51
|
Kadooka C, Nakamura E, Kubo S, Okutsu K, Yoshizaki Y, Takamine K, Tamaki H, Futagami T. Analysis of the fungal population involved in Katsuobushi production. J GEN APPL MICROBIOL 2020; 66:239-243. [PMID: 32009019 DOI: 10.2323/jgam.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Naturally occurring fungi have been used in the traditional production of dried bonito, Katsuobushi, in Japan. In this study, we analyzed the fungal population present during Katsuobushi production. Amplicon sequence analysis of ITS1 indicated that Aspergillus spp. are predominant throughout the production process. In addition, culture-dependent analyzes identified three species Aspergillus chevalieri, Aspergillus montevidensis, and Aspergillus sydowii, based on sequencing of benA, caM, and rpb2 genes. A. chevalieri isolates were classified into teleomorphic and anamorphic strains based on morphological analysis. A. chevarieri was the dominant species throughout the production process, whereas A. montevidensis increased and A. sydowii decreased in abundance during Katsuobushi production. Our study will enhance the understanding of fungal species involved in traditional Katsuobushi production.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,United Graduate School of Agricultural Sciences, Kagoshima University
| | - Eri Nakamura
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Shingo Kubo
- Division of Instrumental Analysis, Research Support Center, Kagoshima University
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | - Yumiko Yoshizaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,United Graduate School of Agricultural Sciences, Kagoshima University
| | - Kazunori Takamine
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,United Graduate School of Agricultural Sciences, Kagoshima University
| | - Hisanori Tamaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,United Graduate School of Agricultural Sciences, Kagoshima University
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University.,United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
52
|
Ortiz-Lemus JF, Campoy S, Martín JF. Biological control of mites by xerophile Eurotium species isolated from the surface of dry cured ham and dry beef cecina. J Appl Microbiol 2020; 130:665-676. [PMID: 32869458 DOI: 10.1111/jam.14839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022]
Abstract
Some meat dry products, including dry cured ham and dry beef cecina, are cured in cellars at moderately cold temperature allowing the growth of a lawn of fungi on their surface. During the curing process, frequently these products became contaminated with fungivore mites of the Acaridae family that feed on fungal mycelium and spores. AIMS The aim of this article is to study the possible biological control of mites by fungi that form part of the normal microbiota of these meat products. METHODS AND RESULTS Some yellow/orange pigmented fungi growing on the ham surface decreased the proliferation of mites; therefore, we isolated from ham and cecina xerophilic yellow/orange coloured fungal strains that were identified as members of the genus Eurotium (recently reclassified as Aspergillus section Aspergillus). Using molecular genetic tools, we have identified 158 strains as Eurotium rubrum (Aspergillus ruber), Eurotium repens (Aspergillus pseudoglaucus) and Eurotium chevalieri (Aspergillus chevalieri). Two strains, E. rubrum C47 and E. rubrum C49, showed strong miticidal activity. The toxic compound(s) are associated with the formation of cleistothecia. In synchronized mite development experiments, we observed that all stages of the mite lifecycle were inhibited by the E. rubrum C47 strain. In addition, we searched for miticidal activity in 13 culture collection Eurotium strains isolated from different habitats, and found that only one, Eurotium cristatum NRRL 4222 (Aspergillus cristatus) has a strong miticidal activity. CONCLUSIONS These fungal strains have proliferated on the surface of ham and cecina for decades, and possibly have acquired miticidal activity as a resistance mechanism against fungivores. SIGNIFICANCE AND IMPACT OF THE STUDY Biological control of infecting mites by favouring growth of E. rubrun C47, in place of the normal mixed population of Aspergillus and Penicillium, is an attractive approach to control mite infestations.
Collapse
Affiliation(s)
- J F Ortiz-Lemus
- Área de Microbiología, Departmento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, INBIOTEC, León, Spain.,Departamento de Microbiología, Universidad de Pamplona, Pamplona, Colombia
| | - S Campoy
- Área de Microbiología, Departmento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, INBIOTEC, León, Spain
| | - J F Martín
- Área de Microbiología, Departmento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, INBIOTEC, León, Spain
| |
Collapse
|
53
|
Barros Correia ACR, Barbosa RN, Frisvad JC, Houbraken J, Souza-Motta CM. The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01605-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Huang P, Jiang X, Wu B, Sun J. Aspergillus jilinensis sp. nov. And its thermostable alkaline enzymes evaluation. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Sokolyanskaya LO, Ivanov MV, Ikkert OP, Kalinina AE, Evseev VA, Glukhova LB, Karnachuk OV. Copper Precipitation as Insoluble Oxalates by Thermotolerant Aspergillus spp. from Burning Wastes of Coal Mining. Microbiology (Reading) 2020. [DOI: 10.1134/s002626172004013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
56
|
Takenaka S, Nakabayashi R, Ogawa C, Kimura Y, Yokota S, Doi M. Characterization of surface Aspergillus community involved in traditional fermentation and ripening of katsuobushi. Int J Food Microbiol 2020; 327:108654. [DOI: 10.1016/j.ijfoodmicro.2020.108654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 01/22/2023]
|
57
|
Rasheed U, Ain QU, Yaseen M, Santra S, Yao X, Liu B. Assessing the Aflatoxins Mitigation Efficacy of Blueberry Pomace Biosorbent in Buffer, Gastrointestinal Fluids and Model Wine. Toxins (Basel) 2020; 12:E466. [PMID: 32708252 PMCID: PMC7405022 DOI: 10.3390/toxins12070466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Blueberry (BB) and cherry pomace were investigated as new biosorbents for aflatoxins (AFs) sequestration from buffered solutions, gastrointestinal fluids and model wine. Among the tested biosorbents, BB exhibited the maximum adsorption performance for AFs and hence was further selected for the optimization of experimental parameters like pH, dosage, time and initial concentration of AFs. Material characterizations via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isothermal studies, thermogravimetric analysis (TGA) and X-ray photon spectroscopy (XPS) techniques revealed useful information about the texture and chemical composition of the biosorbents. The fitting of isothermal data with different models showed the model suitability trend as: Sips model > Langmuir model > Freundlich model, where the theoretical maximum adsorption capacity calculated from the Sips model was 4.6, 2.9, 2.7 and 2.4 mg/g for AFB1, AFB2, AFG1 and AFG2, respectively. Kinetics study revealed the fast AFs uptake by BB (50-90 min) while thermodynamics studies suggested the exothermic nature of the AFs adsorption from both, single as well as multi-toxin buffer systems, gastrointestinal fluids and model wine. Accrediting to the fast and efficient adsorption performance, green and facile fabrication approach and cost-effectiveness, the newly designed BB pomace can be counted as a promising contender for the sequestration of AFs and other organic pollutants.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China; (U.R.); (S.S.); (X.Y.)
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KP 25120, Pakistan;
| | - Sayantan Santra
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China; (U.R.); (S.S.); (X.Y.)
| | - Xiaohua Yao
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China; (U.R.); (S.S.); (X.Y.)
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China; (U.R.); (S.S.); (X.Y.)
| |
Collapse
|
58
|
Xiao Y, Zhong K, Bai JR, Wu YP, Gao H. Insight into effects of isolated Eurotium cristatum from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3598-3607. [PMID: 32100298 DOI: 10.1002/jsfa.10353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pingwu Fuzhuan brick tea is a type of post-fermented tea manufactured from leaves of the tea plant, Camellia sinensis var. sinensis, the quality of which is influenced by numerous factors, especially microorganisms. Currently, there is little research on the effect of microorganisms on the fermentation and quality characteristics of Pingwu Fuzhuan brick tea. Investigation of the main fungus in this tea and its effect on the fermentation process and tea quality can provide insights into the manufacturing of 'western road' border-selling tea and could lay the foundation for the popularization of Pingwu Fuzhuan brick tea. RESULTS The main 'golden flower fungus' in Pingwu Fuzhuan brick tea was isolated and identified as Eurotium cristatum (GenBank accession number: MF800948.1; strain PW-1). Compared with natural fermentation, PW-1 inoculated fermentation accelerated biotransformation of phenolic compounds, which provided tea samples with better taste and tea infusion color. The proportions of velvety and sweet-tasting amino acids increased after 16-day fermentation with PW-1. Alcohols were the most abundant volatiles, with 40.13% and 39.43% content in NF16d and IF16d tea samples, respectively. Orthogonal partial least-squares discriminant analysis (OPLS-DA) and hierarchical clustering analysis (HCA) further revealed that naturally fermented and PW-1 fermented teas were significantly different. CONCLUSION Strain PW-1 plays an important role in the fermentation process of Fuzhuan brick tea. Considering fermentation efficiency and tea quality, fermentation inoculated with E. cristatum PW-1 can be applied in the manufacturing of 'western road' border-selling tea. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Xiao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jin-Rong Bai
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yan-Ping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
59
|
Bobadilla-Carrillo GI, Magallón-Servín P, López-Vela M, Palomino-Hermosillo YA, Ramírez-Ramírez JC, Gutiérrez-Leyva R, Ibarra-Castro L, Bautista-Rosales PU. Characterization and proliferation capacity of potentially pathogenic fungi in marine and freshwater fish commercial feeds. Arch Microbiol 2020; 202:2379-2390. [PMID: 32588083 DOI: 10.1007/s00203-020-01954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
In the aquaculture industry, the selection and quality of feed are highly relevant because their integrity and management have an impact on the health and development of organisms. In general, feeds contamination depends on storage conditions and formulation. Furthermore, it has been recognized that filamentous fungi are among the most important contaminating agent in formulated feeds. Therefore, the purpose of this research was to identify saprophytic fungi capable of proliferating in commercial feeds, as well as determining their prevalence, extracellular enzymes profile, ability to assimilate carbon sources, and finally their ability to produce aflatoxins. In order to do that, twenty-two fungi were isolated from commercial fish feeds. After, the species Aspergillus chevalieri, A. cristatus, A. sydowii, A. versicolor, A. flavus, A. creber, and Lichtheimia ramosa were identified. These fungi were able to produce extracellular enzymes, such as phosphatases, esterases, proteases, β-glucosidase, and N-acetyl-β-glucosaminidase. The isolated fungi showed no selective behavior in the assimilation of the different carbon sources, showing a strong metabolic diversity. Prevalence percentages above 85% were recorded. Among all fungi studied, A. flavus M3-C1 had the highest production of aflatoxins when this strain was inoculated directly in the feeds (295 ppb). The aflatoxin production by this strain under the experimental setting is above the permitted levels, and it has been established that high levels of aflatoxins in feeds can cause alterations in fish growth as well as the development of cancerous tumors in the liver, in addition to enhancing mortality.
Collapse
Affiliation(s)
- Giovanna Ilieva Bobadilla-Carrillo
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico.,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico
| | - Paola Magallón-Servín
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | - Melissa López-Vela
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | | | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Ranferi Gutiérrez-Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Leonardo Ibarra-Castro
- Centro de Investigación en Alimentación y Desarrollo, Av. Sábalo Cerritos S/N, Col. Cerritos, C. P. 82100, Mazatlán, Sinaloa, Mexico
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico. .,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
60
|
Molecular Characterization of Mycobiota and Aspergillus Species from Eupolyphaga sinensis Walker Based on High-Throughput Sequencing of ITS1 and CaM. J FOOD QUALITY 2020. [DOI: 10.1155/2020/1752415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eupolyphaga sinensis Walker is a valuable traditional Chinese animal medicine first recorded in Shennong Bencao. Previous research has shown that E. sinensis is easily contaminated by aflatoxins (AFs), which are highly toxic mycotoxins, during harvest, storage, and transport, thereby posing a considerable threat to consumer health. Most often, these AFs are produced by Aspergillus species. In this study, we contrast the traditional culture-based dilution plating method to the high-throughput sequencing (HTS) technology for fungal identification in TCM E. sinensis. Both of the methods used internal transcribed spacer 1 (ITS1) and calmodulin (CaM) sequencing for fungal molecular identification. The new CaM primer we designed in the study is suitable for MiSeq PE300 sequencing used for identification of Aspergillus species in community DNA samples. More fungal species were found in the E. sinensis samples based on HTS than those found using the culture-based dilution plating method. Overall, combining the sequencing power of ITS1 and CaM is an effective method for the detection and monitoring of potential toxigenic Aspergillus species in E. sinensis. In conclusion, HTS can be used to obtain a large amount of sequencing data about fungi contaminating animal medicine, allowing earlier detection of potential toxigenic fungi and ensuring the efficient production and safety of E. sinensis.
Collapse
|
61
|
Katsurayama AM, Martins LM, Iamanaka BT, Fungaro MHP, Silva JJ, Pitt JI, Frisvad JC, Taniwaki MH. Fungal communities in rice cultivated in different Brazilian agroclimatic zones: From field to market. Food Microbiol 2020; 87:103378. [DOI: 10.1016/j.fm.2019.103378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/09/2023]
|
62
|
Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci Rep 2020; 10:5158. [PMID: 32198418 PMCID: PMC7083838 DOI: 10.1038/s41598-020-61907-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
Fungi secrete an array of carbohydrate-active enzymes (CAZymes), reflecting their specialized habitat-related substrate utilization. Despite its importance for fitness, enzyme secretome composition is not used in fungal classification, since an overarching relationship between CAZyme profiles and fungal phylogeny/taxonomy has not been established. For 465 Ascomycota and Basidiomycota genomes, we predicted CAZyme-secretomes, using a new peptide-based annotation method, Conserved-Unique-Peptide-Patterns, enabling functional prediction directly from sequence. We categorized each enzyme according to CAZy-family and predicted molecular function, hereby obtaining a list of "EC-Function;CAZy-Family" observations. These "Function;Family"-based secretome profiles were compared, using a Yule-dissimilarity scoring algorithm, giving equal consideration to the presence and absence of individual observations. Assessment of "Function;Family" enzyme profile relatedness (EPR) across 465 genomes partitioned Ascomycota from Basidiomycota placing Aspergillus and Penicillium among the Ascomycota. Analogously, we calculated CAZyme "Function;Family" profile-similarities among 95 Aspergillus and Penicillium species to form an alignment-free, EPR-based dendrogram. This revealed a stunning congruence between EPR categorization and phylogenetic/taxonomic grouping of the Aspergilli and Penicillia. Our analysis suggests EPR grouping of fungi to be defined both by "shared presence" and "shared absence" of CAZyme "Function;Family" observations. This finding indicates that CAZymes-secretome evolution is an integral part of fungal speciation, supporting integration of cladogenesis and anagenesis.
Collapse
Affiliation(s)
- Kristian Barrett
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristian Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Jens C Frisvad
- Department for Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Lene Lange
- LLa Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark
| |
Collapse
|
63
|
Abstract
The taxonomy and nomenclature of the genus Aspergillus and its associated sexual (teleomorphic) genera have been greatly stabilised over the last decade. This was in large thanks to the accepted species list published in 2014 and associated metadata such as DNA reference sequences released at the time. It had a great impact on the community and it has never been easier to identify, publish and describe the missing Aspergillus diversity. To further stabilise its taxonomy, it is crucial to not only discover and publish new species but also to capture infraspecies variation in the form of DNA sequences. This data will help to better characterise and distinguish existing species and make future identifications more robust. South Africa has diverse fungal communities but remains largely unexplored in terms of Aspergillus with very few sequences available for local strains. In this paper, we re-identify Aspergillus previously accessioned in the PPRI and MRC culture collections using modern taxonomic approaches. In the process, we re-identify strains to 63 species, describe seven new species and release a large number of new DNA reference sequences.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biosystematics Division, Agricultural Research Council – Plant Health and Protection, Private Bag X134, Queenswood, Pretoria, 0121, South Africa
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, CT, 3584, Netherlands
| |
Collapse
|
64
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
65
|
Sklenář F, Jurjević Ž, Peterson SW, Kolařík M, Nováková A, Flieger M, Stodůlková E, Kubátová A, Hubka V. Increasing the species diversity in the Aspergillus section Nidulantes: Six novel species mainly from the indoor environment. Mycologia 2020; 112:342-370. [PMID: 32074019 DOI: 10.1080/00275514.2019.1698923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aspergillus section Nidulantes encompasses almost 80 homothallic and anamorphic species, mostly isolated from soil, plant material, or the indoor environment. Some species are clinically relevant or produce mycotoxins. This study reevaluated the species boundaries within several clades of section Nidulantes. Five data sets were assembled, each containing presumptive new species and their closest relatives, and phylogenetic and phenotypic analyses were performed. We tested the hypotheses that the newly isolated or reexamined strains constitute separate species (splitting approach) or should be treated as part of broadly defined species (lumping approach). Four DNA sequence loci were amplified, internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA and partial sequences of the β-tubulin (benA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes. The latter three loci were used for the phylogenetic analysis and served as input for single-locus (GMYC, bGMYC, PTP, and bPTP) and multilocus (STACEY and BP&P) species delimitation analyses. The phenotypic analysis comprised macro- and micromorphology (including scanning electron microscopy) and comparison of cardinal growth temperatures. The phylogenetic analysis supported the splitting hypothesis in all cases, and based on the combined approach, we propose six new species, four that are homothallic and two anamorphic. Four new species were isolated from the indoor environment (Jamaica, Trinidad and Tobago, USA), one originated from soil (Australia), and one from a kangaroo rat cheek pouch (USA).
Collapse
Affiliation(s)
- F Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, New Jersey 08077
| | - S W Peterson
- US Department of Agriculture, National Center for Agricultural Utilization Research, Agricultural Research Service, Peoria, Illinois 61604
| | - M Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - A Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - M Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - E Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - A Kubátová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| |
Collapse
|
66
|
Biologically Active Echinulin-Related Indolediketopiperazines from the Marine Sediment-Derived Fungus Aspergillus niveoglaucus. Molecules 2019; 25:molecules25010061. [PMID: 31878044 PMCID: PMC6983058 DOI: 10.3390/molecules25010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/23/2023] Open
Abstract
Seven known echinulin-related indolediketopiperazine alkaloids (1–7) were isolated from the Vietnamese sediment-derived fungus Aspergillus niveoglaucus. Using chiral HPLC, the enantiomers of cryptoechinuline B (1) were isolated as individual compounds for the first time. (+)-Cryptoechinuline B (1a) exhibited neuroprotective activity in 6-OHDA-, paraquat-, and rotenone-induced in vitro models of Parkinson’s disease. (−)-Cryptoechinuline B (1b) and neoechinulin C (5) protected the neuronal cells against paraquat-induced damage in a Parkinson’s disease model. Neoechinulin B (4) exhibited cytoprotective activity in a rotenone-induced model, and neoechinulin (7) showed activity in the 6-OHDA-induced model.
Collapse
|
67
|
Garcia MV, Bernardi AO, Parussolo G, Stefanello A, Lemos JG, Copetti MV. Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. Food Res Int 2019; 126:108593. [DOI: 10.1016/j.foodres.2019.108593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
68
|
Neuhaus GF, Adpressa DA, Bruhn T, Loesgen S. Polyketides from Marine-Derived Aspergillus porosus: Challenges and Opportunities for Determining Absolute Configuration. JOURNAL OF NATURAL PRODUCTS 2019; 82:2780-2789. [PMID: 31557023 DOI: 10.1021/acs.jnatprod.9b00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fungal natural products have inspired and enabled countless modern therapeutics. During a survey of the secondary metabolites of endophytic fungi, we found that Aspergillus porosus produces new polyketides with interesting structural features named porosuphenols A-D (1, 2, 3a, and 3b). The structural elucidation of these metabolites was performed with 1D and 2D NMR techniques, Mosher ester analysis, J-based conformational analysis, and isotope exchange studies. The absolute configuration of these compounds was determined using typical approaches including comparative analysis of experimental NMR and electronic circular dichroism spectra with DFT calculations. However, these efforts did not provide conclusive results for porosuphenol A (1). To resolve this issue, we applied a strategy in which NMR data guide the conformer search. Herein are presented the structure elucidation of porosuphenols A-D as a case study in the challenges and opportunities for determination of absolute configuration. Lastly, bioassay-guided fractionation of cytotoxic fractions resulted in the additional isolation of pimarane diterpenes, sphaeropsidin A (4), and aspergiloid E (5).
Collapse
Affiliation(s)
- George F Neuhaus
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Donovon A Adpressa
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Torsten Bruhn
- Bundesinstitut für Risikobewertung , Berlin 12277 , Germany
| | - Sandra Loesgen
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
69
|
Wang Y, Tu Y, He B, Zeng B. Comparative Genome Analysis of Aspergillus Oryzae and Aspergillus Flavus. PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL SCIENCE 2019. [DOI: 10.1145/3369166.3369195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Yijing Wang
- Jiangxi Science & Technology, Normal University, Nanchang, Jiangxi, China
| | - Yayi Tu
- Jiangxi Science & Technology, Normal University, Nanchang, Jiangxi, China
| | - Bin He
- Jiangxi Science & Technology, Normal University, Nanchang, Jiangxi, China
| | - Bin Zeng
- Jiangxi Science & Technology, Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
70
|
The preservative propionic acid differentially affects survival of conidia and germ tubes of feed spoilage fungi. Int J Food Microbiol 2019; 306:108258. [DOI: 10.1016/j.ijfoodmicro.2019.108258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
|
71
|
Elizondo-Zertuche M, Martínez-Carranza K, Orue N, de Jesús Treviño-Rangel R, Robledo-Leal E. Managing raw materials of vegetable origin increases fungal indoor concentration in food companies. Journal of Food Science and Technology 2019; 57:794-798. [PMID: 32116388 DOI: 10.1007/s13197-019-04111-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022]
Abstract
Fungi in indoor environments is a known cause of disease and food spoilage. However, there is currently no legislation or normativity stablishing limits for fungal densities in correlation with these. Moreover, there is little knowledge of the diversity of fungi in indoor environments for industrial areas and in food-related companies in particular, a study has never been performed to evaluate the concentration and diversity of fungi in this type of places. We evaluated the fungal density of 20 food companies. We sampled 100 L of air onto rose bengal-malt extract-agar plates, using an Air Test Omega® sampler. After incubation, CFUs were counted and identified. Penicillium, Cladosporium and Aspergillus were the most commonly isolated genus, with Penicillium being the only genus to be present in every area sampled. Neither the companies' location nor their room temperature influenced the fungal densities significantly, however, companies using vegetable raw materials had a significantly greater concentration of fungi than the rest of the companies. While all concentrations were within previously suggested levels from a health-related point of view, more information is needed that correlates fungal concentration with food spoilage in order to suggest a range of concentrations focused for food companies' product preservation.
Collapse
Affiliation(s)
- Mariana Elizondo-Zertuche
- 1Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Karen Martínez-Carranza
- 2Department of Microbiology and Immunology, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León Mexico
| | - Nydia Orue
- 2Department of Microbiology and Immunology, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León Mexico
| | | | - Efrén Robledo-Leal
- 2Department of Microbiology and Immunology, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León Mexico
| |
Collapse
|
72
|
Rasheed U, Wu H, Wei J, Ou X, Qin P, Yao X, Chen H, Chen AJ, Liu B. A polyphasic study of Aspergillus section Flavi isolated from corn in Guangxi, China- a hot spot of aflatoxin contamination. Int J Food Microbiol 2019; 310:108307. [PMID: 31476582 DOI: 10.1016/j.ijfoodmicro.2019.108307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
Aspergillus section Flavi is widely known as a potential threat to contaminate agricultural products and food commodities. In this study, a polyphasic approach consisting of micro- and macro-morphological, chemical and molecular features, was applied to survey the Aspergillus section Flavi population in corn collected from Guangxi, China. Based on multigene phylogenies as well as morphological observations, Aspergillus flavus (192/195), A. arachidicola (1/195), A. pseudonomius (1/195) and A. novoparasiticus (1/195) were found to be the predominant section Flavi population. Among them, 31 representative isolates were selected for mycotoxin determination. The results showed that Aspergillus flavus chemotype I was most common, chemotype IV was also detected with low incidence and low CPA amounts, while chemotypes II and III were absent. Other tested species including A. arachidicola, A. pseudonomius, and A. novoparasiticus produced all types of aflatoxins, but none of them produced CPA. The polyphasic approach applied in this study permitted reliable understanding of the prevailing Aspergillus section Flavi population and their mycotoxin profiles. Knowledge of the prevailing section Flavi population will aid in developing a sustainable strategy to mitigate the effects of aflatoxin contamination. This study suggests that CPA contamination of food should be considered while conducting mycotoxigenic surveys of food commodities, and the same should be considered while planning a bio-control strategy to control aflatoxin contamination.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Hao Wu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Jinfan Wei
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiaoyun Ou
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Peisheng Qin
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiaohua Yao
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Han Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
73
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
74
|
Park J, Kwon W, Huang X, Mageswari A, Heo IB, Han KH, Hong SB. Complete mitochondrial genome sequence of a xerophilic fungus, Aspergillus pseudoglaucus. Mitochondrial DNA B Resour 2019; 4:2422-2423. [PMID: 33365569 PMCID: PMC7687513 DOI: 10.1080/23802359.2019.1586468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/10/2019] [Indexed: 01/06/2023] Open
Abstract
Aspergillus pseudoglaucus is a xerophilic filamentous fungus which can produce various secondary metabolites. Here, we reported the complete mitochondrial genome sequence of A. pseudoglaucus isolated from Meju, a soybean brick in Korea. Its mitochondrial genome was successfully assembled from raw reads sequenced using MiSeq by Velvet and SOAPGapCloser. Total length of the mitochondrial genome is 53,882 bp, which is third longest among known Aspergillus mitochondrial genomes and encoded 58 genes (30 protein-coding genes including hypothetical ORFs, two rRNAs, and 26 tRNAs). Nucleotide sequence of coding regions takes over 66.6% and overall GC content is 27.8%. Phylogenetic trees present that A. pseudoglaucus is located outside of section Nidulantes. Additional researches will be required for clarifying phylogenetic position of section Aspergillus.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Woochan Kwon
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Xiaoxiao Huang
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Anbazhagan Mageswari
- Department of Microbiology, D.G. Vaishnav College, Chennai, India
- Agricultural Microbial Division, National Institute of Agricultural Scinece, Wanjugun, Republic of Korea
| | - In-Beom Heo
- Department of Microbiology, D.G. Vaishnav College, Chennai, India
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbial Division, National Institute of Agricultural Scinece, Wanjugun, Republic of Korea
| |
Collapse
|
75
|
Gibbons AT, Idnurm A, Seiter M, Dyer PS, Kokolski M, Goodacre SL, Gorb SN, Wolff JO. Amblypygid-fungal interactions: The whip spider exoskeleton as a substrate for fungal growth. Fungal Biol 2019; 123:497-506. [DOI: 10.1016/j.funbio.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/11/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
|
76
|
Makhlouf J, Carvajal-Campos A, Querin A, Tadrist S, Puel O, Lorber S, Oswald IP, Hamze M, Bailly JD, Bailly S. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci Rep 2019; 9:5263. [PMID: 30918318 PMCID: PMC6437153 DOI: 10.1038/s41598-019-41704-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/14/2019] [Indexed: 01/01/2023] Open
Abstract
Spices are used extensively in Lebanon not only to flavour foods but also for their medicinal properties. To date, no data are available regarding the nature of the toxigenic fungal species that may contaminate these products at the marketing stage in this country. Eighty samples corresponding to 14 different types of spices were collected throughout Lebanon to characterize the Aspergillus section Flavi contaminating spices marketed in Lebanon and the toxigenic potential of these fungal species. Most fungal genera and species were identified as belonging to Aspergillus section Flavi. Aspergillus flavus was the most frequent species, representing almost 80% of the isolates. Although identified as A. flavus by molecular analysis, some strains displayed atypical morphological features. Seven strains of A. tamarii and one A. minisclerotigenes were also isolated. Analyses of toxigenic potential demonstrated that almost 80% of strains were able to produce mycotoxins, 47% produced aflatoxins, and 72% produced cyclopiazonic acid, alone or in combination with aflatoxins.
Collapse
Affiliation(s)
- Joya Makhlouf
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France.,Health and Environment Microbiology Laboratory, Lebanese University, Beirut, Lebanon
| | - Amaranta Carvajal-Campos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Arlette Querin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Soraya Tadrist
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| | - Monzer Hamze
- Health and Environment Microbiology Laboratory, Lebanese University, Beirut, Lebanon
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France.
| | - Sylviane Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027, Toulouse, France
| |
Collapse
|
77
|
A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
78
|
Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad J, Talbot J, Kolařík M. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. PERSOONIA 2018; 41:142-174. [PMID: 30728603 PMCID: PMC6344812 DOI: 10.3767/persoonia.2018.41.08] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutans species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids in vitro. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens; A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infections, while A. felis followed by A. udagawae and A. wyomingensis are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species A. parafelis and A. pseudofelis are synonymized with A. felis and an epitype is designated for A. udagawae. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs in vitro. Interspecific mating assays revealed that five different species combinations were biologically compatible. Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.
Collapse
Affiliation(s)
- V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - V. Barrs
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - Z. Dudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - T. Matsuzawa
- University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Y. Horie
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - A. Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J.J. Talbot
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - M. Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
79
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
80
|
Abstract
Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative 'asexual' species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.
Collapse
|
81
|
Quéro L, Girard V, Pawtowski A, Tréguer S, Weill A, Arend S, Cellière B, Polsinelli S, Monnin V, van Belkum A, Vasseur V, Nodet P, Mounier J. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiol 2018; 81:76-88. [PMID: 30910090 DOI: 10.1016/j.fm.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 01/20/2023]
Abstract
Filamentous fungi are frequently involved in food spoilage and cause important food losses and substantial economic damage. Their rapid and accurate identification is a key step to better manage food safety and quality. In recent years, MALDI-TOF MS has emerged as a powerful tool to identify microorganisms and has successfully been applied to the identification of filamentous fungi especially in the clinical context. The aim of this study was to implement a spectral database representative of food spoilage molds. To this end, after application of a standardized extraction protocol, 6477 spectra were acquired from 618 fungal strains belonging to 136 species and integrated in the VITEK MS database. The performances of this database were then evaluated by cross-validation and ∼95% of correct identification to the species level was achieved, independently of the cultivation medium and incubation time. The database was also challenged with external isolates belonging to 52 species claimed in the database and 90% were correctly identified to the species level. To our best knowledge, this is the most comprehensive database of food-relevant filamentous fungi developed to date. This study demonstrates that MALDI-TOF MS could be an alternative to conventional techniques for the rapid and reliable identification of spoilage fungi in food and industrial environments.
Collapse
Affiliation(s)
- Laura Quéro
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France; BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Victoria Girard
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Audrey Pawtowski
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Sylvie Tréguer
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Amélie Weill
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France; Université de Bretagne Occidentale Culture Collection, Université de Brest, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Sandrine Arend
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Béatrice Cellière
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Sophie Polsinelli
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Valérie Monnin
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Alex van Belkum
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390 La Balme les Grottes, France.
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Patrice Nodet
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
82
|
Rico-Munoz E, Samson RA, Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 2018; 81:51-62. [PMID: 30910088 DOI: 10.1016/j.fm.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.
Collapse
Affiliation(s)
- Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Blvd., Rockford, TN 37853, USA.
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| |
Collapse
|
83
|
Frisvad J. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2294] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A very large number of filamentous fungi has been reported to produce the small lactone mycotoxins patulin, penicillic acid and moniliformin. Among the 167 reported fungal producers of patulin, only production by 29 species could be confirmed. Patulin is produced by 3 Aspergillus species, 3 Paecilomyces species, 22 Penicillium species from 7 sections of Penicillium, and one Xylaria species. Among 101 reported producers of penicillic acid, 48 species could produce this mycotoxin. Penicillic acid is produced by 23 species in section Aspergillus subgenus Circumdati section Circumdati, by Malbranchea aurantiaca and by 24 Penicillium species from 9 sections in Penicillium and one species that does not actually belong to Penicillium (P. megasporum). Among 40 reported producers of moniliformin, five species have been regarded as doubtful producers of this mycotoxin or are now regarded as taxonomic synonyms. Moniliformin is produced by 34 Fusarium species and one Penicillium species. All the accepted producers of patulin, penicillic acid and moniliformin were revised according to the new one fungus – one name nomenclatural system, and the most recently accepted taxonomy of the species.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
84
|
|
85
|
Abstract
Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on β-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.
Collapse
Key Words
- Aspergillus canadensis Visagie, Yilmaz, F. Sklenar & Seifert
- Aspergillus clavatophorus F. Sklenar, S.W. Peterson & Hubka
- Aspergillus destruens Zalar, F. Sklenar, S.W. Peterson & Hubka
- Aspergillus domesticus F. Sklenar, Houbraken, Zalar & Hubka
- Aspergillus glabripes F. Sklenar, Ž. Jurjević & Hubka
- Aspergillus hordei F. Sklenar, S.W. Peterson & Hubka
- Aspergillus infrequens F. Sklenar, S.W. Peterson & Hubka
- Aspergillus magnivesiculatus F. Sklenar, Zalar, Ž. Jurjević & Hubka
- Aspergillus pachycaulis F. Sklenar, S.W. Peterson, Ž. Jurjević & Hubka
- Aspergillus penicillioides
- Aspergillus pseudogracilis F. Sklenar, Ž. Jurjević & Hubka
- Aspergillus restrictus
- Aspergillus reticulatus F. Sklenar, Ž. Jurjević, S.W. Peterson & Hubka
- Aspergillus salinicola Zalar, F. Sklenar, Visagie & Hubka
- Aspergillus tardicrescens F. Sklenar, Houbraken, Zalar, & Hubka
- Aspergillus villosus F. Sklenar, S.W. Peterson & Hubka
- Eurotium
- food spoilage
- indoor fungi
- linear discriminant analysis
- multigene phylogeny
- multispecies coalescent model
- sick building syndrome
- xerophilic fungi
Collapse
|
86
|
Abstract
Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A. baarnensis, A. keratitidis, A. kalimae sp. nov., A. noonimiae sp. nov., A. thailandensis sp. nov., A. waynelawii sp. nov., and A. whitfieldii sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus Polypaecilum, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.
Collapse
Affiliation(s)
- J.B. Tanney
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - C.M. Visagie
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood, 0121 Pretoria, South Africa
| | - N. Yilmaz
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - K.A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|