51
|
Abstract
Import of proteins is of vital importance for the biogenesis of mitochondria. The vast majority of mitochondrial proteins is encoded within the nuclear genome and translocated into various mitochondrial compartments after translation in the cytosol as preproteins. Even in rather primitive eukaryotes like yeasts, these are 700 to 1,000 different proteins, whereas only a handful of proteins is encoded in the mitochondrial DNA. In vitro import studies are important tools to understand import mechanisms and pathways. Using isolated mitochondria and radioactively labeled precursor proteins, it was possible to identify several import machineries and pathways consisting of a large number of components during the last decades.
Collapse
|
52
|
Terziyska N, Grumbt B, Kozany C, Hell K. Structural and Functional Roles of the Conserved Cysteine Residues of the Redox-regulated Import Receptor Mia40 in the Intermembrane Space of Mitochondria. J Biol Chem 2009; 284:1353-63. [DOI: 10.1074/jbc.m805035200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
53
|
Protein transport machineries for precursor translocation across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:52-9. [DOI: 10.1016/j.bbamcr.2008.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
54
|
Hell K, Neupert W. Oxidative Protein Folding in Mitochondria. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kai Hell
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| | - Walter Neupert
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| |
Collapse
|
55
|
Reddehase S, Grumbt B, Neupert W, Hell K. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 2008; 385:331-8. [PMID: 19010334 DOI: 10.1016/j.jmb.2008.10.088] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.
Collapse
Affiliation(s)
- Silvia Reddehase
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | |
Collapse
|
56
|
Kawamata H, Manfredi G. Different regulation of wild-type and mutant Cu,Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 2008; 17:3303-17. [PMID: 18703498 PMCID: PMC2566526 DOI: 10.1093/hmg/ddn226] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/16/2008] [Accepted: 07/31/2008] [Indexed: 11/12/2022] Open
Abstract
The antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) is predominantly localized in the cytosol, but it is also found in mitochondria. Studies in yeast suggest that apoSOD1 is imported into mitochondria and trapped inside by folding and maturation, which is facilitated by its copper chaperone for SOD1 (CCS). Here, we show that in mammalian cells, SOD1 mitochondrial localization is dictated by its folding state, which is modulated by several interconnected factors. First, the intracellular distribution of CCS determines SOD1 partitioning in cytosol and mitochondria: CCS localization in the cytosol prevents SOD1 mitochondrial import, whereas CCS in mitochondria increases it. Second, the Mia40/Erv1 pathway for import of small intermembrane space proteins participates in CCS mitochondrial import in a respiratory chain-dependent manner. Third, CCS mitochondrial import is regulated by oxygen concentration: high (20%) oxygen prevents import, whereas physiological (6%) oxygen promotes it. Therefore, SOD1 localization responds to changes in environmental conditions following redistribution of CCS, which operates as an oxygen sensor. Fourth, all of the cysteine residues in human SOD1 are critical for its retention in mitochondria due to their involvement in intramolecular disulfide bonds and in the interaction with CCS. Mutations in SOD1 are associated with autosomal dominant familial amyotrophic lateral sclerosis. Like the wild-type protein, mutant SOD1 localizes to mitochondria, where it induces bioenergetic defects. We find that the physiological regulation of mitochondrial localization is either inefficient or absent in SOD1 pathogenic mutants. We propose misfolding and aggregation of these mutants that trap them inside mitochondria.
Collapse
Affiliation(s)
| | - Giovanni Manfredi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
57
|
Abstract
In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry.
Collapse
|
58
|
Hu J, Dong L, Outten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 2008; 283:29126-34. [PMID: 18708636 DOI: 10.1074/jbc.m803028200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redox control in the mitochondrion is essential for the proper functioning of this organelle. Disruption of mitochondrial redox processes contributes to a host of human disorders, including cancer, neurodegenerative diseases, and aging. To better characterize redox control pathways in this organelle, we have targeted a green fluorescent protein-based redox sensor to the intermembrane space (IMS) and matrix of yeast mitochondria. This approach allows us to separately monitor the redox state of the matrix and the IMS, providing a more detailed picture of redox processes in these two compartments. To verify that the sensors respond to localized glutathione (GSH) redox changes, we have genetically manipulated the subcellular redox state using oxidized GSH (GSSG) reductase localization mutants. These studies indicate that redox control in the cytosol and matrix are maintained separately by cytosolic and mitochondrial isoforms of GSSG reductase. Our studies also demonstrate that the mitochondrial IMS is considerably more oxidizing than the cytosol and mitochondrial matrix and is not directly influenced by endogenous GSSG reductase activity. These redox measurements are used to predict the oxidation state of thiol-containing proteins that are imported into the IMS.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
59
|
Koehler CM, Tienson HL. Redox regulation of protein folding in the mitochondrial intermembrane space. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:139-45. [PMID: 18761382 DOI: 10.1016/j.bbamcr.2008.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/29/2022]
Abstract
Protein translocation pathways to the mitochondrial matrix and inner membrane have been well characterized. However, translocation into the intermembrane space, which was thought to be simply a modification of the traditional translocation pathways, is complex. The mechanism by which a subset of intermembrane space proteins, those with disulfide bonds, are translocated has been largely unknown until recently. Specifically, the intermembrane space proteins with disulfide bonds are imported via the mitochondrial intermembrane space assembly (MIA) pathway. Substrates are imported via a disulfide exchange relay with two components Mia40 and Erv1. This new breakthrough has resulted in novel concepts for assembly of proteins in the intermembrane space, suggesting that this compartment may be similar to that of the endoplasmic reticulum and the prokaryotic periplasm. As a better understanding of this pathway emerges, new paradigms for thiol-disulfide exchange mechanisms may be developed. Given that the intermembrane space is important for disease processes including apoptosis and neurodegeneration, new roles in regulation by oxidation-reduction chemistry seem likely to be relevant.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Box 951569, Los Angeles, CA 90095-1569, USA.
| | | |
Collapse
|
60
|
Gabriel K, Pfanner N. The mitochondrial machinery for import of precursor proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 390:99-117. [PMID: 17951683 DOI: 10.1007/978-1-59745-466-7_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondria contain a small genome that codes for approx 1% of the total number of proteins that reside in the mitochondria. Hence, most mitochondrial proteins are encoded for by the nuclear genome. After transcription in the nucleus these proteins are synthesized by cytosolic ribosomes. Like proteins destined for other organellar compartments, mitochondrially destined proteins possess targeting signals within their primary or secondary structure that direct them to the organelle with the assistance of cytosolic factors. Very specialized and discriminatory protein translocase complexes in the mitochondrial membranes, intermembrane space, and matrix are then engaged for the translocation, sorting, integration, processing, and folding of the newly imported proteins. The principles of protein targeting into mitochondria have been and are still being unraveled, mostly by studies with the yeast Saccharomyces cerevisiae and the fungus Neurospora crassa. In this chapter the major principles of mitochondrial protein targeting as currently understood will be discussed as a foundation for the experimental methods discussed later in this volume.
Collapse
Affiliation(s)
- Kipros Gabriel
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | | |
Collapse
|
61
|
Belizário JE, Alves J, Occhiucci JM, Garay-Malpartida M, Sesso A. A mechanistic view of mitochondrial death decision pores. ACTA ACUST UNITED AC 2008; 40:1011-24. [PMID: 17665037 DOI: 10.1590/s0100-879x2006005000109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/16/2007] [Indexed: 11/22/2022]
Abstract
Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.
Collapse
Affiliation(s)
- J E Belizário
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
62
|
Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci 2008; 28:4172-82. [PMID: 18417696 PMCID: PMC2678917 DOI: 10.1523/jneurosci.5471-07.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/29/2008] [Accepted: 03/02/2008] [Indexed: 01/01/2023] Open
Abstract
In the brain, ischemic preconditioning (IPC) diminishes mitochondrial dysfunction after ischemia and confers neuroprotection. Activation of epsilon protein kinase C (epsilonPKC) has been proposed to be a key neuroprotective pathway during IPC. We tested the hypothesis that IPC increases the levels of epsilonPKC in synaptosomes from rat hippocampus, resulting in improved synaptic mitochondrial respiration. Preconditioning significantly increased the level of hippocampal synaptosomal epsilonPKC to 152% of sham-operated animals at 2 d of reperfusion, the time of peak neuroprotection. We tested the effect of epsilonPKC activation on hippocampal synaptic mitochondrial respiration 2 d after preconditioning. Treatment with the specific epsilonPKC activating peptide, tat-psiepsilonRACK (tat-psiepsilon-receptor for activated C kinase), increased the rate of oxygen consumption in the presence of substrates for complexes I, II, and IV to 157, 153, and 131% of control (tat peptide alone). In parallel, we found that epsilonPKC activation in synaptosomes from preconditioned animals resulted in altered levels of phosphorylated mitochondrial respiratory chain proteins: increased serine and tyrosine phosphorylation of 18 kDa subunit of complex I, decreased serine phosphorylation of FeS protein in complex III, increased threonine phosphorylation of COX IV (cytochrome oxidase IV), increased mitochondrial membrane potential, and decreased H2O2 production. In brief, ischemic preconditioning promoted significant increases in the level of synaptosomal epsilonPKC. Activation of epsilonPKC increased synaptosomal mitochondrial respiration and phosphorylation of mitochondrial respiratory chain proteins. We propose that, at 48 h of reperfusion after ischemic preconditioning, epsilonPKC is poised at synaptic mitochondria to respond to ischemia either by direct phosphorylation or activation of the epsilonPKC signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Saul
- The Cerebral Vascular Disease Research Center
| | - Antoni Barrientos
- The Cerebral Vascular Disease Research Center
- Department of Neurology and Neuroscience Program, and
- Department of Biochemistry and Molecular Biology and The John T. MacDonald Center for Medical Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Miguel A. Perez-Pinzon
- The Cerebral Vascular Disease Research Center
- Department of Neurology and Neuroscience Program, and
| |
Collapse
|
63
|
Hell K. The Erv1–Mia40 disulfide relay system in the intermembrane space of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:601-9. [DOI: 10.1016/j.bbamcr.2007.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/26/2022]
|
64
|
Abstract
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo.
Collapse
Affiliation(s)
- Bruce Morgan
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
65
|
Becker T, Vögtle FN, Stojanovski D, Meisinger C. Sorting and assembly of mitochondrial outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:557-63. [PMID: 18423394 DOI: 10.1016/j.bbabio.2008.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
66
|
Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:118-29. [DOI: 10.1016/j.bbabio.2007.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 02/03/2023]
|
67
|
Badugu R, Garcia M, Bondada V, Joshi A, Geddes JW. N terminus of calpain 1 is a mitochondrial targeting sequence. J Biol Chem 2007; 283:3409-3417. [PMID: 18070881 DOI: 10.1074/jbc.m706851200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ubiquitous m- and mu-calpains are thought to be localized in the cytosolic compartment, as is their endogenous inhibitor calpastatin. Previously, mu-calpain was found to be enriched in mitochondrial fractions isolated from rat cerebral cortex and SH-SY5Y neuroblastoma cells, but the submitochondrial localization of mu-calpain was not determined. In the present study, submitochondrial fractionation and digitonin permeabilization studies indicated that both calpain 1 and calpain small subunit 1, which together form mu-calpain, are present in the mitochondrial intermembrane space. The N terminus of calpain 1 contains an amphipathic alpha-helical domain, and is distinct from the N terminus of calpain 2. Calpain 1, but not calpain 2, was imported into mitochondria. Removal of the N-terminal 22 amino acids of calpain 1 blocked the mitochondrial calpain import, while addition of this N-terminal region to calpain 2 or green fluorescent protein enabled mitochondrial import. The N terminus of calpain 1 was not processed following mitochondrial import, but was removed by autolysis following calpain activation. Calpain small subunit 1 was not directly imported into mitochondria, but was imported in the presence of calpain 1. The presence of a mitochondrial targeting sequence in the N-terminal region of calpain 1 is consistent with the localization of mu-calpain to the mitochondrial intermembrane space and provides new insight into the possible functions of this cysteine protease.
Collapse
Affiliation(s)
- RamaKrishna Badugu
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Matthew Garcia
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Aashish Joshi
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
68
|
Nickel W. Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. J Cell Sci 2007; 120:2295-9. [PMID: 17606984 DOI: 10.1242/jcs.011080] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several secretory proteins are released from cells by mechanisms that are distinct from the classical endoplasmic reticulum (ER)/Golgi-mediated secretory pathway. Recent studies unexpectedly revealed that the interaction between one such protein, fibroblast growth factor 2 (FGF-2), and cell surface heparan sulfate proteoglycans (HSPGs) is essential for secretion. FGF-2 mutants that cannot bind to heparan sulfates are not secreted, and cells that do not express functional HSPGs cannot secrete wild-type FGF-2. FGF-2 appears to be secreted by direct translocation across the plasma membrane in an ATP- and membrane-potential-independent manner. I propose that its translocation across the membrane is a diffusion-controlled process in which cell surface HSPGs function as an extracellular molecular trap that drives directional transport of FGF-2.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
69
|
Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM. The disulfide relay system of mitochondria is connected to the respiratory chain. ACTA ACUST UNITED AC 2007; 179:389-95. [PMID: 17967948 PMCID: PMC2064786 DOI: 10.1083/jcb.200707123] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
All proteins of the intermembrane space of mitochondria are encoded by nuclear genes and synthesized in the cytosol. Many of these proteins lack presequences but are imported into mitochondria in an oxidation-driven process that relies on the activity of Mia40 and Erv1. Both factors form a disulfide relay system in which Mia40 functions as a receptor that transiently interacts with incoming polypeptides via disulfide bonds. Erv1 is a sulfhydryl oxidase that oxidizes and activates Mia40, but it has remained unclear how Erv1 itself is oxidized. Here, we show that Erv1 passes its electrons on to molecular oxygen via interaction with cytochrome c and cytochrome c oxidase. This connection to the respiratory chain increases the efficient oxidation of the relay system in mitochondria and prevents the formation of toxic hydrogen peroxide. Thus, analogous to the system in the bacterial periplasm, the disulfide relay in the intermembrane space is connected to the electron transport chain of the inner membrane.
Collapse
Affiliation(s)
- Karl Bihlmaier
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Grumbt B, Stroobant V, Terziyska N, Israel L, Hell K. Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. J Biol Chem 2007; 282:37461-70. [PMID: 17959605 DOI: 10.1074/jbc.m707439200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mia40p and Erv1p are components of a translocation pathway for the import of cysteine-rich proteins into the intermembrane space of mitochondria. We have characterized the redox behavior of Mia40p and reconstituted the disulfide transfer system of Mia40p by using recombinant functional C-terminal fragment of Mia40p, Mia40C, and Erv1p. Oxidized Mia40p contains three intramolecular disulfide bonds. One disulfide bond connects the first two cysteine residues in the CPC motif. The second and the third bonds belong to the twin CX(9)C motif and bridge the cysteine residues of two CX(9)C segments. In contrast to the stabilizing disulfide bonds of the twin CX(9)C motif, the first disulfide bond was easily accessible to reducing agents. Partially reduced Mia40C generated by opening of this bond as well as fully reduced Mia40C were oxidized by Erv1p in vitro. In the course of this reaction, mixed disulfides of Mia40C and Erv1p were formed. Reoxidation of fully reduced Mia40C required the presence of the first two cysteine residues in Mia40C. However, efficient reoxidation of a Mia40C variant containing only the cysteine residues of the twin CX(9)C motif was observed when in addition to Erv1p low amounts of wild type Mia40C were present. In the reconstituted system the thiol oxidase Erv1p was sufficient to transfer disulfide bonds to Mia40C, which then could oxidize the variant of Mia40C. In summary, we reconstituted a disulfide relay system consisting of Mia40C and Erv1p.
Collapse
Affiliation(s)
- Barbara Grumbt
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377, München, Germany
| | | | | | | | | |
Collapse
|
71
|
Stojanovski D, Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A. The MIA system for protein import into the mitochondrial intermembrane space. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:610-7. [PMID: 17996737 DOI: 10.1016/j.bbamcr.2007.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 01/20/2023]
Abstract
When thinking of the mitochondrial intermembrane space we envisage a small compartment that is bordered by the mitochondrial outer and inner membranes. Despite this somewhat simplified perception the intermembrane space has remained a central focus in mitochondrial biology. This compartment accommodates many proteinaceous factors that play critical roles in mitochondrial and cellular metabolism, including the regulation of programmed cell death and energy conversion. The mechanism by which intermembrane space proteins are transported into the organelle and folded remained largely unknown until recently. In pursuit of the answer to this question a novel machinery, the Mitochondrial Intermembrane Space Assembly machinery, exploiting a unique regulated thiol-disulfide exchange mechanism has been revealed. This exciting discovery has not only put in place novel concepts for the biogenesis of intermembrane space precursors but also raises important implications on the mechanisms involved in the generation and transfer of disulfide bonds.
Collapse
Affiliation(s)
- Diana Stojanovski
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
72
|
Kadomatsu T, Mori M, Terada K. Mitochondrial import of Omi: The definitive role of the putative transmembrane region and multiple processing sites in the amino-terminal segment. Biochem Biophys Res Commun 2007; 361:516-21. [PMID: 17662244 DOI: 10.1016/j.bbrc.2007.07.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 07/16/2007] [Indexed: 11/28/2022]
Abstract
The mitochondrial serine protease Omi/HtrA2 has a proapoptotic role in mammalian cells. However, neither the topology nor the processing of Omi in mitochondria is clearly understood. To determine the topology of Omi in the mitochondrial IMS, EGFP fusions were expressed with the entire N-terminal segment of full-length Omi (FL-Omi) (133-EGFP), and that without the transmembrane region (DeltaTM-EGFP) in the cells. Immunocytochemical staining and alkaline extraction experiments revealed that the TM determines the topology of Omi in the IMS and anchors the pro form into the inner membrane. As a result, the protease and the PDZ domains are exposed to the IMS. Mature Omi largely exists in the IMS as a soluble form. The processing sites of the precursor protein were examined by in vitro import experiments. The import of the processing mutants revealed importance of Arg80, Arg91, and Arg93 residues for the processing of the N-terminal segment of FL-Omi. These results suggest that the N-terminal segment of FL-Omi contains multiple processing sites processed by matrix processing proteases.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | |
Collapse
|
73
|
Milenkovic D, Gabriel K, Guiard B, Schulze-Specking A, Pfanner N, Chacinska A. Biogenesis of the Essential Tim9–Tim10 Chaperone Complex of Mitochondria. J Biol Chem 2007; 282:22472-80. [PMID: 17553782 DOI: 10.1074/jbc.m703294200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.
Collapse
Affiliation(s)
- Dusanka Milenkovic
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Habib SJ, Neupert W, Rapaport D. Analysis and prediction of mitochondrial targeting signals. Methods Cell Biol 2007; 80:761-81. [PMID: 17445721 DOI: 10.1016/s0091-679x(06)80035-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shukry J Habib
- Institut für Physiologische Chemie, Universität München, D-81377 Munich, Germany
| | | | | |
Collapse
|
75
|
Peixoto PMV, Graña F, Roy TJ, Dunn CD, Flores M, Jensen RE, Campo ML. Awaking TIM22, a Dynamic Ligand-gated Channel for Protein Insertion in the Mitochondrial Inner Membrane. J Biol Chem 2007; 282:18694-701. [PMID: 17462993 DOI: 10.1074/jbc.m700775200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.
Collapse
Affiliation(s)
- Pablo M V Peixoto
- Department of Biochemistry and Molecular Biology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | | | | | |
Collapse
|
76
|
Sanjuán Szklarz LK, Kozjak-Pavlovic V, Vögtle FN, Chacinska A, Milenkovic D, Vogel S, Dürr M, Westermann B, Guiard B, Martinou JC, Borner C, Pfanner N, Meisinger C. Preprotein Transport Machineries of Yeast Mitochondrial Outer Membrane Are not Required for Bax-induced Release of Intermembrane Space Proteins. J Mol Biol 2007; 368:44-54. [PMID: 17335847 DOI: 10.1016/j.jmb.2007.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.
Collapse
Affiliation(s)
- Luiza K Sanjuán Szklarz
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Herrmann JM, Köhl R. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. ACTA ACUST UNITED AC 2007; 176:559-63. [PMID: 17312024 PMCID: PMC2064014 DOI: 10.1083/jcb.200611060] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intermembrane space (IMS) of mitochondria, the compartment that phylogenetically originated from the periplasm of bacteria, contains machinery to catalyze the oxidative folding of proteins (Mesecke, N., N. Terziyska, C. Kozany, F. Baumann, W. Neupert, K. Hell, and J.M. Herrmann. 2005. Cell. 121:1059-1069; Rissler, M., N. Wiedemann, S. Pfannschmidt, K. Gabriel, B. Guiard, N. Pfanner, and A. Chacinska. 2005. J. Mol. Biol. 353: 485-492; Tokatlidis, K. 2005. Cell. 121:965-96). This machinery introduces disulfide bonds into newly imported precursor proteins, thereby locking them in a folded conformation. Because folded proteins cannot traverse the translocase of the outer membrane, this stably traps the proteins in the mitochondria. The principle of protein oxidation in the IMS presumably has been conserved from the bacterial periplasm and has been adapted during evolution to drive the vectorial translocation of proteins from the cytosol into the mitochondria.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
78
|
Terziyska N, Grumbt B, Bien M, Neupert W, Herrmann JM, Hell K. The sulfhydryl oxidase Erv1 is a substrate of the Mia40-dependent protein translocation pathway. FEBS Lett 2007; 581:1098-102. [PMID: 17336303 DOI: 10.1016/j.febslet.2007.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/31/2007] [Accepted: 02/08/2007] [Indexed: 11/26/2022]
Abstract
The thiol oxidase Erv1 and the redox-regulated receptor Mia40/Tim40 are components of a disulfide relay system which mediates import of proteins into the intermembrane space (IMS) of mitochondria. Here we report that Erv1 requires Mia40 for its import into mitochondria. After passage across the translocase of the mitochondrial outer membrane Erv1 interacts via disulfide bonds with Mia40. Erv1 does not contain twin "CX(3)C" or twin "CX(9)C" motifs which are crucial for import of typical substrates of this pathway and it does not need two "CX(2)C" motifs for import into mitochondria. Thus, Erv1 represents an unusual type of substrate of the Mia40-dependent import pathway.
Collapse
Affiliation(s)
- Nadia Terziyska
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, D-81377 München, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Uboldi AD, Lueder FB, Walsh P, Spurck T, McFadden GI, Curtis J, Likic VA, Perugini MA, Barson M, Lithgow T, Handman E. A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 2006; 36:1499-514. [PMID: 17011565 DOI: 10.1016/j.ijpara.2006.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.
Collapse
|
80
|
Garcia M, Darzacq X, Delaveau T, Jourdren L, Singer RH, Jacq C. Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes. Mol Biol Cell 2006; 18:362-8. [PMID: 17108321 PMCID: PMC1783778 DOI: 10.1091/mbc.e06-09-0827] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The coherence of mitochondrial biogenesis relies on spatiotemporally coordinated associations of 800-1000 proteins mostly encoded in the nuclear genome. We report the development of new quantitative analyses to assess the role of local protein translation in the construction of molecular complexes. We used real-time PCR to determine the cellular location of 112 mRNAs involved in seven mitochondrial complexes. Five typical cases were examined by an improved FISH protocol. The proteins produced in the vicinity of mitochondria (MLR proteins) were, almost exclusively, of prokaryotic origin and are key elements of the core construction of the molecular complexes; the accessory proteins were translated on free cytoplasmic polysomes. These two classes of proteins correspond, at least as far as intermembrane space (IMS) proteins are concerned, to two different import pathways. Import of MLR proteins involves both TOM and TIM23 complexes whereas non-MLR proteins only interact with the TOM complex. Site-specific translation loci, both outside and inside mitochondria, may coordinate the construction of molecular complexes composed of both nuclearly and mitochondrially encoded subunits.
Collapse
Affiliation(s)
- M Garcia
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique-Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
81
|
Rainey RN, Glavin JD, Chen HW, French SW, Teitell MA, Koehler CM. A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 2006; 26:8488-97. [PMID: 16966379 PMCID: PMC1636789 DOI: 10.1128/mcb.01006-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/27/2006] [Accepted: 08/30/2006] [Indexed: 12/20/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase) is an exoribonuclease and poly(A) polymerase postulated to function in the cytosol and mitochondrial matrix. Prior overexpression studies resulted in PNPase localization to both the cytosol and mitochondria, concurrent with cytosolic RNA degradation and pleiotropic cellular effects, including growth inhibition and apoptosis, that may not reflect a physiologic role for endogenous PNPase. We therefore conducted a mechanistic study of PNPase biogenesis in the mitochondrion. Interestingly, PNPase is localized to the intermembrane space by a novel import pathway. PNPase has a typical N-terminal targeting sequence that is cleaved by the matrix processing peptidase when PNPase engaged the TIM23 translocon at the inner membrane. The i-AAA protease Yme1 mediated translocation of PNPase into the intermembrane space but did not degrade PNPase. In a yeast strain deleted for Yme1 and expressing PNPase, nonimported PNPase accumulated in the cytosol, confirming an in vivo role for Yme1 in PNPase maturation. PNPase localization to the mitochondrial intermembrane space suggests a unique role distinct from its highly conserved function in RNA processing in chloroplasts and bacteria. Furthermore, Yme1 has a new function in protein translocation, indicating that the intermembrane space harbors diverse pathways for protein translocation.
Collapse
Affiliation(s)
- Robert N Rainey
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
82
|
Gabriel K, Milenkovic D, Chacinska A, Müller J, Guiard B, Pfanner N, Meisinger C. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J Mol Biol 2006; 365:612-20. [PMID: 17095012 DOI: 10.1016/j.jmb.2006.10.038] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.
Collapse
Affiliation(s)
- Kipros Gabriel
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Zinc/cysteine coordination environments in proteins are redox-active. Oxidation of the sulfur ligands mobilizes zinc, while reduction of the oxidized ligands enhances zinc binding, providing redox control over the availability of zinc ions. Some zinc proteins are redox sensors, in which zinc release is coupled to conformational changes that control varied functions such as enzymatic activity, binding interactions, and molecular chaperone activity. Whereas the released zinc ion in redox sensors has no known function, the redox signal is transduced to specific and sensitive zinc signals in redox transducers. Released zinc can bind to sites on other proteins and modulate signal transduction, generation of metabolic energy, mitochondrial function, and gene expression. The paradigm of such redox transducers is the zinc protein metallothionein, which, together with its apoprotein, thionein, functions at a central node in cellular signaling by redistributing cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc signals. In this regard, the transduction of nitric oxide (NO) signals into zinc signals by metallothionein has received particular attention. It appears that redox-inert zinc has been chosen to control some aspects of cellular thiol/disulfide redox metabolism. Tight control of zinc is essential for redox homeostasis because both increases and decreases of cellular zinc elicit oxidative stress. Depending on its availability, zinc can be cytoprotective as a pro-antioxidant or cytotoxic as a pro-oxidant. Any condition with acute or chronic oxidative stress is expected to perturb zinc homeostasis.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, 77555, USA.
| |
Collapse
|
84
|
van der Laan M, Rissler M, Rehling P. Mitochondrial preprotein translocases as dynamic molecular machines. FEMS Yeast Res 2006; 6:849-61. [PMID: 16911507 DOI: 10.1111/j.1567-1364.2006.00134.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.
Collapse
Affiliation(s)
- Martin van der Laan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
85
|
Schaub MC, Hefti MA, Zaugg M. Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 2006; 41:183-214. [PMID: 16765984 DOI: 10.1016/j.yjmcc.2006.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 12/23/2022]
Abstract
Calcium has evolved as global intracellular messenger for signal transduction in the millisecond time range by reversibly binding to calcium-sensing proteins. In the cardiomyocyte, ion pumps, ion exchangers and channels keep the cytoplasmic calcium level at rest around approximately 100 nM which is more than 10,000-fold lower than outside the cell. Intracellularly, calcium is mainly stored in the sarcoplasmic reticulum, which comprises the bulk of calcium available for the heartbeat. Regulation of cardiac function including contractility and energy production relies on a three-tiered control system, (i) immediate and fast feedback in response to mechanical load on a beat-to-beat basis (Frank-Starling relation), (ii) more sustained regulation involving transmitters and hormones as primary messengers, and (iii) long-term adaptation by changes in the gene expression profile. Calcium signaling over largely different time scales requires its integration with the protein kinase signaling network which is governed by G-protein-coupled receptors, growth factor and cytokine receptors at the surface membrane. Short-term regulation is dominated by the beta-adrenergic system, while long-term regulation with phenotypic remodeling depends on sustained signaling by growth factors, cytokines and calcium. Mechanisms and new developments in intracellular calcium handling and its interrelation with the MAPK signaling pathways are discussed in detail.
Collapse
Affiliation(s)
- Marcus C Schaub
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
86
|
Stojanovski D, Rissler M, Pfanner N, Meisinger C. Mitochondrial morphology and protein import—A tight connection? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:414-21. [PMID: 16624427 DOI: 10.1016/j.bbamcr.2006.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/17/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022]
Abstract
Although the field of mitochondrial protein import and assembly may have initially been viewed as a completely distinct area of investigation to that of mitochondrial morphology and dynamics, recent findings have noted a clear influence on organelle morphology by perturbations in protein import pathways. This review aims to provide an overview of the mitochondrial import machinery in context of the recent link between translocation components and organelle structure, in addition to conferring the questions and challenges that have surfaced due to these observations.
Collapse
Affiliation(s)
- Diana Stojanovski
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
87
|
Rissler M, Wiedemann N, Pfannschmidt S, Gabriel K, Guiard B, Pfanner N, Chacinska A. The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J Mol Biol 2005; 353:485-92. [PMID: 16181637 DOI: 10.1016/j.jmb.2005.08.051] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/05/2005] [Accepted: 08/23/2005] [Indexed: 11/13/2022]
Abstract
The proteins of the mitochondrial intermembrane space (IMS) are encoded by nuclear genes and synthesized on cytosolic ribosomes. While some IMS proteins are imported by the classical presequence pathway that involves the membrane potential deltapsi across the inner mitochondrial membrane and proteolytic processing to release the mature protein to the IMS, the import of numerous small IMS proteins is independent of a deltapsi and does not include proteolytic processing. The biogenesis of small IMS proteins requires an essential mitochondrial IMS import and assembly protein, termed Mia40. Here, we show that Erv1, a further essential IMS protein that has been reported to function as a sulfhydryl oxidase and participate in biogenesis of Fe/S proteins, is also required for the biogenesis of small IMS proteins. We generated a temperature-sensitive yeast mutant of Erv1 and observed a strong reduction of the levels of small IMS proteins upon shift of the cells to non-permissive temperature. Isolated erv1-2 mitochondria were selectively impaired in import of small IMS proteins while protein import pathways to other mitochondrial subcompartments were not affected. Small IMS precursor proteins remained associated with Mia40 in erv1-2 mitochondria and were not assembled into mature oligomeric complexes. Moreover, Erv1 associated with Mia40 in a reductant-sensitive manner. We conclude that two essential proteins, Mia40 and Erv1, cooperate in the assembly pathway of small proteins of the mitochondrial IMS.
Collapse
Affiliation(s)
- Michael Rissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 2005; 121:1059-69. [PMID: 15989955 DOI: 10.1016/j.cell.2005.04.011] [Citation(s) in RCA: 445] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/11/2005] [Accepted: 04/11/2005] [Indexed: 11/25/2022]
Abstract
We describe here a pathway for the import of proteins into the intermembrane space (IMS) of mitochondria. Substrates of this pathway are proteins with conserved cysteine motifs, which are critical for import. After passage through the TOM channel, these proteins are covalently trapped by Mia40 via disulfide bridges. Mia40 contains cysteine residues, which are oxidized by the sulfhydryl oxidase Erv1. Depletion of Erv1 or conditions reducing Mia40 prevent protein import. We propose that Erv1 and Mia40 function as a disulfide relay system that catalyzes the import of proteins into the IMS by an oxidative folding mechanism. The existence of a disulfide exchange system in the IMS is unexpected in view of the free exchange of metabolites between IMS and cytosol via porin channels. We suggest that this process reflects the evolutionary origin of the IMS from the periplasmic space of the prokaryotic ancestors of mitochondria.
Collapse
Affiliation(s)
- Nikola Mesecke
- Institute für Physiologische Chemie, Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|