51
|
AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun 2020; 11:5079. [PMID: 33033234 PMCID: PMC7546632 DOI: 10.1038/s41467-020-18762-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor heterogeneity and lack of knowledge about resistant cell states remain a barrier to targeted cancer therapies. Basal cell carcinomas (BCCs) depend on Hedgehog (Hh)/Gli signaling, but can develop mechanisms of Smoothened (SMO) inhibitor resistance. We previously identified a nuclear myocardin-related transcription factor (nMRTF) resistance pathway that amplifies noncanonical Gli1 activity, but characteristics and drivers of the nMRTF cell state remain unknown. Here, we use single cell RNA-sequencing of patient tumors to identify three prognostic surface markers (LYPD3, TACSTD2, and LY6D) which correlate with nMRTF and resistance to SMO inhibitors. The nMRTF cell state resembles transit-amplifying cells of the hair follicle matrix, with AP-1 and TGFß cooperativity driving nMRTF activation. JNK/AP-1 signaling commissions chromatin accessibility and Smad3 DNA binding leading to a transcriptional program of RhoGEFs that facilitate nMRTF activity. Importantly, small molecule AP-1 inhibitors selectively target LYPD3+/TACSTD2+/LY6D+ nMRTF human BCCs ex vivo, opening an avenue for improving combinatorial therapies.
Collapse
|
52
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
53
|
Phan QM, Fine GM, Salz L, Herrera GG, Wildman B, Driskell IM, Driskell RR. Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds. eLife 2020; 9:e60066. [PMID: 32990218 PMCID: PMC7524549 DOI: 10.7554/elife.60066] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.
Collapse
Affiliation(s)
- Quan M Phan
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gracelyn M Fine
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Lucia Salz
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Gerardo G Herrera
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ben Wildman
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State UniversityPullmanUnited States
- Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| |
Collapse
|
54
|
Xi L, Carroll T, Matos I, Luo JD, Polak L, Pasolli HA, Jaffrey SR, Fuchs E. m6A RNA methylation impacts fate choices during skin morphogenesis. eLife 2020; 9:e56980. [PMID: 32845239 PMCID: PMC7535931 DOI: 10.7554/elife.56980] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
N6-methyladenosine is the most prominent RNA modification in mammals. Here, we study mouse skin embryogenesis to tackle m6A's functions and physiological importance. We first landscape the m6A modifications on skin epithelial progenitor mRNAs. Contrasting with in vivo ribosomal profiling, we unearth a correlation between m6A modification in coding sequences and enhanced translation, particularly of key morphogenetic signaling pathways. Tapping physiological relevance, we show that m6A loss profoundly alters these cues and perturbs cellular fate choices and tissue architecture in all skin lineages. By single-cell transcriptomics and bioinformatics, both signaling and canonical translation pathways show significant downregulation after m6A loss. Interestingly, however, many highly m6A-modified mRNAs are markedly upregulated upon m6A loss, and they encode RNA-methylation, RNA-processing and RNA-metabolism factors. Together, our findings suggest that m6A functions to enhance translation of key morphogenetic regulators, while also destabilizing sentinel mRNAs that are primed to activate rescue pathways when m6A levels drop.
Collapse
Affiliation(s)
- Linghe Xi
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Irina Matos
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
55
|
Seleit I, Bakry OA, Badr E, Mabrouk M. Vitamin D Receptor Gene Polymorphisms Taq-1 and Cdx-1 in Female Pattern Hair Loss. Indian J Dermatol 2020; 65:259-264. [PMID: 32831364 PMCID: PMC7423221 DOI: 10.4103/ijd.ijd_482_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Female pattern hair loss (FPHL) is an important cause of hair loss in adult women and has a major impact on patient's quality of life. It evolves from the progressive miniaturization of follicles that leads to a subsequent decrease of hair density, leading to non-scarring diffuse alopecia, with characteristic clinical, dermoscopic, and histological patterns. Vitamin D receptor (VDR) is expressed in follicular keratinocytes and dermal papilla cells and is shown to have important role in hair growth and regulation of hair cycle. VDR polymorphism was not extensively investigated in hair disorders including FPHL. Aim To investigate the association between VDR gene polymorphism (Cdx-1 and Taq-1) and FPHL to explore if these polymorphisms affect the disease occurrence or influence its clinical presentation. Methods A case-control study was conducted on 30 female patients with FPHL and 30 age-matched female healthy subjects, as a control group. Degree of hair loss was assessed by Ludwig grading. VDR gene polymorphisms, Taq-1 and Cdx-1 were investigated by real time polymerase chain reaction. Results CC genotype, TC genotype, and T allele of Taq-1 were more prevalent in FPHL patients than in control group. They increased disease risk by 12.6, 2.1, and 2.9 folds, respectively. AA genotype, GA genotype, and G allele of Cdx-1 were significantly more prevalent among FPHL patients than in control group. They increased disease risk by 7.5, 5.2, and 5.5 folds, respectively. Conclusion Taq-1 and Cdx-1 can be considered as risk factors for FPHL. They may play role in disease persistence rather than disease initiation. This association may be explained by failure of new anagen growth and decreased proliferation of hair follicle stem cells. Further studies are recommended to confirm current findings.
Collapse
Affiliation(s)
- Iman Seleit
- Department of Dermatology, Andrology and STDs, Menoufiya University, Shibeen El Koom, Menoufiya Governorate, Egypt
| | - Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Menoufiya University, Shibeen El Koom, Menoufiya Governorate, Egypt
| | - Eman Badr
- Department of Medical Biochemistry, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Menoufiya Governorate, Egypt
| | - Mai Mabrouk
- Department of Dermatology, Andrology and STDs, Menoufiya University, Shibeen El Koom, Menoufiya Governorate, Egypt
| |
Collapse
|
56
|
Luo Z, Dou J, Xie F, Lu J, Han Q, Zhou X, Kong J, Chen D, Liu A. miR-203a-3p promotes loureirin A-induced hair follicle stem cells differentiation by targeting Smad1. Anat Rec (Hoboken) 2020; 304:531-540. [PMID: 32589363 DOI: 10.1002/ar.24480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) participate in the repair of skin trauma. Our previous study indicated that loureirin A promoted hair follicle stem cells (HFSCs) to repair skin epidermis. However, the mechanism of miRNA-mediated regulation of loureirin A-induced HFSC differentiation remained to be explored. In the present study, HFSCs from rat vibrissa were identified by immunofluorescence in vitro. Microarray and quantitative real time polymerase chain reaction analyses demonstrated that miR-203a-3p was upregulated in differentiated HFSCs induced by loureirin A. The expression of cytoskeletal keratin (CK) 5 and involucrin was promoted by miR-203a-3p mimics while repressed by a miR-203a-3p inhibitor. Smad1 was identified as a key target of miR-203a-3p using target prediction tools. Luciferase reporter gene test confirmed a special target association between miR-203a-3p and Smad1. Short interfering Smad1 was transfected into HFSCs, and the expression levels of CK5 and involucrin were upregulated. Thus, it can be inferred that miR-203a-3p negatively regulated the expression of Smad1 and promoted the differentiation of loureirin A-induced HFSCs. Bone morphogenetic protein (BMP) signal inhibition and Wnt activation coregulate skin injury repair. BMP/Smad1 signaling is involved in maintaining the characteristics of HFSCs and inhibiting their differentiation. Our results showed that miR-203a-3p reduces Smad1 to release BMP inhibition. Taken together, miR-203a-3p/Smad1 is a potential therapeutic molecular target in skin wound healing, and may play an active role in wound repair and regenerative medicine.
Collapse
Affiliation(s)
- Ziwei Luo
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jianping Dou
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Fangfang Xie
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jianghua Lu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Qianting Han
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Aijun Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
57
|
Adam RC, Yang H, Ge Y, Infarinato NR, Gur-Cohen S, Miao Y, Wang P, Zhao Y, Lu CP, Kim JE, Ko JY, Paik SS, Gronostajski RM, Kim J, Krueger JG, Zheng D, Fuchs E. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat Cell Biol 2020; 22:640-650. [PMID: 32393888 PMCID: PMC7367149 DOI: 10.1038/s41556-020-0513-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Tissue homeostasis and regeneration rely on resident stem cells (SCs), whose behaviour is regulated through niche-dependent crosstalk. The mechanisms underlying SC identity are still unfolding. Here, using spatiotemporal gene ablation in murine hair follicles, we uncover a critical role for the transcription factors (TFs) nuclear factor IB (NFIB) and IX (NFIX) in maintaining SC identity. Without NFI TFs, SCs lose their hair-regenerating capability, and produce skin bearing striking resemblance to irreversible human alopecia, which also displays reduced NFIs. Through single-cell transcriptomics, ATAC-Seq and ChIP-Seq profiling, we expose a key role for NFIB and NFIX in governing super-enhancer maintenance of the key hair follicle SC-specific TF genes. When NFIB and NFIX are genetically removed, the stemness epigenetic landscape is lost. Super-enhancers driving SC identity are decommissioned, while unwanted lineages are de-repressed ectopically. Together, our findings expose NFIB and NFIX as crucial rheostats of tissue homeostasis, functioning to safeguard the SC epigenome from a breach in lineage confinement that otherwise triggers irreversible tissue degeneration.
Collapse
Affiliation(s)
- Rene C Adam
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Regeneron Pharmaceuticals, New York, NY, USA
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole R Infarinato
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Shiri Gur-Cohen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yuxuan Miao
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Catherine P Lu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jeong E Kim
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Joo Y Ko
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seung S Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Richard M Gronostajski
- Department of Biochemistry, Developmental Genomics Group, NYS Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, New York, NY, USA
| | - Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Division of Dermatology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
58
|
Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, Scheper RJ, Lauster R, Lindner G, Marx U, Gibbs S. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. J Tissue Eng Regen Med 2020; 14:761-773. [PMID: 32293116 PMCID: PMC7317351 DOI: 10.1002/term.3039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study was to determine whether human neopapilla could be incorporated into RhS (differentiated epidermis on fibroblast and endothelial cell populated dermis) and whether the neopapillae maintain their inductive follicular properties in vitro. Neopapillae spheroids, constructed from expanded and self‐aggregating dermal papilla cells, synthesized extracellular matrix typically found in follicular papillae. Compared with dermal fibroblasts, neopapillae showed increased expression of multiple genes (Wnt5a, Wnt10b, and LEF1) known to regulate hair development and also increased secretion of CXCL1, which is a strong keratinocyte chemoattractant. When neopapillae were incorporated into the dermis of RhS, they stimulated epidermal down‐growth resulting in engulfment of the neopapillae sphere. Similar to the native hair follicle, the differentiated invaginating epidermis inner side was keratin 10 positive and the undifferentiated outer side keratin 10 negative. The outer side was keratin 15 positive confirming the undifferentiated nature of these keratinocytes aligning a newly formed collagen IV, laminin V positive basement membrane within the hydrogel. In conclusion, we describe a RhS model containing neopapillae with hair follicle‐inductive properties. Importantly, epidermal invagination occurred to engulf the neopapillae, thus demonstrating in vitro the first steps towards hair follicle morphogenesis in RhS.
Collapse
Affiliation(s)
- Irit Vahav
- TissUse GmbH, Berlin, Germany.,Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lenie J van den Broek
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands.,A-Skin BV, Amsterdam, The Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hanneke N Monsuur
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | - Beren Atac
- TissUse GmbH, Berlin, Germany.,Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Roland Lauster
- Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gerd Lindner
- TissUse GmbH, Berlin, Germany.,Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
59
|
Kashgari G, Meinecke L, Gordon W, Ruiz B, Yang J, Ma AL, Xie Y, Ho H, Plikus MV, Nie Q, Jester JV, Andersen B. Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development. Dev Cell 2020; 52:764-778.e4. [PMID: 32109382 DOI: 10.1016/j.devcel.2020.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.
Collapse
Affiliation(s)
- Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lina Meinecke
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan Ruiz
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jady Yang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Amy Lan Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yilu Xie
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Hsiang Ho
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - James V Jester
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
60
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Gur-Cohen S, Yang H, Baksh SC, Miao Y, Levorse J, Kataru RP, Liu X, de la Cruz-Racelis J, Mehrara BJ, Fuchs E. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 2019; 366:1218-1225. [PMID: 31672914 PMCID: PMC6996853 DOI: 10.1126/science.aay4509] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic-SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Hanseul Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Sanjeethan C Baksh
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Yuxuan Miao
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - John Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - June de la Cruz-Racelis
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
62
|
Hu Y, Song Z, Chen J, Caulin C. Overexpression of MYB in the Skin Induces Alopecia and Epidermal Hyperplasia. J Invest Dermatol 2019; 140:1204-1213.e5. [PMID: 31758945 DOI: 10.1016/j.jid.2019.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Skin homeostasis is controlled by a complex interplay between tightly regulated transcription factors and signaling pathways. MYB is a transcription factor expressed in hair follicle progenitor cells and found overexpressed in adnexal skin tumors. However, the biological consequences of deregulated MYB expression in the skin remain poorly understood. To address this, we generated transgenic mice that overexpress MYB in epidermal and follicular keratinocytes. These mice exhibited a normal hair coat after birth but gradually developed alopecia, accompanied by altered follicular differentiation, disrupted hair cycle, and a marked depletion of hair follicle stem cells. Additionally, transgenic mice developed massive epidermal hyperplasia and hyperkeratosis. Global expression profiling not only confirmed that the skin of these mice exhibited transcriptomic features of alopecia and epidermal differentiation, but also revealed features of psoriasis and the inflammatory response. The latter was further confirmed by the increased T-cell infiltration found in the skin of transgenic mice. Overall, these results suggest that tight regulation of MYB expression in the skin is critical to maintain skin homeostasis.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Otolaryngology - Head & Neck Surgery, The University of Arizona, Tucson, Arizona; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Song
- Department of Pathology, Stony Brook Medicine, Stony Brook University School of Medicine, Stony Brook, New York; Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Jiang Chen
- Department of Pathology, Stony Brook Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Carlos Caulin
- Department of Otolaryngology - Head & Neck Surgery, The University of Arizona, Tucson, Arizona; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|
63
|
Ge M, Liu C, Li L, Lan M, Yu Y, Gu L, Su Y, Zhang K, Zhang Y, Wang T, Liu C, Liu F, Li M, Xiong L, Wang K, He T, Dai Y, Zhao Y, Li N, Yu Z, Meng Q. miR-29a/b1 Inhibits Hair Follicle Stem Cell Lineage Progression by Spatiotemporally Suppressing WNT and BMP Signaling. Cell Rep 2019; 29:2489-2504.e4. [DOI: 10.1016/j.celrep.2019.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
|
64
|
IRF2 is a master regulator of human keratinocyte stem cell fate. Nat Commun 2019; 10:4676. [PMID: 31611556 PMCID: PMC6791852 DOI: 10.1038/s41467-019-12559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/14/2019] [Indexed: 12/25/2022] Open
Abstract
Resident adult epithelial stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. The stem cell potential of human epidermal keratinocytes is retained in vitro but lost over time suggesting extrinsic and intrinsic regulation. Transcription factor-controlled regulatory circuitries govern cell identity, are sufficient to induce pluripotency and transdifferentiate cells. We investigate whether transcriptional circuitry also governs phenotypic changes within a given cell type by comparing human primary keratinocytes with intrinsically high versus low stem cell potential. Using integrated chromatin and transcriptional profiling, we implicate IRF2 as antagonistic to stemness and show that it binds and regulates active cis-regulatory elements at interferon response and antigen presentation genes. CRISPR-KD of IRF2 in keratinocytes with low stem cell potential increases self-renewal, migration and epidermis formation. These data demonstrate that transcription factor regulatory circuitries, in addition to maintaining cell identity, control plasticity within cell types and offer potential for therapeutic modulation of cell function. Epidermal homeostasis requires long term stem cell function. Here, the authors apply transcriptional circuitry analysis based on integrated epigenomic profiling of primary human keratinocytes with high and low stem cell function to identify IRF2 as a negative regulator of stemness.
Collapse
|
65
|
Seleit I, Bakry OA, Badr E, Hassan EH. Vitamin D Receptor Gene Polymorphism In Chronic Telogen Effluvium; A Case-Control Study. Clin Cosmet Investig Dermatol 2019; 12:745-750. [PMID: 31632122 PMCID: PMC6790134 DOI: 10.2147/ccid.s227232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
Background Telogen effluvium (TE) is a form of alopecia characterized by diffuse hair shedding. Vitamin D receptor (VDR) plays a role in hair cycle regulation as it is expressed in follicular keratinocytes and dermal papilla cells. Purpose To investigate the association between Cdx1 and Taq1 VDR gene polymorphisms and chronic TE. Methods Thirty female patients with chronic TE were selected and 30 healthy, age- and sex-matched volunteers were included as a control group. Detection of VDR gene polymorphisms Taq1 and Cdx1 was done by real-time polymerase chain reaction. Results Regarding Taq 1, CC genotype was present in 30% of cases versus 3.3% of controls. TC genotype was present in 33.3% of cases and 36.7% of controls. CC genotype was significantly associated with cases (P=0.01). It increases the risk of chronic TE by 14.7 folds. C allele was significantly associated with patient group (P=0.004). It increases the risk of disease occurrence by 3.1 folds. Regarding Cdx1, AA genotype was present in 6.7% of cases versus 3.3% of controls. GA genotype was present in approximately 30% of cases and 6.7% of controls. GA genotype was significantly associated with cases (P=0.03). It increases the risk of chronic TE by 6.3 folds. A allele was significantly associated with patient group (P=0.007). It increases the risk of disease occurrence by 3.8 folds. Limitations The main limitation is the small number of cases due to the time and financial constraints. Only chronic TE was analyzed, therefore, other types should be investigated in the following studies. Conclusion After exposure to primary physical or mental stressor, hair follicles are stimulated to enter prematurely into telogen and shed out. In individuals with Taq1 and Cdx1 polymorphisms, the disease persists as a result of prevention of new anagen growth and inhibition of hair follicle stem cell proliferation.
Collapse
Affiliation(s)
- Iman Seleit
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Menoufiya Governorate, Egypt
| | - Ola A Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Menoufiya Governorate, Egypt
| | - Eman Badr
- Department of Medical Biochemistry, Faculty of Medicine, Menoufiya University, Menoufiya Governorate, Egypt
| | - Eman H Hassan
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Menoufiya Governorate, Egypt
| |
Collapse
|
66
|
Das D, Fletcher RB, Ngai J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e361. [PMID: 31468728 DOI: 10.1002/wdev.361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Epithelia in adult mammals exhibit remarkable regenerative capacities owing to the presence of adult stem cells, which self-renew and differentiate to replace cells lost to normal turnover or injury. The mechanisms supporting tissue homeostasis and injury-induced repair often differ from each other as well as from those used in embryonic development. Recent studies have also highlighted the phenomenon of cellular plasticity in adult tissues, in which differentiated cells can change fate and even give rise to new stem cell populations to complement the canonical stem cells in promoting repair following injury. Signaling pathways such as WNT, bone morphogenetic protein, and Sonic Hedgehog play critical roles in stem cell maintenance and cell fate decisions across diverse epithelia and conditions, suggesting that conserved mechanisms underlie the regenerative capacity of adult epithelial structures. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Berkeley Institute for Data Science, University of California, Berkeley, California
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,QB3 Functional Genomics Laboratory, University of California, Berkeley, California
| |
Collapse
|
67
|
Fuchs E. Skin Stem Cells in Silence, Action, and Cancer. Stem Cell Reports 2019; 10:1432-1438. [PMID: 29742389 PMCID: PMC5995444 DOI: 10.1016/j.stemcr.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
In studying how stem cells make and maintain tissues, nearly every chapter of a cell biology textbook takes on special interest. The field even allows us to venture where no chapters have yet been written. In studying this basic problem, we are continually bombarded by nature's surprises and challenges. Stem cell biology has captured my interest for nearly my entire scientific career. Below, I focus on my laboratory's contributions to this fascinating field, to which so many friends and colleagues have made seminal discoveries equally deserving of this award.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
68
|
Pivetti S, Fernandez-Perez D, D’Ambrosio A, Barbieri CM, Manganaro D, Rossi A, Barnabei L, Zanotti M, Scelfo A, Chiacchiera F, Pasini D. Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes. SCIENCE ADVANCES 2019; 5:eaav1594. [PMID: 31106267 PMCID: PMC6520019 DOI: 10.1126/sciadv.aav1594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/02/2019] [Indexed: 05/11/2023]
Abstract
Polycomb repressive complexes are evolutionarily conserved complexes that maintain transcriptional repression during development and differentiation to establish and preserve cell identity. We recently described the fundamental role of PRC1 in preserving intestinal stem cell identity through the inhibition of non-lineage-specific transcription factors. To further elucidate the role of PRC1 in adult stem cell maintenance, we now investigated its role in LGR5+ hair follicle stem cells during regeneration. We show that PRC1 depletion severely affects hair regeneration and, different from intestinal stem cells, derepression of its targets induces the ectopic activation of an epidermal-specific program. Our data support a general role of PRC1 in preserving stem cell identity that is shared between different compartments. However, the final outcome of the ectopic activation of non-lineage-specific transcription factors observed upon loss of PRC1 is largely context-dependent and likely related to the transcription factors repertoire and specific epigenetic landscape of different cellular compartments.
Collapse
Affiliation(s)
- Silvia Pivetti
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | | | - Alessandro D’Ambrosio
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | | | - Daria Manganaro
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Alessandra Rossi
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Laura Barnabei
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Marika Zanotti
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Andrea Scelfo
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Fulvio Chiacchiera
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Trento, Department of Cellular, Computational and Integrative Biology–CIBIO, Trento, Italy
- Corresponding author. (F.C.); (D.P.)
| | - Diego Pasini
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Milan, Department of Health Sciences, Milan, Italy
- Corresponding author. (F.C.); (D.P.)
| |
Collapse
|
69
|
Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M, Camurdanoglu B, Baykuscheva-Gentscheva T, Blanpain C, Sibilia M. EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. iScience 2019; 15:243-256. [PMID: 31082735 PMCID: PMC6515155 DOI: 10.1016/j.isci.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis in mice and humans, and its deficiency causes severe skin inflammation, which might affect epidermal stem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency during skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysis of RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR controls genes involved in epidermal differentiation and also in centrosome function, DNA damage, cell cycle, and apoptosis. Genetic experiments employing p53 deletion in EGFR-deficient epidermis reveal that EGFR signaling exhibits p53-dependent functions in proliferative epidermal compartments, as well as p53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads to absence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganization of medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomous EGFR functions in the epidermis.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Gerwin Heller
- Department of Medicine I, Comprehensive Cancer Center, Clinical Division of Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Beate M Lichtenberger
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Bahar Camurdanoglu
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Temenuschka Baykuscheva-Gentscheva
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria
| | - Cedric Blanpain
- Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium; WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre Bruxelles, Bruxelles 1070, Belgium
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
70
|
Genomic landscape of a metastatic malignant proliferating tricholemmal tumor and its response to PI3K inhibition. NPJ Precis Oncol 2019; 3:5. [PMID: 30793038 PMCID: PMC6377617 DOI: 10.1038/s41698-019-0077-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
Proliferating tricholemmal tumors (PTTs) are rare benign neoplasms that arise from the outer sheath of a hair follicle. Occasionally, these PTTs undergo malignant transformation to become malignant proliferating tricholemmal tumors (MPTTs). Little is known about the molecular alterations, malignant progression, and management of MPTTs. Here, we describe the case of a 58-year-old female that had a widely metastatic MPTT that harbored an activating PIK3CA mutation and was sensitive to the PI3K inhibitor, alpelisib (BYL719). We review the available literature on metastatic MPTT, detail the patient's course, and present a whole genome analysis of this rare tumor.
Collapse
|
71
|
Li B, Hu W, Ma K, Zhang C, Fu X. Are hair follicle stem cells promising candidates for wound healing? Expert Opin Biol Ther 2019; 19:119-128. [PMID: 30577700 DOI: 10.1080/14712598.2019.1559290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION With the continued focus on in-depth investigations of hair follicle stem cells (HFSCs), the role of HFSCs in wound healing has attracted increasing attention from researchers. This review may afford meaningful implications for HFSC treatment of wounds. AREAS COVERED We present the properties of HFSCs, analyze the possibility of HFSCs in wound healing, and sum up the recent studies into wound repair with HFSCs. The details of HFSCs in wound healing have been discussed. The possible mechanisms of wound healing with HFSCs have been elaborated. Additionally, the factors that influence HFSCs in wound healing are also summarized. EXPERT OPINION Hair follicle stem cells are promising sources for wound healing. However, a further understanding of human HFSCs and the safety use of HFSCs in clinical practice still remain in relative infancy.
Collapse
Affiliation(s)
- Bingmin Li
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Wenzhi Hu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Kui Ma
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Cuiping Zhang
- b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| | - Xiaobing Fu
- a Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science , Chinese PLA General Hospital , Beijing , People's Republic of China.,b Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration , First Hospital Affiliated to General Hospital of PLA , Beijing , China
| |
Collapse
|
72
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
73
|
Zhang H, Nie X, Shi X, Zhao J, Chen Y, Yao Q, Sun C, Yang J. Regulatory Mechanisms of the Wnt/β-Catenin Pathway in Diabetic Cutaneous Ulcers. Front Pharmacol 2018; 9:1114. [PMID: 30386236 PMCID: PMC6199358 DOI: 10.3389/fphar.2018.01114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Skin ulcers are a serious complication of diabetes. Diabetic patients suffer from vascular lesions and complications such as peripheral neuritis, peripheral vascular lesions, and collagen abnormalities, which result in skin wounds that are refractory and often develop into chronic ulcers. The healing of skin ulcers requires an inflammatory reaction, wound proliferation, remodeling regulation, and control of stem cells. Studies investigating diabetic cutaneous ulcers have focused on cellular and molecular levels. Diabetes can cause nerve and blood vessel damage, and persistent high blood sugar levels can cause systemic multisite nerve damage based on peripheral neuropathy. The long-term hyperglycemia state enables the polyol glucose metabolism pathway to be activated, increasing the accumulation of toxic substances in the vascular injured nerve tissue cells. Sustained hyperglycemia leads to dysfunction of epithelial cells, leading to a decrease in pro-angiogenic signaling and nitric oxide production. In addition, due to impaired leukocyte function in hyperglycemia, immune function is impaired and the immune response at relevant sites is insufficient, making diabetic foot more difficult to heal. The Wnt/β-catenin pathway is a highly conserved signal transduction pathway involved in a variety of biological processes, such as cell proliferation, apoptosis, and differentiation. It is considered an important pathway involved in the healing of skin wounds. This article summarizes the mechanism of action of the Wnt/β-catenin pathway involved in the inflammatory responses to diabetic ulcers, wound proliferation, wound remodeling, and stem cells. The interactions between the Wnt signal pathway and other metabolic pathways are also discussed.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- College of Pharmacy, Institute of Materia Medica, Army Medical University, Chongqing, China
| | - Xiujun Shi
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiufeng Zhao
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qiuyang Yao
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Chengxin Sun
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianwen Yang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
74
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
75
|
Carlini MJ, Shrivastava N, Sosa MS. Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:1-18. [DOI: 10.1007/978-3-319-97746-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|