brain lipid/oxylipin profile into adulthood, basally and in response to LPS. Front Immunol 2022; 13:967437. [PMID: 36131915 PMCID: PMC9484596 DOI: 10.3389/fimmu.2022.967437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023] Open
Abstract
Brain lipid dysregulation is a hallmark of depression and Alzheimer's disease, also marked by chronic inflammation. Early-life stress (ELS) and dietary intake of polyunsaturated fatty acids (PUFAs) are risk factors for these pathologies and are known to impact inflammatory processes. However, if these early-life factors alter brain lipid homeostasis on the long-term and thereby contribute to this risk remains to be elucidated. We have recently shown that an early diet enriched in omega(ω)-3 PUFAs protected against the long-term negative effects of ELS on cognition and neuroinflammation. Here, we aim to understand if modulation of brain lipid and oxylipin profiles contributes to the detrimental effects of ELS and the protective ones of the diet. We therefore studied if and how ELS and early dietary PUFAs modulate the brain lipid and oxylipin profile, basally as well as in response to an inflammatory challenge, to unmask possible latent effects. Male mice were exposed to ELS via the limited bedding and nesting paradigm, received an early diet with high or low ω6/ω3 ratio (HRD and LRD) and were injected with saline or lipopolysaccharide (LPS) in adulthood. Twenty-four hours later plasma cytokines (Multiplex) and hypothalamic lipids and oxylipins (liquid chromatography tandem mass spectrometry) were measured. ELS exacerbated the LPS-induced increase in IL-6, CXCL1 and CCL2. Both ELS and diet affected the lipid/oxylipin profile long-term. For example, ELS increased diacylglycerol and LRD reduced triacylglycerol, free fatty acids and ceramides. Importantly, the ELS-induced alterations were strongly influenced by the early diet. For example, the ELS-induced decrease in eicosapentaenoic acid was reversed when fed LRD. Similarly, the majority of the LPS-induced alterations were distinct for control and ELS exposed mice and unique for mice fed with LRD or HRD. LPS decreased ceramides and lysophosphotidylcholine, increased hexosylceramides and prostaglandin E2, reduced triacylglycerol species and ω6-derived oxylipins only in mice fed LRD and ELS reduced the LPS-induced increase in phosphatidylcholine. These data give further insights into the alterations in brain lipids and oxylipins that might contribute to the detrimental effects of ELS, to the protective ones of LRD and the possible early-origin of brain lipid dyshomeostasis characterizing ELS-related psychopathologies.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Jelle Y. Broos
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Maralinde R. Abbink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Chiara Cimetti
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gijs Kooij
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands,*Correspondence: Aniko Korosi,
| |
Collapse
|
60
|
Song L, Sun Q, Zheng H, Zhang Y, Wang Y, Liu S, Duan L. Roseburia hominis Alleviates Neuroinflammation via Short-Chain Fatty Acids through Histone Deacetylase Inhibition. Mol Nutr Food Res 2022; 66:e2200164. [PMID: 35819092 PMCID: PMC9787297 DOI: 10.1002/mnfr.202200164] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/04/2022] [Indexed: 12/30/2022]
Abstract
SCOPE The gut microbiota plays a prominent role in gut-brain interactions and gut dysbiosis is involved in neuroinflammation. However, specific probiotics targeting neuroinflammation need to be explored. In this study, the antineuroinflammatory effect of the potential probiotic Roseburia hominis (R. hominis) and its underlying mechanisms is investigated. METHODS AND RESULTS First, germ-free (GF) rats are orally treated with R. hominis. Microglial activation, proinflammatory cytokines, levels of short-chain fatty acids, depressive behaviors, and visceral sensitivity are assessed. Second, GF rats are treated with propionate or butyrate, and microglial activation, proinflammatory cytokines, histone deacetylase 1 (HDAC1), and histone H3 acetyl K9 (Ac-H3K9) are analyzed. The results show that R. hominis administration inhibits microglial activation, reduces the levels of IL-1α, INF-γ, and MCP-1 in the brain, and alleviates depressive behaviors and visceral hypersensitivity in GF rats. Moreover, the serum levels of propionate and butyrate are increased significantly in the R. hominis-treated group. Propionate or butyrate treatment reduces microglial activation, the levels of proinflammatory cytokines and HDAC1, and promotes the expression of Ac-H3K9 in the brain. CONCLUSION These findings suggest that R. hominis alleviates neuroinflammation by producing propionate and butyrate, which serve as HDAC inhibitors. This study provides a potential psychoprobiotic to reduce neuroinflammation.
Collapse
Affiliation(s)
- Lijin Song
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Qinghua Sun
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Haonan Zheng
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Yiming Zhang
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Yujing Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Liping Duan
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| |
Collapse
|
61
|
Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081800. [PMID: 35892700 PMCID: PMC9332859 DOI: 10.3390/biomedicines10081800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most striking hallmarks shared by various neurodegenerative diseases, including Alzheimer’s disease (AD), is microglia-mediated neuroinflammation. The main pathological features of AD are extracellular amyloid-β (Aβ) plaques and intracellular tau-containing neurofibrillary tangles in the brain. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles. The crosstalk between microglia and neurons helps maintain brain homeostasis, and the metabolic phenotype of microglia determines its polarizing phenotype. There are currently many research and development efforts to provide disease-modifying therapies for AD treatment. The main targets are Aβ and tau, but whether there is a causal relationship between neurodegenerative proteins, including Aβ oligomer and tau oligomer, and regulation of microglia metabolism in neuroinflammation is still controversial. Currently, the accumulation of Aβ and tau by exosomes or other means of propagation is proposed as a regulator in neurological disorders, leading to metabolic disorders of microglia that can play a key role in the regulation of immune cells. In this review, we propose that the accumulation of Aβ oligomer and tau oligomer can propagate to adjacent microglia through exosomes and change the neuroinflammatory microenvironment by microglia metabolic reprogramming. Clarifying the relationship between harmful proteins and microglia metabolism will help people to better understand the mechanism of crosstalk between neurons and microglia, and provide new ideas for the development of AD drugs.
Collapse
|
62
|
Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022; 16:953534. [PMID: 35959472 PMCID: PMC9357882 DOI: 10.3389/fncel.2022.953534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia are considered the main phagocytic cells in the central nervous system, remodeling neural circuits by pruning synapses during development. Microglial phagocytosis is also a crucial process in maintaining adult brain homeostasis and clearing potential toxic factors, which are recognized to be associated with neurodegenerative and neuroinflammatory disorders. For example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic cells, and extracellular harmful substances by expressing a variety of specific receptors on the cell surface or by reprogramming intracellular glucose and lipid metabolism processes. Furthermore, physical exercise has been implicated to be one of the non-pharmaceutical treatments for various nervous system diseases, which is closely related to neuroplasticity and microglia functions including proliferation, activation, and phagocytosis. This review focuses on the central regulatory mechanisms related to microglia phagocytosis and the potential role of exercise training in this process.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yulong Bai
| |
Collapse
|
63
|
Benarroch E. What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration? Neurology 2022; 99:99-105. [PMID: 35851556 DOI: 10.1212/wnl.0000000000200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
|
64
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
65
|
Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis‐Tuffin L, Quicksall ZS, Lin S, Tutor‐New FQ, Ho CC, Min Y, Malphrus KG, Nguyen TT, Martin E, Garcia CA, Alkharboosh RM, Grewal S, Chaichana K, Wharen R, Guerrero‐Cazares H, Quinones‐Hinojosa A, Ertekin‐Taner N. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell 2022; 21:e13606. [PMID: 35388616 PMCID: PMC9124307 DOI: 10.1111/acel.13606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.
Collapse
Affiliation(s)
- Tulsi Patel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Mariet Allen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Shu Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Thuy T. Nguyen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Rawan M. Alkharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMinnesotaUSA
- Regenerative Sciences Training ProgramCenter for Regenerative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Sanjeet Grewal
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | - Robert Wharen
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
66
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
67
|
Wang Q, Duan L, Li X, Wang Y, Guo W, Guan F, Ma S. Glucose Metabolism, Neural Cell Senescence and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23084351. [PMID: 35457168 PMCID: PMC9030802 DOI: 10.3390/ijms23084351] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), an elderly neurodegenerative disorder with a high incidence and progressive memory decline, is one of the most expensive, lethal, and burdening diseases. To date, the pathogenesis of AD has not been fully illustrated. Emerging studies have revealed that cellular senescence and abnormal glucose metabolism in the brain are the early hallmarks of AD. Moreover, cellular senescence and glucose metabolism disturbance in the brain of AD patients may precede amyloid-β deposition or Tau protein phosphorylation. Thus, metabolic reprogramming targeting senescent microglia and astrocytes may be a novel strategy for AD intervention and treatment. Here, we recapitulate the relationships between neural cell senescence and abnormal glucose metabolism (e.g., insulin signaling, glucose and lactate metabolism) in AD. We then discuss the potential perspective of metabolic reprogramming towards an AD intervention, providing a theoretical basis for the further exploration of the pathogenesis of and therapeutic approach toward AD.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Yifu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|
68
|
Priming of microglia by type II interferon is lasting and resistant to modulation by interleukin-10 in situ. J Neuroimmunol 2022; 368:577881. [DOI: 10.1016/j.jneuroim.2022.577881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
|
69
|
Xu Y, Zhang S, Guo Y, Gao L, zhang H, Chen W, Huang Y. Chicken CDS2 isoforms presented distinct spatio-temporal expression pattern and regulated by insulin in a breed-specific manner. Poult Sci 2022; 101:101893. [PMID: 35504066 PMCID: PMC9079004 DOI: 10.1016/j.psj.2022.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
The cytidine diphosphate diacylglycerol synthases (CDSs) gene encodes the cytidine diphosphate-diacylglycerol (CDP-DAG) synthase enzyme that catalyzes the formation of CDP-diacylglycerol from phosphatidic acid. At present, there are no reports of CDS2 in birds. Here, we identified chicken CDS2 transcripts by combining conventional RT-PCR amplification, 5′ rapid amplification of cDNA ends (RACE), and 3′ RACE, explored the spatio-temporal expression profiles of total CDS2 and the longest transcript variant CDS2-4, and investigated the effect of exogenous insulin on the mRNA level of total CDS2 via quantitative RT-PCR. Four transcripts of chicken CDS2 (CDS2-1, -2, -3, and -4) were identified, which were alternatively spliced at the 3′-untranslated region (UTR). Both total CDS2 and CDS2-4 were prominently expressed in adipose tissue, and exhibited low expression in liver and pectoralis of 49-day-old chickens. Regarding the spatio-temporal expression patterns of CDS2 in chicken, total CDS2 exhibited a similar temporal expression tendency with a high level in the later period of incubation (embryonic day 19 [E19] or 1-day-old) in the brain, liver, and pectoralis. While CDS2-4 presented a distinct temporal expression pattern in these tissues, CDS2-4 levels peaked at 21 d in the brain and pectoralis, while liver CDS2-4 mRNA levels were highest at the early stage of hatching (E10). Total CDS2 (P < 0.001) and CDS2-4 (P = 0.0090) mRNA levels in the liver were differentially regulated throughout the development of the chicken. Total CDS2 levels in the liver of Silky chickens were higher than that of the broiler in the basal state and after insulin stimulation. Exogenous insulin significantly down-regulated the level of total CDS2 at 240 min in the pectoralis of Silky chickens (P < 0.01). In conclusion, chicken CDS2 isoforms with variation at the 3′-UTR were identified, which was prominently expressed in adipose tissue. Total CDS2 and CDS2-4 presented distinct spatio-temporal expression patterns, that is they were differentially regulated with age in brain, liver, and pectoralis. Insulin could regulate chicken CDS2 levels in a breed- and tissue-specific manner.
Collapse
|
70
|
Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 2022; 100:155-171. [PMID: 34848340 DOI: 10.1016/j.bbi.2021.11.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
High-fat diet (HFD) consumption is generally associated with an increased risk of cognitive and emotional dysfunctions that constitute a sizeable worldwide health burden with profound social and economic consequences. Middle age is a critical time period that affects one's health later in life; pertinently, the prevalence of HFD consumption is increasing among mature adults. Given the growing health-related economic burden imposed globally by increasing rates of noncommunicable diseases in rapidly aging populations, along with the pervasive but insidious health impairments associated with HFD consumption, it is critically important to understand the effects of long-term HFD consumption on brain function and to gain insights into their potential underlying mechanisms. In the present study, adult male C57BL/6J mice were randomly assigned a control diet (CD, 10 kJ% from fat) or an HFD (60 kJ% from fat) for 6 months (6 M) or 9 months (9 M) followed by behavioral tests, serum biochemical analysis, and histological examinations of both the dorsal and ventral regions of the hippocampus. In both the 6 M and 9 M cohorts, mice that consumed an HFD exhibited poorer memory performance in the Morris water maze test (MWM) and greater depression- and anxiety-like behavior during the open field test (OFT), sucrose preference test (SPT) and forced swim test (FST) than control mice. Compared with age-matched mice in the CD group, mice in the HFD group showed abnormal hippocampal neuronal morphology, which was particularly evident in the ventral hippocampus. Hippocampal microglia in mice in the HFD group generally had a more activated phenotype evidenced by a smaller microglial territory area and increased cluster of differentiation 68 (CD68, a marker of phagocytic activity) immunoreactivity, while the microglial density in the dentate gyrus (DG) was decreased, indicating microglial decline. The engulfment of postsynaptic density 95 (PSD95, a general postsynaptic marker) puncta by microglia was increased in the HFD groups. Histological analysis of neutral lipids using a fluorescent probe (BODIPY) revealed that the total neutral lipid content in regions of interests (ROIs) and the lipid load in microglia were increased in the HFD group relative to the age-matched CD group. In summary, our results demonstrated that chronic HFD consumption from young adulthood to middle age induced anxiety- and depression-like behavior as well as memory impairment. The negative influence of chronic HFD consumption on behavioral and hippocampal neuroplasticity appears to be linked to a change in microglial phenotype that is accompanied by a remarkable increase in cellular lipid accumulation. These observations highlighting the potential to target lipid metabolism deficits to reduce the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Hong Zhuang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenxi Yang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009
| | - Yu Xiao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Yuan Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Mingze Bi
- Medical College, Southeast University, Nanjing 210009, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing 210009, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China.
| |
Collapse
|
71
|
Wen J, Liu Y, Zhan Z, Chen S, Hu B, Ge J, Xie Q. Comprehensive analysis of mRNAs, lncRNAs and circRNAs in the early phase of microglial activation. Exp Ther Med 2021; 22:1460. [PMID: 34737800 PMCID: PMC8561759 DOI: 10.3892/etm.2021.10895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that may seriously affect the prognosis and quality of life of patients with sepsis. Microglial activation is vital to the neuroinflammation and the pathology of SAE. In the present study, in vitro cultured BV-2 microglial cells stimulated with lipopolysaccharide (LPS) were employed as a model of microglia activation. The altered profiles of long noncoding (lnc)RNAs, circular (circ)RNAs and mRNAs in BV-2 cells after 4 h of LPS exposure were arrayed by using the Agilent competing endogenous (ce)RNA Microarray Chip. Using fold change >2 and P<0.05 as the cutoff criteria, 1,135 mRNAs and 2,488 lncRNAs were determined to be upregulated and 630 mRNAs and 744 lncRNAs to be downregulated. The number of differentially expressed circRNAs was lower, with 140 upregulated and 123 downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of DE mRNAs suggested that inflammatory responses, as well as lipid metabolism, were involved in microglial activation. Furthermore, analyses of ceRNA networks of the lncRNA-miRNA-mRNA or circRNA-miRNA-mRNA interrelations were performed. The present study revealed a multitude of novel candidate mRNAs, lncRNAs and circRNAs involved in microglial activation, which may improve the current knowledge on neuroinflammation and provide potential therapeutic targets for SAE.
Collapse
Affiliation(s)
- Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230051, P.R. China
| | - Yujie Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Zhen Zhan
- Department of Pediatrics, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P.R. China
| | - Shiqing Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230051, P.R. China
| | - Bingfeng Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230051, P.R. China
| | - Jinfang Ge
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230051, P.R. China
| | - Qilian Xie
- Department of Pediatrics, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P.R. China.,Department of Neonatology, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P.R. China
| |
Collapse
|
72
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
73
|
Mahony C, O’Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021; 22:ijms221910757. [PMID: 34639097 PMCID: PMC8509728 DOI: 10.3390/ijms221910757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with extensive genetic and aetiological heterogeneity. While the underlying molecular mechanisms involved remain unclear, significant progress has been facilitated by recent advances in high-throughput transcriptomic, epigenomic and proteomic technologies. Here, we review recently published ASD proteomic data and compare proteomic functional enrichment signatures with those of transcriptomic and epigenomic data. We identify canonical pathways that are consistently implicated in ASD molecular data and find an enrichment of pathways involved in mitochondrial metabolism and neurogenesis. We identify a subset of differentially expressed proteins that are supported by ASD transcriptomic and DNA methylation data. Furthermore, these differentially expressed proteins are enriched for disease phenotype pathways associated with ASD aetiology. These proteins converge on protein–protein interaction networks that regulate cell proliferation and differentiation, metabolism, and inflammation, which demonstrates a link between canonical pathways, biological processes and the ASD phenotype. This review highlights how proteomics can uncover potential molecular mechanisms to explain a link between mitochondrial dysfunction and neurodevelopmental pathology.
Collapse
|
74
|
Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT. The role of the immune system in Alzheimer's disease. Ageing Res Rev 2021; 70:101409. [PMID: 34273589 DOI: 10.1016/j.arr.2021.101409] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder where the accumulation of amyloid plaques and the formation of tau tangles are the prominent pathological hallmarks. Increasing preclinical and clinical studies have revealed that different components of the immune system may act as important contributors to AD etiology and pathogenesis. The recognition of misfolded Aβ and tau by immune cells can trigger a series of complex immune responses in AD, and then lead to neuroinflammation and neurodegeneration. In parallel, genome-wide association studies have also identified several immune related loci associated with increased - risk of AD by interfering with the function of immune cells. Other immune related factors, such as impaired immunometabolism, defective meningeal lymphatic vessels and autoimmunity might also be involved in the pathogenesis of AD. Here, we review the data showing the alterations of immune cells in the AD trajectory and seek to demonstrate the crosstalk between the immune cell dysfunction and AD pathology. We then discuss the most relevant research findings in regards to the influences of gene susceptibility of immune cells for AD. We also consider impaired meningeal lymphatics, immunometabolism and autoimmune mechanisms in AD. In addition, immune related biomarkers and immunotherapies for AD are also mentioned in order to offer novel insights for future research.
Collapse
|
75
|
Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158:105469. [PMID: 34364974 DOI: 10.1016/j.nbd.2021.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.
Collapse
|
76
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
77
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021; 12:705920. [PMID: 34249016 PMCID: PMC8262770 DOI: 10.3389/fimmu.2021.705920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence exists that patients with chronic neurological conditions, which includes progressive multiple sclerosis, display pathological changes in neural metabolism and mitochondrial function. However, it is unknown if a similar degree of metabolic dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of chronic active lesions), and (ii) whether these alterations underlie a unique pathogenic phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell metabolism and mitochondrial function govern the function of chronic active microglia and macrophages brain infiltrates and identify new metabolic targets for therapeutic approaches aimed at reducing smoldering neuroinflammation.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
78
|
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TDY, Biedrzycki RJ, Kagan VE, Tyurina YY, Han X, Lefterov I, Koldamova R. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun 2021; 12:3416. [PMID: 34099706 PMCID: PMC8184801 DOI: 10.1038/s41467-021-23762-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
APOE and Trem2 are major genetic risk factors for Alzheimer's disease (AD), but how they affect microglia response to Aβ remains unclear. Here we report an APOE isoform-specific phospholipid signature with correlation between human APOEε3/3 and APOEε4/4 AD brain and lipoproteins from astrocyte conditioned media of APOE3 and APOE4 mice. Using preclinical AD mouse models, we show that APOE3 lipoproteins, unlike APOE4, induce faster microglial migration towards injected Aβ, facilitate Aβ uptake, and ameliorate Aβ effects on cognition. Bulk and single-cell RNA-seq demonstrate that, compared to APOE4, cortical infusion of APOE3 lipoproteins upregulates a higher proportion of genes linked to an activated microglia response, and this trend is augmented by TREM2 deficiency. In vitro, lack of TREM2 decreases Aβ uptake by APOE4-treated microglia only, suggesting TREM2-APOE interaction. Our study elucidates phenotypic and transcriptional differences in microglial response to Aβ mediated by APOE3 or APOE4 lipoproteins in preclinical models of AD.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kyong Nyon Nam
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cody M Wolfe
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Letronne
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brittany E Playso
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bistra E Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard J Biedrzycki
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Iliya Lefterov
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Radosveta Koldamova
- Deparment of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
79
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
80
|
Liu Z, Fan Q, Wu S, Wan Y, Lei Y. Compared with the monocyte to high-density lipoprotein ratio (MHR) and the neutrophil to lymphocyte ratio (NLR), the neutrophil to high-density lipoprotein ratio (NHR) is more valuable for assessing the inflammatory process in Parkinson's disease. Lipids Health Dis 2021; 20:35. [PMID: 33874966 PMCID: PMC8054377 DOI: 10.1186/s12944-021-01462-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background The inflammatory response plays essential roles in the pathological process and prognosis of Parkinson’s disease (PD). This research investigated the predictive value of the neutrophil to high-density lipoprotein ratio (NHR), neutrophil to lymphocyte ratio (NLR), and monocyte to high-density lipoprotein ratio (MHR) for PD. Methods Patients with PD (n = 98) were divided into three groups according to disease duration: < 6 years (n = 55), 6–10 years (n = 29) and > 10 years (n = 14). Based on the classification system of Hoehn and Yahr, grades 1 ~ 2.5 were considered early-stage PD (n = 44), and grades 3 ~ 5 were considered advanced-stage PD (n = 54). In addition, healthy subjects (n = 98) matched to the above PD patients in the same period were selected as the control group. Differences in the NHR, NLR, MHR and other indicators among the groups were evaluated. Results Smoking, drinking, the neutrophil count and the NHR and NLR were remarkably greater and hypertension, index of body mass, the lymphocyte count, and the levels of cholesterol in total, triglycerides, lipoprotein cholesterol with low density and uric acid were sharply lower in the PD group compared with in the control group. Analysis of multifactor logistic regression indicated that the NHR (odds ratio (adjusted OR) = 1.576, 95% CI: 1.053 ~ 2.358, P = 0.027) and NLR (adjusted OR = 1.734, 95% CI: 1.046 ~ 2.876, P = 0.033) were factors of risk for PD, while the MHR was not significantly correlated with PD. The areas under the receiver operating characteristic (ROC) curve (AUCs) for the prediction of PD by the NHR and NLR were 0.654 (95% CI: 0.583 ~ 0.721, P = 0.0001) and 0.69 (95% CI: 0.62 ~ 0.754, P < 0.0001), respectively, and the optimal cutoff values were 1.848 × 109/mmol and 2.62 × 109/mmol. Spearman’s correlation analysis indicated that the NHR was correlated with the disease duration significantly negatively and that the MHR was positively correlated with disease severity. Conclusions In summary, the NHR not only has strong predictive value for PD but is also closely related to disease duration. The NHR may be a better prediction for the long-period clinical results in PD patients than the MHR and NLR. Trial registration Clinical medical reserach center project of Qinghai Province (2017-SF-L1).
Collapse
Affiliation(s)
- Zhu Liu
- Qinghai Provincial People's Hospital, Xining, China.,Qinghai University, Qinghai, China
| | - Qingli Fan
- Qinghai Provincial People's Hospital, Xining, China.
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China.
| | - Yaqi Wan
- Qinghai Provincial People's Hospital, Xining, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai Utah Loint Research Key Lab for High Altitude Medicine), Xining, China
| | - Yancheng Lei
- Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
81
|
Obesity Prevents S-Adenosylmethionine-Mediated Improvements in Age-Related Peripheral and Hippocampal Outcomes. Nutrients 2021; 13:nu13041201. [PMID: 33917279 PMCID: PMC8067411 DOI: 10.3390/nu13041201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Age predisposes individuals to a myriad of disorders involving inflammation; this includes stress-related neuropsychiatric disorders such as depression and anxiety, and neurodegenerative diseases. Obesity can further exacerbate these effects in the brain. We investigated whether an inexpensive dietary supplement, s-adenosylmethionine (SAMe), could improve age- and/or obesity-related inflammatory and affective measures in the hippocampus. Methods: Mice were placed on their diets at six weeks of age and then aged to 14 months, receiving SAMe (0.1 g/kg of food) for the final six weeks of the experiment. Prior to tissue collection, mice were tested for anxiety-like behaviors in the open field test and for metabolic outcomes related to type 2 diabetes. Results: SAMe treatment significantly improved outcomes in aged control mice, where fasting glucose decreased, liver glutathione levels increased, and hippocampal microglia morphology improved. SAMe increased transforming growth factor β-1 mRNA in both control mice, potentially accounting for improved microglial outcomes. Obese mice demonstrated increased anxiety-like behavior, where SAMe improved some, but not all, open field measures. Conclusions: In summary, SAMe boosted antioxidant levels, improved diabetic measures, and hippocampal inflammatory and behavioral outcomes in aged mice. The effects of SAMe in obese mice were more subdued, but it could still provide some positive outcomes for obese individuals dealing with anxiety and having difficulty changing their behaviors to improve health outcomes.
Collapse
|
82
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
83
|
Park SJ, Choi JW. Brain energy metabolism and multiple sclerosis: progress and prospects. Arch Pharm Res 2020; 43:1017-1030. [PMID: 33119885 DOI: 10.1007/s12272-020-01278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease accompanied with nerve pain and paralysis. Although various pathogenic causes of MS have been suggested, including genetic and environmental factors, how MS occurs remains unclear. Moreover, MS should be diagnosed based on clinical experiences because of no disease-specific biomarker and currently available treatments for MS just can reduce relapsing frequency or severity with little effects on disease disability. Therefore, more efforts are required to identify pathophysiology of MS and diagnosis markers. Recent evidence indicates another aspect of MS pathogenesis, energy failure in the central nervous system (CNS). For instance, inflammation that is a characteristic MS symptom and occurs frequently in the CNS of MS patients can result into energy failure in mitochondria and cytosol. Indeed, metabolomics studies for MS have reported energy failure in oxidative phosphorylation and alteration of aerobic glycolysis. Therefore, studies on the metabolism in the CNS may provide another insight for understanding complexity of MS and pathogenesis, which would facilitate the discovery of promising strategies for developing therapeutics to treat MS. This review will provide an overview on recent progress of metabolomic studies for MS, with a focus on the fluctuation of energy metabolism in MS.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| |
Collapse
|