51
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
52
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
53
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
54
|
Ma M, Dang Y, Chang B, Wang F, Xu J, Chen L, Su H, Li J, Ge B, Chen C, Liu H. TAK1 is an essential kinase for STING trafficking. Mol Cell 2023; 83:3885-3903.e5. [PMID: 37832545 DOI: 10.1016/j.molcel.2023.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.
Collapse
Affiliation(s)
- Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yifang Dang
- Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine; Shanghai 200433, China.
| |
Collapse
|
55
|
Ma W, Sun R, Tang L, Li Z, Lin L, Mai Z, Chen G, Yu Z. Bioactivable STING Nanoagonists to Synergize NIR-II Mild Photothermal Therapy Primed Robust and Long-Term Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303149. [PMID: 37691545 DOI: 10.1002/adma.202303149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pharmacological activation of the stimulator of interferon genes (STING) pathway has become a promising strategy for cancer immunotherapy. However, the insufficient tumorous accumulation, rapid clearance, and short duration of drug efficacy in the tumor microenvironment of small structural STING agonists greatly compromise the therapeutic efficacy. Herein, a tumorous extracellular matrix (ECM) is presented anchoring STING agonist-based photoimmunothernostic nanomedicine (SAPTN) that can be activated by mild-temperature photothermal therapy (mild PTT) induced neutrophilic inflammation. The SAPTN owns second window near-infrared (NIR-II) photonics properties fitting for NIR-II fluorescence and photoacoustic imaging-guided cancer therapy. The aggregates SAPTN targeting to the ECM provide slow and continuous release of potent STING agonists diABZIs. The mild PTT and long-lasting STING agonists released in the ECM synergistically prime systematic, robust, and long-term anticancer immunity. In a tumor model, this approach leads to complete tumor eradication in about 100% of mice with orthotopic breast tumors, and the mice regained tumor-free survival of at least 2 months. In addition, the immune-mediated abscopal effect shows inhibition of the distant solid tumor growth by intratumoral administration of SAPTN with laser irradiation. Overall, this approach represents a generalized photoactivable nanomedicine to prime anticancer immunity for improved cancer theranostics.
Collapse
Affiliation(s)
- Wen Ma
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Rui Sun
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Longguang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Lin
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ziyi Mai
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
56
|
Sasaki N, Homme M, Kitajima S. Targeting the loss of cGAS/STING signaling in cancer. Cancer Sci 2023; 114:3806-3815. [PMID: 37475576 PMCID: PMC10551601 DOI: 10.1111/cas.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The cGAS/STING pathway provides a key host defense mechanism by detecting the accumulation of cytoplasmic double-stranded DNA (dsDNA) and mediating innate and adaptive immune signaling. In addition to detecting pathogen-derived dsDNA, cGAS senses intrinsic dsDNA, such as those associated with defective cell cycle progression and mitophagy that has leaked from the nucleus or mitochondria, and subsequently evokes host immunity to eliminate pathogenic cells. In cancer cells, dysregulation of DNA repair and cell cycle caused at the DNA replication checkpoint and spindle assembly checkpoint results in aberrant cytoplasmic dsDNA accumulation, stimulating anti-tumor immunity. Therefore, the suppression of cGAS/STING signaling is beneficial for survival and frequently observed in cancer cells as a way to evade detection by the immune system, and is likely to be related to immune checkpoint blockade (ICB) resistance. Indeed, the mechanisms of ICB resistance overlap with those acquired in cancers during immunoediting to evade immune surveillance. This review highlights the current understanding of cGAS/STING suppression in cancer cells and discusses how to establish effective strategies to regenerate effective anti-tumor immunity through reactivation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mizuki Homme
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shunsuke Kitajima
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
57
|
Cheng G, Wu J, Ji M, Hu W, Wu C, Jiang J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer 2023; 23:825. [PMID: 37667220 PMCID: PMC10478367 DOI: 10.1186/s12885-023-11343-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui Cheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Jun Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Mei Ji
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| |
Collapse
|
58
|
Chen X, Meng F, Xu Y, Li T, Chen X, Wang H. Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity. Nat Commun 2023; 14:4584. [PMID: 37524727 PMCID: PMC10390568 DOI: 10.1038/s41467-023-40312-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy.
Collapse
Affiliation(s)
- Xiaona Chen
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Yiting Xu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Tongyu Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaolong Chen
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China.
- Jinan Microecological Biomedicine Shandong Laboratory, 250117, Jinan, Shandong Province, P. R. China.
| |
Collapse
|
59
|
Liu Y, Fei Y, Wang X, Yang B, Li M, Luo Z. Biomaterial-enabled therapeutic modulation of cGAS-STING signaling for enhancing antitumor immunity. Mol Ther 2023; 31:1938-1959. [PMID: 37002605 PMCID: PMC10362396 DOI: 10.1016/j.ymthe.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bingbing Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
60
|
Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. Br J Cancer 2023; 128:715-725. [PMID: 36463323 PMCID: PMC9977958 DOI: 10.1038/s41416-022-02076-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy (CIT) has gained increasing attention and made promising progress in recent years, especially immune checkpoint inhibitors such as antibodies blocking programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, its therapeutic efficacy is only 10-30% in solid tumours and treatment sensitivity needs to be improved. The complex tissue environment in which cancers originate is known as the tumour microenvironment (TME) and the complicated and dynamic TME is correlated with the efficacy of immunotherapy. Ultrasound-targeted microbubble destruction (UTMD) is an emerging technology that integrates diagnosis and therapy, which has garnered much traction due to non-invasive, targeted drug delivery and gene transfection characteristics. UTMD has also been studied to remodel TME and improve the efficacy of CIT. In this review, we analyse the effects of UTMD on various components of TME, including CD8+ T cells, tumour-infiltrating myeloid cells, regulatory T cells, natural killer cells and tumour vasculature. Moreover, UTMD enhances the permeability of the blood-brain barrier to facilitate drug delivery, thus improving CIT efficacy in vivo animal experiments. Based on this, we highlight the potential of immunotherapy against various cancer species and the clinical application prospects of UTMD.
Collapse
|
61
|
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2022:S0962-8924(22)00252-5. [DOI: 10.1016/j.tcb.2022.11.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
62
|
Uemura Y, Hiroshima Y, Tada A, Murakami K, Yoshida K, Inagaki Y, Kuwahara T, Murakami A, Fujii H, Yumoto H. Porphyromonas gingivalis Outer Membrane Vesicles Stimulate Gingival Epithelial Cells to Induce Pro-Inflammatory Cytokines via the MAPK and STING Pathways. Biomedicines 2022; 10:biomedicines10102643. [PMID: 36289904 PMCID: PMC9599832 DOI: 10.3390/biomedicines10102643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Porphyromonas gingivalis (Pg) is a keystone pathogen associated with chronic periodontitis and produces outer membrane vesicles (OMVs) that contain lipopolysaccharide (LPS), gingipains, and pathogen-derived DNA and RNA. Pg-OMVs are involved in the pathogenesis of periodontitis. Pg-OMV-activated pathways that induce the production of the pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in the human gingival epithelial cell line, OBA-9, were investigated. The role of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in levels of Pg-OMV-induced pro-inflammatory cytokines was investigated using Western blot analysis and specific pathway inhibitors. Pg-OMVs induced IL-6 and IL-8 production via the extracellular signal-regulated kinase (Erk) 1/2, c-Jun N-terminal kinase (JNK), p38 MAPK, and NF-κB signaling pathways in OBA-9 cells. In addition, the stimulator of interferon genes (STING), an essential innate immune signaling molecule, was triggered by a cytosolic pathogen DNA. Pg-OMV-induced IL-6 and IL-8 mRNA expression and production were significantly suppressed by STING-specific small interfering RNA. Taken together, these results demonstrated that Pg-OMV-activated Erk1/2, JNK, p38 MAPK, STING, and NF-κB signaling pathways resulting in increased IL-6 and IL-8 expression in human gingival epithelial cells. These results suggest that Pg-OMVs may play important roles in periodontitis exacerbation by stimulating various pathways.
Collapse
Affiliation(s)
- Yuta Uemura
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Yuka Hiroshima
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Correspondence: ; Tel.: +81-88-633-7330
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Takamatsu 761-0793, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Takamatsu 761-0793, Japan
| | - Akikazu Murakami
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Hideki Fujii
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Department of Biology, Keio University School of Medicine, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|