51
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
52
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
53
|
Kuo TC, Cabrera-Barragan DN, Lopez-Marfil M, Lopez-Cantu DO, Lemos DR. Can Kidney Organoid Xenografts Accelerate Therapeutic Development for Genetic Kidney Disorders? J Am Soc Nephrol 2023; 34:184-190. [PMID: 36344066 PMCID: PMC10103095 DOI: 10.1681/asn.2022080862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
A number of genetic kidney diseases can now be replicated experimentally, using kidney organoids generated from human pluripotent stem cells. This methodology holds great potential for drug discovery. Under in vitro conditions, however, kidney organoids remain developmentally immature, develop scarce vasculature, and may contain undesired off-target cell types. Those critical deficiencies limit their potential as disease-modeling tools. Orthotopic transplantation under the kidney capsule improves the anatomic maturity and vascularization of kidney organoids, while reducing off-target cell content. The improvements can translate into more accurate representations of disease phenotypes and mechanisms in vivo . Recent studies using kidney organoid xenografts highlighted the unique potential of this novel methodology for elucidating molecular mechanisms driving monogenic kidney disorders and for the development ofnovel pharmacotherapies.
Collapse
Affiliation(s)
- Ting-Chun Kuo
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Dalia N. Cabrera-Barragan
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marta Lopez-Marfil
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Universitat de Barcelona, Barcelona, Spain
| | - Diana O. Lopez-Cantu
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Dario R. Lemos
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
54
|
Friedman CE, Fayer S, Pendyala S, Chien WM, Tran L, Chao L, Mckinstry A, Karbassi E, Fenix AM, Loiben A, Murry CE, Starita LM, Fowler DM, Yang KC. CRaTER enrichment for on-target gene-editing enables generation of variant libraries in hiPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525582. [PMID: 36747685 PMCID: PMC9900876 DOI: 10.1101/2023.01.25.525582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CR ISPR a On- T arget E diting R etrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNVs) in MYH7 , a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different MYH7 SNVs. We differentiated these hiPSCs to cardiomyocytes and show MYH7 fusion proteins can localize as expected. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of transgenic cell lines at unprecedented scale.
Collapse
|
55
|
Deng X, Zhou J, Cao Y. Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells. Chin Med J (Engl) 2023; 136:127-137. [PMID: 36806264 PMCID: PMC10106131 DOI: 10.1097/cm9.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/23/2023] Open
Abstract
ABSTRACT Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
56
|
Roman G, Stavik B, Lauritzen KH, Sandset PM, Harrison SP, Sullivan GJ, Chollet ME. "iPSC-derived liver organoids and inherited bleeding disorders: Potential and future perspectives". Front Physiol 2023; 14:1094249. [PMID: 36711019 PMCID: PMC9880334 DOI: 10.3389/fphys.2023.1094249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The bleeding phenotype of hereditary coagulation disorders is caused by the low or undetectable activity of the proteins involved in hemostasis, due to a broad spectrum of genetic alterations. Most of the affected coagulation factors are produced in the liver. Therefore, two-dimensional (2D) cultures of primary human hepatocytes and recombinant overexpression of the factors in non-human cell lines have been primarily used to mimic disease pathogenesis and as a model for innovative therapeutic strategies. However, neither human nor animal cells fully represent the hepatocellular biology and do not harbor the exact genetic background of the patient. As a result, the inability of the current in vitro models in recapitulating the in vivo situation has limited the studies of these inherited coagulation disorders. Induced Pluripotent Stem Cell (iPSC) technology offers a possible solution to overcome these limitations by reprogramming patient somatic cells into an embryonic-like pluripotent state, thus giving the possibility of generating an unlimited number of liver cells needed for modeling or therapeutic purposes. By combining this potential and the recent advances in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, it allows for the generation of autologous and gene corrected liver cells in the form of three-dimensional (3D) liver organoids. The organoids recapitulate cellular composition and organization of the liver, providing a more physiological model to study the biology of coagulation proteins and modeling hereditary coagulation disorders. This advanced methodology can pave the way for the development of cell-based therapeutic approaches to treat inherited coagulation disorders. In this review we will explore the use of liver organoids as a state-of-the-art methodology for modeling coagulation factors disorders and the possibilities of using organoid technology to treat the disease.
Collapse
Affiliation(s)
- Giacomo Roman
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benedicte Stavik
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut H. Lauritzen
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sean P. Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Gareth J. Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Eugenia Chollet
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
57
|
Li J, Jing Y, Bai F, Wu Y, Wang L, Yan Y, Jia Y, Yu Y, Jia B, Ali F. Induced pluripotent stem cells as natural biofactories for exosomes carrying miR-199b-5p in the treatment of spinal cord injury. Front Pharmacol 2023; 13:1078761. [PMID: 36703756 PMCID: PMC9871459 DOI: 10.3389/fphar.2022.1078761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Induced pluripotent stem cells-derived exosomes (iPSCs-Exo) can effectively treat spinal cord injury (SCI) in mice. But the role of iPSCs-Exo in SCI mice and its molecular mechanisms remain unclear. This research intended to study the effects and molecular mechanism of iPSCs-Exo in SCI mice models. Methods: The feature of iPSCs-Exo was determined by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and western blot. The effects of iPSCs-Exo in the SCI mice model were evaluated by Basso Mouse Scale (BMS) scores and H&E staining. The roles of iPSCs-Exo and miR-199b-5p in LPS-treated BMDM were verified by immunofluorescence, RT-qPCR, and Cytokine assays. The target genes of miR-199b-5p were identified, and the function of miR-199b-5p and its target genes on LPS-treated BMDM was explored by recuse experiment. Results: iPSCs-Exo improved motor function in SCI mice model in vivo, shifted the polarization from M1 macrophage to M2 phenotype, and regulated related inflammatory factors expression to accelerate the SCI recovery in LPS-treated BMDM in vitro. Meanwhile, miR-199b-5p was a functional player of iPSCs-Exo, which could target hepatocyte growth factor (Hgf). Moreover, miR-199b-5p overexpression polarized M1 macrophage into M2 phenotype and promoted neural regeneration in SCI. The rescue experiments confirmed that miR-199b-5p induced macrophage polarization and SCI recovery by regulating Hgf and Phosphoinositide 3-kinase (PI3K) signaling pathways. Conclusion: The miR-199b-5p-bearing iPSCs-Exo might become an effective method to treat SCI.
Collapse
Affiliation(s)
- Jun Li
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yingli Jing
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Fan Bai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Ying Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Limiao Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Yitong Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China
| | - Yunxiao Jia
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China,China Rehabilitation Science Institute, Beijing, China,*Correspondence: Yan Yu, ; Benzhi Jia,
| | - Benzhi Jia
- Department of Spinal cord injury rehabilitation, Shanxi Kangfu Hospital, Xi’an, Shanxi, China,*Correspondence: Yan Yu, ; Benzhi Jia,
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
58
|
Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet 2023; 24:314-331. [PMID: 36599936 DOI: 10.1038/s41576-022-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Collapse
|
59
|
Ouchi R, Koike H. Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Front Cell Dev Biol 2023; 11:1133534. [PMID: 36875751 PMCID: PMC9974642 DOI: 10.3389/fcell.2023.1133534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The discoveries of human pluripotent stem cells (PSCs) including embryonic stem cells and induced pluripotent stem cells (iPSCs) has led to dramatic advances in our understanding of basic human developmental and cell biology and has also been applied to research aimed at drug discovery and development of disease treatments. Research using human PSCs has been largely dominated by studies using two-dimensional cultures. In the past decade, however, ex vivo tissue "organoids," which have a complex and functional three-dimensional structure similar to human organs, have been created from PSCs and are now being used in various fields. Organoids created from PSCs are composed of multiple cell types and are valuable models with which it is better to reproduce the complex structures of living organs and study organogenesis through niche reproduction and pathological modeling through cell-cell interactions. Organoids derived from iPSCs, which inherit the genetic background of the donor, are helpful for disease modeling, elucidation of pathophysiology, and drug screening. Moreover, it is anticipated that iPSC-derived organoids will contribute significantly to regenerative medicine by providing treatment alternatives to organ transplantation with which the risk of immune rejection is low. This review summarizes how PSC-derived organoids are used in developmental biology, disease modeling, drug discovery, and regenerative medicine. Highlighted is the liver, an organ that play crucial roles in metabolic regulation and is composed of diverse cell types.
Collapse
Affiliation(s)
- Rie Ouchi
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
60
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
61
|
Weeratunga P, Harman RM, Van de Walle GR. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front Vet Sci 2023; 10:1129287. [PMID: 36891466 PMCID: PMC9986305 DOI: 10.3389/fvets.2023.1129287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Ruminant livestock, including cattle, sheep, goat, and buffalo, are essential for global food security and serve valuable roles in sustainable agricultural systems. With the limited availability of embryonic stem cells (ESCs) from these species, ruminant induced pluripotent stem cells (iPSCs) and iPSC-like cells provide a valuable research tool for agricultural, veterinary, biomedical, and pharmaceutical applications, as well as for the prospect of translation to human medicine. iPSCs are generated by reprogramming of adult or fetal cells to an ESC-like state by ectopic expression of defined transcription factors. Despite the slow pace the field has evolved in livestock species compared to mice and humans, significant progress has been made over the past 15 years in using different cell sources and reprogramming protocols to generate iPSCs/iPSC-like cells from ruminants. This mini review summarizes the current literature related to the derivation of iPSCs/iPSC-like cells from domesticated ruminants with a focus on reprogramming protocols, characterization, associated limitations, and potential applications in ruminant basic science research and production.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
62
|
Microhomology-mediated endjoining repair mechanism enables rapid and effective indel generations in stem cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Broeders M, van Rooij J, Oussoren E, van Gestel T, Smith C, Kimber S, Verdijk R, Wagenmakers M, van den Hout J, van der Ploeg A, Narcisi R, Pijnappel W. Modeling cartilage pathology in mucopolysaccharidosis VI using iPSCs reveals early dysregulation of chondrogenic and metabolic gene expression. Front Bioeng Biotechnol 2022; 10:949063. [PMID: 36561048 PMCID: PMC9763729 DOI: 10.3389/fbioe.2022.949063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is a metabolic disorder caused by disease-associated variants in the Arylsulfatase B (ARSB) gene, resulting in ARSB enzyme deficiency, lysosomal glycosaminoglycan accumulation, and cartilage and bone pathology. The molecular response to MPS VI that results in cartilage pathology in human patients is largely unknown. Here, we generated a disease model to study the early stages of cartilage pathology in MPS VI. We generated iPSCs from four patients and isogenic controls by inserting the ARSB cDNA in the AAVS1 safe harbor locus using CRISPR/Cas9. Using an optimized chondrogenic differentiation protocol, we found Periodic acid-Schiff positive inclusions in hiPSC-derived chondrogenic cells with MPS VI. Genome-wide mRNA expression analysis showed that hiPSC-derived chondrogenic cells with MPS VI downregulated expression of genes involved in TGF-β/BMP signalling, and upregulated expression of inhibitors of the Wnt/β-catenin signalling pathway. Expression of genes involved in apoptosis and growth was upregulated, while expression of genes involved in glycosaminoglycan metabolism was dysregulated in hiPSC-derived chondrogenic cells with MPS VI. These results suggest that human ARSB deficiency in MPS VI causes changes in the transcriptional program underlying the early stages of chondrogenic differentiation and metabolism.
Collapse
Affiliation(s)
- M. Broeders
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jgj van Rooij
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - E. Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tjm van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ca Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sj Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rm Verdijk
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maem Wagenmakers
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Jmp van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - At van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - R. Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wwmp Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
64
|
Flosdorf N, Zenke M. Dendritic cells generated from induced pluripotent stem cells and by direct reprogramming of somatic cells. Eur J Immunol 2022; 52:1880-1888. [PMID: 36045608 DOI: 10.1002/eji.202149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
Novel and exciting avenues allow generating dendritic cells (DC) by reprogramming of somatic cells. DC are obtained from induced pluripotent stem cells (iPS cells), referred to as ipDC, and by direct reprogramming of cells toward DC, referred to as induced DC (iDC). iPS cells represent pluripotent stem cells generated by reprogramming of somatic cells and can differentiate into all cell types of the body, including DC. This makes iPS cells and ipDC derived thereof useful for studying various DC subsets, acquiring high cell numbers for research and clinical use, or applying genome editing to generate DC with wanted properties. Thereby, ipDC overcome limitations in specific DC subsets, which are only found in low abundance in blood or lymphoid organs. iDC are generated by direct reprogramming of somatic cells with a specific set of transcription factors and offer an avenue to obtain DC without a pluripotent cell intermediate. ipDC and iDC retain patient and disease-specific mutations and this opens new perspectives for studying DC in disease. This review summarizes the current techniques used to generate ipDC and iDC, and the types and functionality of the DC generated.
Collapse
Affiliation(s)
- Niclas Flosdorf
- Department of Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Center, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.,Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
65
|
Leavens KF, Alvarez-Dominguez JR, Vo LT, Russ HA, Parent AV. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol Metab 2022; 66:101610. [PMID: 36209784 PMCID: PMC9587366 DOI: 10.1016/j.molmet.2022.101610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing β cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived β cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Linda T Vo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
66
|
Gaudeaux P, Moirangthem RD, Paillet J, Martin-Corredera M, Sadek H, Rault P, Joshi A, Zuber J, Soheili TS, Negre O, André I. T-lymphoid progenitor-based immunotherapies: clinical perspectives for one and all. Cell Mol Immunol 2022; 19:1435-1438. [PMID: 36180781 PMCID: PMC9709039 DOI: 10.1038/s41423-022-00927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- P. Gaudeaux
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France ,Smart Immune, Paris, France
| | - R. D. Moirangthem
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - J. Paillet
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France ,Smart Immune, Paris, France
| | - M. Martin-Corredera
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France ,Smart Immune, Paris, France
| | | | | | - A. Joshi
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - J. Zuber
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | | | - I. André
- grid.508487.60000 0004 7885 7602Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
67
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
68
|
Maguire JA, Gadue P, French DL. Highly Efficient CRISPR/Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. Curr Protoc 2022; 2:e590. [PMID: 36426905 PMCID: PMC9708095 DOI: 10.1002/cpz1.590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cells hold tremendous potential for both basic biology and cell-based therapies for a wide variety of diseases. The ability to manipulate the genome of these cells using the CRISPR/Cas9 technology has expanded this potential by providing a valuable tool to engineer or correct disease-associated mutations. Because of the high efficiency with which CRISPR/Cas9 creates targeted double-strand breaks, a major challenge has been the introduction of precise genetic modifications on one allele without indel formation on the non-targeted allele. To overcome this obstacle, we describe use of two oligonucleotide repair templates: one expressing the sequence change and the other maintaining the normal sequence. In addition, we have streamlined both the transfection and screening methodologies to make the protocols efficient, with small numbers of cells and a limited amount of labor-intensive clone passaging. This article provides a technically simple approach for generating valuable tools to model human disease in stem cells. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Application and optimization of CRISPR-based genome editing in human pluripotent stem cells Basic Protocol 2: Genetic modification of human pluripotent stem cells using a double-oligonucleotide CRISPR/Cas9 recombination system.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania
| |
Collapse
|
69
|
Zhang F, Meier AB, Poch CM, Tian Q, Engelhardt S, Sinnecker D, Lipp P, Laugwitz KL, Moretti A, Dorn T. High-throughput optical action potential recordings in hiPSC-derived cardiomyocytes with a genetically encoded voltage indicator in the AAVS1 locus. Front Cell Dev Biol 2022; 10:1038867. [PMID: 36274846 PMCID: PMC9585323 DOI: 10.3389/fcell.2022.1038867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.
Collapse
Affiliation(s)
- Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B. Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christine M. Poch
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Daniel Sinnecker
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Peter Lipp
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| |
Collapse
|
70
|
Habibey R, Striebel J, Schmieder F, Czarske J, Busskamp V. Long-term morphological and functional dynamics of human stem cell-derived neuronal networks on high-density micro-electrode arrays. Front Neurosci 2022; 16:951964. [PMID: 36267241 PMCID: PMC9578684 DOI: 10.3389/fnins.2022.951964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150–600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Johannes Striebel
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- School of Science, Institute of Applied Physics, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
- *Correspondence: Volker Busskamp,
| |
Collapse
|
71
|
Labau JIR, Andelic M, Faber CG, Waxman SG, Lauria G, Dib-Hajj SD. Recent advances for using human induced-pluripotent stem cells as pain-in-a-dish models of neuropathic pain. Exp Neurol 2022; 358:114223. [PMID: 36100046 DOI: 10.1016/j.expneurol.2022.114223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Neuropathic pain is amongst the most common non-communicable disorders and the poor effectiveness of current treatment is an unmet need. Although pain is a universal experience, there are significant inter-individual phenotypic differences. Developing models that can accurately recapitulate the clinical pain features is crucial to better understand underlying pathophysiological mechanisms and find innovative treatments. Current data from heterologous expression systems that investigate properties of specific molecules involved in pain signaling, and from animal models, show limited success with their translation into the development of novel treatments for pain. This is in part because they do not recapitulate the native environment in which a particular molecule functions, and due to species-specific differences in the properties of several key molecules that are involved in pain signaling. The limited availability of post-mortem tissue, in particular dorsal root ganglia (DRG), has hampered research using human cells in pre-clinical studies. Human induced-pluripotent stem cells (iPSCs) have emerged as an exciting alternative platform to study patient-specific diseases. Sensory neurons that are derived from iPSCs (iPSC-SNs) have provided new avenues towards elucidating peripheral pathophysiological mechanisms, the potential for development of personalized treatments, and as a cell-based system for high-throughput screening for discovering novel analgesics. Nevertheless, reprogramming and differentiation protocols to obtain nociceptors have mostly yielded immature homogenous cell populations that do not recapitulate the heterogeneity of native sensory neurons. To close the gap between native human tissue and iPSCs, alternative strategies have been developed. We will review here recent developments in differentiating iPSC-SNs and their use in pre-clinical translational studies. Direct conversion of stem cells into the cells of interest has provided a more cost- and time-saving method to improve reproducibility and diversity of sensory cell types. Furthermore, multi-cellular strategies that mimic in vivo microenvironments for cell maturation, by improving cell contact and communication (co-cultures), reproducing the organ complexity and architecture (three-dimensional organoid), and providing iPSCs with the full spatiotemporal context and nutrients needed for acquiring a mature phenotype (xenotransplantation), have led to functional sensory neuron-like systems. Finally, this review touches on novel prospective strategies, including fluorescent-tracking to select the differentiated neurons of relevance, and dynamic clamp, an electrophysiological method that allows direct manipulation of ionic conductances that are missing in iPSC-SNs.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, the Netherlands; School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mirna Andelic
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Catharina G Faber
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
| |
Collapse
|
72
|
Li H, Busquets O, Verma Y, Syed KM, Kutnowski N, Pangilinan GR, Gilbert LA, Bateup HS, Rio DC, Hockemeyer D, Soldner F. Highly efficient generation of isogenic pluripotent stem cell models using prime editing. eLife 2022; 11:e79208. [PMID: 36069759 PMCID: PMC9584603 DOI: 10.7554/elife.79208] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oriol Busquets
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
| | - Yogendra Verma
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Khaja Mohieddin Syed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Nitzan Kutnowski
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Pangilinan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Luke A Gilbert
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Arc InstitutePalo AltoUnited States
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Frank Soldner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
73
|
Sparrow R. Human Germline Genome Editing: On the Nature of Our Reasons to Genome Edit. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:4-15. [PMID: 33871321 DOI: 10.1080/15265161.2021.1907480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ever since the publication of Derek Parfit's Reasons and Persons, bioethicists have tended to distinguish between two different ways in which reproductive technologies may have implications for the welfare of future persons. Some interventions harm or benefit particular individuals: they are "person affecting." Other interventions determine which individual, of a number of possible individuals, comes into existence: they are "identity affecting" and raise the famous "non-identity problem." For the past several decades, bioethical debate has, for the most part, proceeded on the assumption that direct genetic modification of human embryos would be person affecting. In this paper, I argue that that genome editing is highly unlikely to be person affecting for the foreseeable future and, as a result, will neither benefit nor harm edited individuals.
Collapse
|
74
|
Talesa G, Manfreda F, Pace V, Ceccarini P, Antinolfi P, Rinonapoli G, Caraffa A. The treatment of knee cartilage lesions: state of the art. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022099. [PMID: 36043984 PMCID: PMC9534246 DOI: 10.23750/abm.v93i4.11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022]
Abstract
The management and repair of knee cartilage lesions currently represents a challenge for the orthopaedic surgeon. Identifiable causes are the characteristics of the involved tissues themselves and the presence of poor vascularization, which is responsible for overall reduced repair capacity. The literature reports three types of cartilage lesions' treatment modalities: chondroprotection, chondroreparation and chondrogeneration. The preference for one or the other therapeutic option depends on the pattern of the lesion and the clinical conditions of the patient. Each treatment technique is distinguished by the quality of the restorative tissue that is generated. In particular, the chondrorigeneration represents the last frontier of regenerative medicine, as it aims at the complete restoration of natural cartilage. However, the most recent literature documents good results only in the short and medium terms. In recent years the optimization of chondroregeneration outcomes is based on the modification of the scaffolds and the search for new chondrocyte sources, in order to guarantee satisfactory long-term results.
Collapse
|
75
|
Liu J, Yuan Z, Wang Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol 2022; 10:692-699. [PMID: 36062278 PMCID: PMC9396313 DOI: 10.14218/jcth.2021.00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver disease has long been a heavy health and economic burden worldwide. Once the disease is out of control and progresses to end-stage or acute organ failure, orthotopic liver transplantation (OLT) is the only therapeutic alternative, and it requires appropriate donors and aggressive administration of immunosuppressive drugs. Therefore, hepatocyte transplantation (HT) and bioartificial livers (BALs) have been proposed as effective treatments for acute liver failure (ALF) in clinics. Although human primary hepatocytes (PHs) are an ideal cell source to support these methods, the large demand and superior viability of PH is needed, which restrains its wide usage. Thus, a finding alternative to meet the quantity and quality of hepatocytes is urgent. In this context, human pluripotent stem cells (PSC), which have unlimited proliferative and differential potential, derived hepatocytes are a promising renewable cell source. Recent studies of the differentiation of PSC into hepatocytes has provided evidence that supports their clinical application. In this review, we discuss the recent status and future directions of the potential use of PSC-derived hepatocytes in treating ALF. We also discuss opportunities and challenges of how to promote such strategies in the common applications in clinical treatments.
Collapse
Affiliation(s)
- Jingfeng Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiming Yuan
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
76
|
Michaels YS, Edgar JM, Major MC, Castle EL, Zimmerman C, Yin T, Hagner A, Lau C, Hsu HH, Ibañez-Rios MI, Durland LJ, Knapp DJHF, Zandstra PW. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. SCIENCE ADVANCES 2022; 8:eabn5522. [PMID: 36001668 PMCID: PMC9401626 DOI: 10.1126/sciadv.abn5522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 05/13/2023]
Abstract
T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains an important challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully defined approach allowed us to study the impact of individual proteins on blood emergence and differentiation. Providing DLL4 and VCAM1 during the endothelial-to-hematopoietic transition enhanced downstream progenitor T cell output by ~80-fold. These two proteins synergized to activate notch signaling in nascent hematopoietic stem and progenitor cells, and VCAM1 additionally promoted an inflammatory transcriptional program. We also established optimized medium formulations that enabled efficient and chemically defined maturation of functional CD8αβ+, CD4-, CD3+, TCRαβ+ T cells with a diverse TCR repertoire.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John M. Edgar
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matthew C. Major
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elizabeth L. Castle
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Carla Zimmerman
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ting Yin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Andrew Hagner
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles Lau
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Hsuan Hsu
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - M. Iliana Ibañez-Rios
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J. H. F. Knapp
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
77
|
Reilly L, Munawar S, Zhang J, Crone WC, Eckhardt LL. Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes. Front Cardiovasc Med 2022; 9:966094. [PMID: 36035948 PMCID: PMC9411865 DOI: 10.3389/fcvm.2022.966094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has both challenges and promise. While patient-derived iPSC-CMs provide a unique opportunity for disease modeling with isogenic cells, the challenge is that these cells still demonstrate distinct properties which make it functionally less akin to adult cardiomyocytes. In response to this challenge, numerous innovations in differentiation and modification of hiPSC-CMs and culture techniques have been developed. Here, we provide a focused commentary on hiPSC-CMs for use in disease modeling, the progress made in generating electrically and metabolically mature hiPSC-CMs and enabling investigative platforms. The solutions are bringing us closer to the promise of modeling heart disease using human cells in vitro.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianhua Zhang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wendy C. Crone
- Department of Engineering Physics, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Lee L. Eckhardt
| |
Collapse
|
78
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
79
|
Chang BL, Chang KH. Stem Cell Therapy in Treating Epilepsy. Front Neurosci 2022; 16:934507. [PMID: 35833086 PMCID: PMC9271895 DOI: 10.3389/fnins.2022.934507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a common disabling chronic neurological disorder characterized by an enduring propensity for the generation of seizures that result from abnormal hypersynchronous firing of neurons in the brain. Over 20–30% of epilepsy patients fail to achieve seizure control or soon become resistant to currently available therapies. Prolonged seizures or uncontrolled chronic seizures would give rise to neuronal damage or death, astrocyte activation, reactive oxygen species production, and mitochondrial dysfunction. Stem cell therapy is potentially a promising novel therapeutic strategy for epilepsy. The regenerative properties of stem cell-based treatment provide an attractive approach for long-term seizure control, particularly in drug-resistant epilepsy. Embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and adipose-derived regenerative cells (ADRCs) are capable of differentiating into specialized cell types has been applied for epilepsy treatment in preclinical animal research and clinical trials. In this review, we focused on the advances in stem cell therapy for epilepsies. The goals of stem cell transplantation, its mechanisms underlying graft effects, the types of grafts, and their therapeutic effects were discussed. The cell and animal models used for investigating stem cell technology in epilepsy treatment were summarized.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- *Correspondence: Bao-Luen Chang
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
80
|
Yu Y, Li X, Li Y, Wei R, Li H, Liu Z, Zhang Y. Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells. Int J Mol Sci 2022; 23:ijms23137029. [PMID: 35806048 PMCID: PMC9266935 DOI: 10.3390/ijms23137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the study on the regulatory mechanism of endothelial differentiation from the perspective of development provides references for endothelial cell (EC) derivation from pluripotent stem cells, incomplete reprogramming and donor-specific epigenetic memory are still thought to be the obstacles of iPSCs for clinical application. Thus, it is necessary to establish a stable iPSC-EC induction system and investigate the regulatory mechanism of endothelial differentiation. Based on a single-layer culture system, we successfully obtained ECs from porcine iPSCs (piPSCs). In vitro, the derived piPSC-ECs formed microvessel-like structures along 3D gelatin scaffolds. Under pathological conditions, the piPSC-ECs functioned on hindlimb ischemia repair by promoting blood vessel formation. To elucidate the molecular events essential for endothelial differentiation in our model, genome-wide transcriptional profile analysis was conducted, and we found that during piPSC-EC derivation, the synthesis and secretion level of TGF-β as well as the phosphorylation level of Smad2/3 changed dynamically. TGF-β-Smad2/3 signaling activation promoted mesoderm formation and prevented endothelial differentiation. Understanding the regulatory mechanism of iPSC-EC derivation not only paves the way for further optimization, but also provides reference for establishing a cardiovascular drug screening platform and revealing the molecular mechanism of endothelial dysfunction.
Collapse
Affiliation(s)
- Yang Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Xuechun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Yimei Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Hai Li
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- Correspondence: (Z.L.); (Y.Z.)
| | - Yu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (Z.L.); (Y.Z.)
| |
Collapse
|
81
|
Lyadova I, Vasiliev A. Macrophages derived from pluripotent stem cells: prospective applications and research gaps. Cell Biosci 2022; 12:96. [PMID: 35725499 PMCID: PMC9207879 DOI: 10.1186/s13578-022-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable cell source able to give rise to different cell types of the body. Among the various pathways of iPSC differentiation, the differentiation into macrophages is a recently developed and rapidly growing technique. Macrophages play a key role in the control of host homeostasis. Their dysfunction underlies many diseases, including hereditary, infectious, oncological, metabolic and other disorders. Targeting macrophage activity and developing macrophage-based cell therapy represent promising tools for the treatment of many pathological conditions. Macrophages generated from human iPSCs (iMphs) provide great opportunities in these areas. The generation of iMphs is based on a step-wise differentiation of iPSCs into mesoderm, hematopoietic progenitors, myeloid monocyte-like cells and macrophages. The technique allows to obtain standardizable populations of human macrophages from any individual, scale up macrophage production and introduce genetic modifications, which gives significant advantages over the standard source of human macrophages, monocyte-derived macrophages. The spectrum of iMph applications is rapidly growing. iMphs have been successfully used to model hereditary diseases and macrophage-pathogen interactions, as well as to test drugs. iMph use for cell therapy is another promising and rapidly developing area of research. The principles and the details of iMph generation have recently been reviewed. This review systemizes current and prospective iMph applications and discusses the problem of iMph safety and other issues that need to be explored before iMphs become clinically applicable.
Collapse
Affiliation(s)
- Irina Lyadova
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation.
| | - Andrei Vasiliev
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation
| |
Collapse
|
82
|
Schmieder F, Habibey R, Striebel J, Büttner L, Czarske J, Busskamp V. Tracking connectivity maps in human stem cell-derived neuronal networks by holographic optogenetics. Life Sci Alliance 2022; 5:5/7/e202101268. [PMID: 35418473 PMCID: PMC9008225 DOI: 10.26508/lsa.202101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Holographic optogenetic stimulation of human iPSC–derived neuronal networks was exploited to map precise functional connectivity motifs and their long-term dynamics during network development. Neuronal networks derived from human induced pluripotent stem cells have been exploited widely for modeling neuronal circuits, neurological diseases, and drug screening. As these networks require extended culturing periods to functionally mature in vitro, most studies are based on immature networks. To obtain insights on long-term functional features, we improved a glia–neuron co-culture protocol within multi-electrode arrays, facilitating continuous assessment of electrical features in weekly intervals. By full-field optogenetic stimulation, we detected an earlier onset of neuronal firing and burst activity compared with spontaneous activity. Full-field stimulation enhanced the number of active neurons and their firing rates. Compared with full-field stimulation, which evoked synchronized activity across all neurons, holographic stimulation of individual neurons resulted in local activity. Single-cell holographic stimulation facilitated to trace propagating evoked activities of 400 individually stimulated neurons per multi-electrode array. Thereby, we revealed precise functional neuronal connectivity motifs. Holographic stimulation data over time showed increasing connection numbers and strength with culture age. This holographic stimulation setup has the potential to establish a profound functional testbed for in-depth analysis of human-induced pluripotent stem cell-derived neuronal networks.
Collapse
Affiliation(s)
- Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Johannes Striebel
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Lars Büttner
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.,Institute of Applied Physics, School of Science, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
83
|
Hurrell T, Naidoo J, Scholefield J. Hepatic Models in Precision Medicine: An African Perspective on Pharmacovigilance. Front Genet 2022; 13:864725. [PMID: 35495161 PMCID: PMC9046844 DOI: 10.3389/fgene.2022.864725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Pharmaceuticals are indispensable to healthcare as the burgeoning global population is challenged by diseases. The African continent harbors unparalleled genetic diversity, yet remains largely underrepresented in pharmaceutical research and development, which has serious implications for pharmaceuticals approved for use within the African population. Adverse drug reactions (ADRs) are often underpinned by unique variations in genes encoding the enzymes responsible for their uptake, metabolism, and clearance. As an example, individuals of African descent (14-34%) harbor an exclusive genetic variant in the gene encoding a liver metabolizing enzyme (CYP2D6) which reduces the efficacy of the breast cancer chemotherapeutic Tamoxifen. However, CYP2D6 genotyping is not required prior to dispensing Tamoxifen in sub-Saharan Africa. Pharmacogenomics is fundamental to precision medicine and the absence of its implementation suggests that Africa has, to date, been largely excluded from the global narrative around stratified healthcare. Models which could address this need, include primary human hepatocytes, immortalized hepatic cell lines, and induced pluripotent stem cell (iPSC) derived hepatocyte-like cells. Of these, iPSCs, are promising as a functional in vitro model for the empirical evaluation of drug metabolism. The scale with which pharmaceutically relevant African genetic variants can be stratified, the expediency with which these platforms can be established, and their subsequent sustainability suggest that they will have an important role to play in the democratization of stratified healthcare in Africa. Here we discuss the requirement for African hepatic models, and their implications for the future of pharmacovigilance on the African continent.
Collapse
Affiliation(s)
- Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Jerolen Naidoo
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
84
|
Simkin D, Papakis V, Bustos BI, Ambrosi CM, Ryan SJ, Baru V, Williams LA, Dempsey GT, McManus OB, Landers JE, Lubbe SJ, George AL, Kiskinis E. Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls. Stem Cell Reports 2022; 17:993-1008. [PMID: 35276091 PMCID: PMC9023783 DOI: 10.1016/j.stemcr.2022.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely edit the genome of human induced pluripotent stem cell (iPSC) lines using CRISPR/Cas9 has enabled the development of cellular models that can address genotype to phenotype relationships. While genome editing is becoming an essential tool in iPSC-based disease modeling studies, there is no established quality control workflow for edited cells. Moreover, large on-target deletions and insertions that occur through DNA repair mechanisms have recently been uncovered in CRISPR/Cas9-edited loci. Yet the frequency of these events in human iPSCs remains unclear, as they can be difficult to detect. We examined 27 iPSC clones generated after targeting 9 loci and found that 33% had acquired large, on-target genomic defects, including insertions and loss of heterozygosity. Critically, all defects had escaped standard PCR and Sanger sequencing analysis. We describe a cost-efficient quality control strategy that successfully identified all edited clones with detrimental on-target events and could facilitate the integrity of iPSC-based studies.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bernabe I Bustos
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Steven J Lubbe
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
85
|
Bartold PM, Ivanovski S. P4 Medicine as a model for precision periodontal care. Clin Oral Investig 2022; 26:5517-5533. [PMID: 35344104 PMCID: PMC9474478 DOI: 10.1007/s00784-022-04469-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Objectives P4 Medicine is based on a proactive approach for clinical patient care incorporating the four “pillars” of prediction, prevention, personalization, and participation for patient management. The purpose of this review is to demonstrate how the concepts of P4 medicine can be incorporated into the management of periodontal diseases (particularly periodontitis) termed P4 periodontics. Methods This is a narrative review that used current literature to explore how P4 periodontics can be aligned with the 2018 Classification of Periodontal Diseases, current periodontal treatment paradigms, and periodontal regenerative technologies. Results The proposed model of P4 periodontics is highly aligned with the 2018 Classification of Periodontal Diseases and represents a logical extension of this classification into treatment paradigms. Each stage of periodontitis can be related to a holistic approach to clinical management. The role of “big data” in future P4 periodontics is discussed and the concepts of a treat-to-target focus for treatment outcomes are proposed as part of personalized periodontics. Personalized regenerative and rejuvenative periodontal therapies will refocus our thinking from risk management to regenerative solutions to manage the effects of disease and aging. Conclusions P4 Periodontics allows us to focus not only on early prevention and intervention but also allow for personalized late-stage reversal of the disease trajectory and the use of personalized regenerative procedures to reconstruct damaged tissues and restore them to health. Clinical Significance P4 Periodontics is a novel means of viewing a holistic, integrative, and proactive approach to periodontal treatment.
Collapse
Affiliation(s)
- P Mark Bartold
- University of Queensland, 1 Milton Avenue, Beaumont, South Australia, 5066, Australia.
| | - Sašo Ivanovski
- University of Queensland, 1 Milton Avenue, Beaumont, South Australia, 5066, Australia
| |
Collapse
|
86
|
Oliveira NA, Sevim H. Dendritic cell differentiation from human induced pluripotent stem cells: challenges and progress. Stem Cells Dev 2022; 31:207-220. [PMID: 35316109 DOI: 10.1089/scd.2021.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are the major antigen-presenting cells of the immune system responsible for initiating and coordinating immune responses. These abilities provide potential for several clinical applications, such as the development of immunogenic vaccines. However, difficulty in obtaining DCs from conventional sources, such as bone marrow (BM), peripheral blood (PBMC), and cord blood (CB), is a significantly hinders routine application. The use of human induced pluripotent stem cells (hiPSCs) is a valuable alternative for generating sufficient numbers of DCs to be used in basic and pre-clinical studies. Despite the many challenges that must be overcome to achieve an efficient protocol for obtaining the major DC types from hiPSCs, recent progress has been made. Here we review the current state of developing DCs from hiPSCs, as well as the key elements required to enable the routine use of hiPSC-derived DCs in pre-clinical and clinical assays.
Collapse
Affiliation(s)
- Nelio Aj Oliveira
- Jackson Laboratory - Farmington, 481263, Cell Engineering , Farmington, Connecticut, United States, 06032-2374;
| | - Handan Sevim
- Hacettepe Universitesi, 37515, Faculty of Science Department of Biology, Ankara, Ankara, Turkey;
| |
Collapse
|
87
|
Park JC, Jang HK, Kim J, Han JH, Jung Y, Kim K, Bae S, Cha HJ. High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:175-183. [PMID: 34976436 PMCID: PMC8688811 DOI: 10.1016/j.omtn.2021.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/28/2021] [Indexed: 10/29/2022]
Abstract
Precise genome editing of human pluripotent stem cells (hPSCs) is crucial not only for basic science but also for biomedical applications such as ex vivo stem cell therapy and genetic disease modeling. However, hPSCs have unique cellular properties compared to somatic cells. For instance, hPSCs are extremely susceptible to DNA damage, and therefore Cas9-mediated DNA double-strand breaks (DSB) induce p53-dependent cell death, resulting in low Cas9 editing efficiency. Unlike Cas9 nucleases, base editors including cytosine base editor (CBE) and adenine base editor (ABE) can efficiently substitute single nucleotides without generating DSBs at target sites. Here, we found that the editing efficiency of CBE was significantly lower than that of ABE in human embryonic stem cells (hESCs), which are associated with high expression of DNA glycosylases, the key component of the base excision repair pathway. Sequential depletion of DNA glycosylases revealed that high expression of uracil DNA glycosylase (UNG) not only resulted in low editing efficiency but also affected CBE product purity (i.e., C to T) in hESCs. Therefore, additional suppression of UNG via transient knockdown would also improve C to T base substitutions in hESCs. These data suggest that the unique cellular characteristics of hPSCs could determine the efficiency of precise genome editing.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeon-Ki Jang
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jumee Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Keuntae Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangsu Bae
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
88
|
Zhang YC, Wang JW, Wu Y, Tao Q, Wang FF, Wang N, Ji XR, Li YG, Yu S, Zhang JZ. Multimodal Magnetic Resonance and Fluorescence Imaging of the Induced Pluripotent Stem Cell Transplantation in the Brain. Mol Biol 2022. [DOI: 10.1134/s0026893322030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The understanding of the engrafted cell behaviors such as the survival, growth and distribution is the prerequisite to optimize cell therapy, and a multimodal imaging at both anatomical and molecular levels is designed to achieve this goal. We constructed a lentiviral vector carrying genes of ferritin heavy chain 1 (FTH1), near-infrared fluorescent protein (iRFP) and enhanced green fluorescent protein (egfp), and established the induced pluripotent stem cells (iPSCs) culture stably expressing these three reporter genes. These iPSCs showed green and near-infrared fluorescence as well as the iron uptake capacity in vitro. After transplanted the labeled iPSCs into the rat brain, the engrafted cells could be in vivo imaged using magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIF) up to 60 days at the anatomical level. Moreover, these cells could be detected using EGFP immunostaining and Prussian blue stain at the cellular level. The developed approach provides a novel tool to study behaviors of the transplanted cells in a multimodal way, which will be valuable for the effectiveness and safety evaluation of cell therapy.
Collapse
|
89
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
90
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
91
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
92
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
93
|
Son JS, Park CY, Lee G, Park JY, Kim HJ, Kim G, Chi KY, Woo DH, Han C, Kim SK, Park HJ, Kim DW, Kim JH. Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs. Biomaterials 2022; 283:121429. [DOI: 10.1016/j.biomaterials.2022.121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023]
|
94
|
Deng J, Lancelot M, Jajosky R, Deng Q, Deeb K, Saakadze N, Gao Y, Jaye D, Liu S, Stowell SR, Cheng L, Roback JD. Erythropoietic properties of human induced pluripotent stem cells-derived red blood cells in immunodeficient mice. Am J Hematol 2022; 97:194-202. [PMID: 34779029 DOI: 10.1002/ajh.26410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Transfusion of red blood cells (RBCs) is a life-saving intervention for anemic patients. Human induced pluripotent stem cells (iPSC) have the capability to expand and differentiate into RBCs (iPSC-RBCs). Here we developed a murine model to investigate the in vivo properties of human iPSC-RBCs. iPSC lines were produced from human peripheral blood mononuclear cells by transient expression of plasmids containing OCT4, SOX2, MYC, KLF4, and BCL-XL genes. Human iPSC-RBCs were generated in culture supplemented with human platelet lysate, and were CD34- CD235a+ CD233+ CD49dlow CD71low ; about 13% of iPSC-RBCs were enucleated before transfusion. Systemic administration of clodronate liposomes (CL) and cobra venom factor (CVF) to NOD scid gamma (NSG) mice markedly promoted the circulatory survival of human iPSC-RBCs following transfusion. While iPSC-RBCs progressively decreased with time, 90% of circulating iPSC-RBCs were enucleated 1 day after transfusion (CD235a+ CD233+ CD49d- CD71- ). Surprisingly, human iPSC-RBCs reappeared in the peripheral circulation at 3 weeks after transfusion at levels more than 8-fold higher than at 1 h after transfusion. Moreover, a substantial portion of the transfused nucleated iPSC-RBCs preferentially homed to the bone marrow, and were detectable at 24 days after transfusion. These results suggest that nucleated human iPSC-derived cells that homed to the bone marrow of NSG mice retained the capability to complete differentiation into enucleated erythrocytes and egress the bone marrow into peripheral blood. The results offer a new model using human peripheral blood-derived iPSC and CL/CVF-treated NSG mice to investigate the development and circulation of human erythroid cells in vivo.
Collapse
Affiliation(s)
- Jiusheng Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Moira Lancelot
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Ryan Jajosky
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Qiaomei Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Kristin Deeb
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Natia Saakadze
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Yongxing Gao
- Division of Hematology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - David Jaye
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| | - Senquan Liu
- Division of Hematology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Linzhao Cheng
- Division of Hematology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - John D. Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
95
|
Meek S, Watson T, Eory L, McFarlane G, Wynne FJ, McCleary S, Dunn LEM, Charlton EM, Craig C, Shih B, Regan T, Taylor R, Sutherland L, Gossner A, Chintoan-Uta C, Fletcher S, Beard PM, Hassan MA, Grey F, Hope JC, Stevens MP, Nowak-Imialek M, Niemann H, Ross PJ, Tait-Burkard C, Brown SM, Lefevre L, Thomson G, McColl BW, Lawrence AB, Archibald AL, Steinbach F, Crooke HR, Gao X, Liu P, Burdon T. Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biol 2022; 20:14. [PMID: 35027054 PMCID: PMC8759257 DOI: 10.1186/s12915-021-01217-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Tom Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Gus McFarlane
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Felicity J Wynne
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Stephen McCleary
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | | | - Emily M Charlton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Chloe Craig
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Barbara Shih
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Linda Sutherland
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anton Gossner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sarah Fletcher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
- The Pirbright Institute, Pirbright, Surrey, UK
| | - Musa A Hassan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Finn Grey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Jayne C Hope
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar - Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Heiner Niemann
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, Carl Neuberg Str 1, 30625, Hannover, Germany
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA, 95616, USA
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sarah M Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Lucas Lefevre
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Gerard Thomson
- Centre for Clinical Brain Sciences, University of Edinburgh, Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Alistair B Lawrence
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
- Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH9 3RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pentao Liu
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Translational Stem Cell Biology, Science Park, Hong Kong, China
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
96
|
Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022; 50:1187-1197. [PMID: 35018468 PMCID: PMC8789035 DOI: 10.1093/nar/gkab1295] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here, we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.
Collapse
Affiliation(s)
- Omer Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gizem Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| |
Collapse
|
97
|
Mianné J, Nasri A, Van CN, Bourguignon C, Fieldès M, Ahmed E, Duthoit C, Martin N, Parrinello H, Louis A, Iché A, Gayon R, Samain F, Lamouroux L, Bouillé P, Bourdin A, Assou S, De Vos J. CRISPR/Cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells using non-integrative bacteriophage-chimeric retrovirus-like particles. BMC Biol 2022; 20:8. [PMID: 34996449 PMCID: PMC8742436 DOI: 10.1186/s12915-021-01214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.
Collapse
Affiliation(s)
- Joffrey Mianné
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Amel Nasri
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Nguyen Van
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Bourguignon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Hugues Parrinello
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Anaïs Louis
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | | | | | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France.
- Department of Cell and Tissue Engineering, Univ Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
98
|
Karacan I, Milthorpe B, Ben-Nissan B, Santos J. Stem Cells and Proteomics in Biomaterials and Biomedical Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:125-157. [DOI: 10.1007/978-981-16-7435-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
99
|
Allen GE, Dhanda AS, Julian LM. Emerging Methods in Modeling Brain Development and Disease with Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2515:319-342. [PMID: 35776361 DOI: 10.1007/978-1-0716-2409-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.
Collapse
Affiliation(s)
- George E Allen
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aaron S Dhanda
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
100
|
Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S, van der Meer A, Tenje M, Maegdefessel L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 2021; 117:2742-2754. [PMID: 33729461 PMCID: PMC8683705 DOI: 10.1093/cvr/cvab088] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Maria Sabater-Lleal
- Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Genomics of Complex Diseases Group, Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aisen Vivas
- BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Sofia Johansson
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
- Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|