51
|
Bruni F. Mitochondria: From Physiology to Pathology. Life (Basel) 2021; 11:991. [PMID: 34575140 PMCID: PMC8467726 DOI: 10.3390/life11090991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, the role of mitochondria has extended beyond those tasks for which these organelles are historically known [...].
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
52
|
Schaschkow A, Pang L, Vandenbempt V, Elvira B, Litwak SA, Vekeriotaite B, Maillard E, Vermeersch M, Paula FMM, Pinget M, Perez-Morga D, Gough DJ, Gurzov EN. STAT3 Regulates Mitochondrial Gene Expression in Pancreatic β-Cells and Its Deficiency Induces Glucose Intolerance in Obesity. Diabetes 2021; 70:2026-2041. [PMID: 34183374 DOI: 10.2337/db20-1222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/20/2021] [Indexed: 11/13/2022]
Abstract
Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-β1H cells, confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-β1H cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. Our study postulates STAT3 as a novel regulator of β-cell function in obesity.
Collapse
Affiliation(s)
- Anaïs Schaschkow
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lokman Pang
- Department of Medicine, The University of Melbourne, Parkville, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Elisa Maillard
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Flavia M M Paula
- ULB-Center for Diabetes Research, Université libre de Bruxelles, Brussels, Belgium
| | - Michel Pinget
- Université de Strasbourg, Strasbourg, France
- Centre Européen d'Etude du Diabéte, Strasbourg, France
| | - David Perez-Morga
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Science and Translational Medicine, Monash University, Melbourne, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
- Department of Medicine, The University of Melbourne, Parkville, Australia
| |
Collapse
|
53
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
54
|
Chacinska A, Rehling P. Molecular bases of mitochondrial disorders. FEBS Lett 2021; 595:973-975. [PMID: 33908035 DOI: 10.1002/1873-3468.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Poland.,IMol Polish Academy of Sciences, Warsaw, Poland
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
55
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
56
|
Jang YH, Ahn SR, Shim JY, Lim KI. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021; 13:810. [PMID: 34071708 PMCID: PMC8227772 DOI: 10.3390/pharmaceutics13060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
Collapse
Affiliation(s)
- Yoon-ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Sae Ryun Ahn
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| | - Ji-yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| |
Collapse
|
57
|
Mechanistic insights into mitochondrial tRNA Ala 3'-end metabolism deficiency. J Biol Chem 2021; 297:100816. [PMID: 34023389 PMCID: PMC8212662 DOI: 10.1016/j.jbc.2021.100816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.
Collapse
|
58
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
59
|
Salinas-Giegé T, Ubrig E, Drouard L. Cyanophora paradoxa mitochondrial tRNAs play a double game. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1105-1115. [PMID: 33666295 DOI: 10.1111/tpj.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Present-day mitochondria derive from a single endosymbiosis of an α-proteobacterium into a proto-eukaryotic cell. Since this monophyletic event, mitochondria have evolved considerably, and unique traits have been independently acquired in the different eukaryotic kingdoms. Mitochondrial genome expression and RNA metabolism have diverged greatly. Here, Cyanophora paradoxa, a freshwater alga considered as a living fossil among photosynthetic organisms, represents an exciting model for studying the evolution of mitochondrial gene expression. As expected, fully mature tRNAs are released from primary transcripts to function in mitochondrial translation. We also show that these tRNAs take part in an mRNA processing punctuation mechanism in a non-conventional manner, leading to mRNA-tRNA hybrids with a CCA triplet at their 3'-extremities. In this case, tRNAs are probably used as stabilizing structures impeding the degradation of mRNA by exonucleases. From our data we propose that the present-day tRNA-like elements (t-elements) found at the 3'-terminals of mitochondrial mRNAs in land plants originate from true tRNAs like those observed in the mitochondria of this basal photosynthetic glaucophyte.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
60
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
61
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
62
|
A549 cells contain enlarged mitochondria with independently functional clustered mtDNA nucleoids. PLoS One 2021; 16:e0249047. [PMID: 33765066 PMCID: PMC7993880 DOI: 10.1371/journal.pone.0249047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are commonly viewed as highly elongated organelles with regularly spaced mtDNA genomes organized as compact nucleoids that generate the local transcripts essential for production of mitochondrial ribosomes and key components of the respiratory chain. In contrast, A549 human lung carcinoma cells frequently contain apparently swollen mitochondria harboring multiple discrete mtDNA nucleoids and RNA processing granules in a contiguous matrix compartment. While this seemingly aberrant mitochondrial morphology is akin to “mito-bulbs” previously described in cells exposed to a variety of genomic stressors, it occurs in A549 cells under typical culture conditions. We provide a detailed confocal and super-resolution microscopic investigation of the incidence of such mito-bulbs in A549 cells. Most mito-bulbs appear stable, engage in active replication and transcription, and maintain respiration but feature an elevated oxidative environment. High concentrations of glucose and/or L-glutamine in growth media promote a greater incidence of mito-bulbs. Furthermore, we demonstrate that treatment of A549 cells with TGFβ suppresses the formation of mito-bulbs while treatment with a specific TGFβ pathway inhibitor substantially increases incidence. This striking heterogeneity of mitochondrial form and function may play an important role in a variety of diseases involving mitochondrial dysfunction.
Collapse
|
63
|
Cai L, Li H, Yu X, Wu L, Wei X, James TD, Huang C. Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochondrial Viscosity in Living Cells. ACS APPLIED BIO MATERIALS 2021; 4:2128-2134. [PMID: 35014341 DOI: 10.1021/acsabm.0c01446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viscosity is a pivotal factor for indicating the dysfunction of the mitochondria. To date, most of the fluorescent probes developed for mitochondrial viscosity have been designed using BODIPY, hemicyanine, or pyridine-based molecular rotors as part of the core structure. Our aim with this research was to extend the range of suitable fluorophores available for the construction of such fluorescent molecular rotors for evaluating the viscosity of mitocondria. Herein, we have developed a green fluorescent protein (GFP)-chromophore-based fluorescent probe (MIT-V) for the detection of mitochondrial viscosity in live cells. MIT-V exhibited a high sensitivity toward viscosity (from 7.9 cP to 438.4 cP). The "off-on" sensing mechanism of MIT-V was ascribed to the restricted rotation of single bonds and excited-state C═C double bonds of MIT-V. Cell studies indicated that MIT-V targets the mitochondria and that it was able to monitor real-time changes in the viscosity of live HeLa cell mitochondria. Therefore, we propose that MIT-V can be used as an effective chemosensor for the real-time imaging of mitochondrial viscosity in live cells. Our results clearly demonstrate the utility of such GFP-chromophore-based derivatives for the development of viscosity-sensitive systems.
Collapse
Affiliation(s)
- Lei Cai
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Huan Li
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiang Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaoqin Wei
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
64
|
Kazuhito T, Wei FY. Posttranscriptional modifications in mitochondrial tRNA and its implication in mitochondrial translation and disease. J Biochem 2021; 168:435-444. [PMID: 32818253 DOI: 10.1093/jb/mvaa098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
A fundamental aspect of mitochondria is that they possess DNA and protein translation machinery. Mitochondrial DNA encodes 22 tRNAs that translate mitochondrial mRNAs to 13 polypeptides of respiratory complexes. Various chemical modifications have been identified in mitochondrial tRNAs via complex enzymatic processes. A growing body of evidence has demonstrated that these modifications are essential for translation by regulating tRNA stability, structure and mRNA binding, and can be dynamically regulated by the metabolic environment. Importantly, the hypomodification of mitochondrial tRNA due to pathogenic mutations in mitochondrial tRNA genes or nuclear genes encoding modifying enzymes can result in life-threatening mitochondrial diseases in humans. Thus, the mitochondrial tRNA modification is a fundamental mechanism underlying the tight regulation of mitochondrial translation and is essential for life. In this review, we focus on recent findings on the physiological roles of 5-taurinomethyl modification (herein referred as taurine modification) in mitochondrial tRNAs. We summarize the findings in human patients and animal models with a deficiency of taurine modifications and provide pathogenic links to mitochondrial diseases. We anticipate that this review will help understand the complexity of mitochondrial biology and disease.
Collapse
Affiliation(s)
- Tomizawa Kazuhito
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan.,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Seriyo-machi 4-1, Aoba-ku, Sendai-shi, Miyagi 980-8575, Japan
| |
Collapse
|
65
|
Zaghlool A, Niazi A, Björklund ÅK, Westholm JO, Ameur A, Feuk L. Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Sci Rep 2021; 11:4076. [PMID: 33603054 PMCID: PMC7893067 DOI: 10.1038/s41598-021-83541-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Transcriptome analysis has mainly relied on analyzing RNA sequencing data from whole cells, overlooking the impact of subcellular RNA localization and its influence on our understanding of gene function, and interpretation of gene expression signatures in cells. Here, we separated cytosolic and nuclear RNA from human fetal and adult brain samples and performed a comprehensive analysis of cytosolic and nuclear transcriptomes. There are significant differences in RNA expression for protein-coding and lncRNA genes between cytosol and nucleus. We show that transcripts encoding the nuclear-encoded mitochondrial proteins are significantly enriched in the cytosol compared to the rest of protein-coding genes. Differential expression analysis between fetal and adult frontal cortex show that results obtained from the cytosolic RNA differ from results using nuclear RNA both at the level of transcript types and the number of differentially expressed genes. Our data provide a resource for the subcellular localization of thousands of RNA transcripts in the human brain and highlight differences in using the cytosolic or the nuclear transcriptomes for expression analysis.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden. .,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden.
| | - Adnan Niazi
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden.,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jakub Orzechowski Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121, Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden.,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden. .,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
66
|
Tobiasson V, Gahura O, Aibara S, Baradaran R, Zíková A, Amunts A. Interconnected assembly factors regulate the biogenesis of mitoribosomal large subunit. EMBO J 2021; 40:e106292. [PMID: 33576519 PMCID: PMC7957421 DOI: 10.15252/embj.2020106292] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt‐EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl‐carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.
Collapse
Affiliation(s)
- Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Rozbeh Baradaran
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
67
|
Mitochondria-related core genes and TF-miRNA-hub mrDEGs network in breast cancer. Biosci Rep 2021; 41:227576. [PMID: 33439992 PMCID: PMC7843495 DOI: 10.1042/bsr20203481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Mitochondria-nuclear cross-talk and mitochondrial retrograde regulation are involved in the genesis and development of breast cancer (BC). Therefore, mitochondria can be regarded as a promising target for BC therapeutic strategies. The present study aimed to construct regulatory network and seek the potential biomarkers of BC diagnosis and prognosis as well as the molecular therapeutic targets from the perspective of mitochondrial dysfunction. Methods: The microarray data of mitochondria-related encoding genes in BC cell lines were downloaded from GEO including GSE128610 and GSE72319. GSE128610 was treated as test set and validation sets consisted of GSE72319 and TCGA tissue samples, intending to identify mitochondria-related differentially expressed genes (mrDEGs). We performed enrichment analysis, PPI network, hub mrDEGs and overall survival analysis and constructed transcription factor (TF)-miRNA-hub mrDEGs network. Results: A total of 23 up-regulated and 71 down-regulated mrDEGs were identified and validated in BC cell lines and tissues. Enrichment analyses indicated that mrDEGs were associated with several cancer-related biological processes. Moreover, 9 hub mrDEGs were identified and validated in BC cell lines and tissues. Finally, 5 hub coregulated mrDEGs, 21 miRNAs and 117 TFs were used to construct TF-miRNA-hub mrDEGs network. MYC associated zinc finger protein (MAZ), heparin binding growth factor (HDGF) and Sp2 transcription factor (SP2) regulated 3 hub mrDEGs. Hsa-mir-21-5p, hsa-mir-1-3p, hsa-mir-218-5p, hsa-mir-26a-5p and hsa-mir-335-5p regulated 2 hub mrDEGs. Overall survival analysis suggested that the up-regulation of fibronectin 1 (FN1), as well as the down-regulation of discoidin domain receptor tyrosine kinase 2 (DDR2) correlated with unfavorable prognosis in BC. Conclusion: TF-miRNA-hub mrDEGs had instruction significance for the exploration of BC etiology. The hub mrDEGs such as FN1 and DDR2 were likely to regulate mitochondrial function and be novel biomarkers for BC diagnosis and prognosis as well as the therapeutic targets.
Collapse
|
68
|
Gao F, Reynolds MB, Passalacqua KD, Sexton JZ, Abuaita BH, O'Riordan MXD. The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional Regulation of TNF-α. Front Cell Infect Microbiol 2021; 10:593805. [PMID: 33520735 PMCID: PMC7840702 DOI: 10.3389/fcimb.2020.593805] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial network plays a critical role in the regulation of innate immune signaling and subsequent production of proinflammatory cytokines such as IFN-β and IL-1β. Dynamin-related protein 1 (DRP1) promotes mitochondrial fission and quality control to maintain cellular homeostasis during infection. However, mechanisms by which DRP1 and mitochondrial dynamics control innate immune signaling and the proinflammatory response are incompletely understood. Here we show that macrophage DRP1 is a positive regulator of TNF-α production during sterile inflammation or bacterial infection. Silencing macrophage DRP1 decreased mitochondrial fragmentation and TNF-α production upon stimulation with lipopolysaccharide (LPS) or methicillin-resistant Staphylococcus aureus (MRSA) infection. The defect in TNF-α induction could not be attributed to changes in gene expression. Instead, DRP1 was required for post-transcriptional control of TNF-α. In contrast, silencing DRP1 enhanced IL-6 and IL-1β production, indicating a distinct mechanism for DRP1-dependent TNF-α regulation. Our results highlight DRP1 as a key player in the macrophage pro-inflammatory response and point to its involvement in post-transcriptional control of TNF-α production.
Collapse
Affiliation(s)
- Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States.,U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, United States.,Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
69
|
Lavdovskaia E, Denks K, Nadler F, Steube E, Linden A, Urlaub H, Rodnina MV, Richter-Dennerlein R. Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes. Nucleic Acids Res 2021; 48:12929-12942. [PMID: 33264405 PMCID: PMC7736812 DOI: 10.1093/nar/gkaa1132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany
| | - Kärt Denks
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany.,Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Marina V Rodnina
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany.,Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
70
|
Smirnova A, Richert L, Smirnov A, Mély Y, Tarassov I. Suborganellar Localization of Mitochondrial Proteins and Transcripts in Human Cells. Methods Mol Biol 2021; 2277:157-173. [PMID: 34080151 DOI: 10.1007/978-1-0716-1270-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria have complex ultrastructure which includes continuous subcompartments, such as matrix, intermembrane space, and two membranes, as well as focal structures, such as nucleoids, RNA granules, and mitoribosomes. Comprehensive studies of the spatial distribution of proteins and RNAs inside the mitochondria are necessary to understand organellar gene expression processes and macromolecule targeting pathways. Here we give examples of distribution analysis of mitochondrial proteins and transcripts by conventional microscopy and the super-resolution technique 3D STORM. We provide detailed protocols and discuss limitations of immunolabeling of mitochondrial proteins and newly synthesized mitochondrial RNAs by bromouridine incorporation and single-molecule RNA FISH in hepatocarcinoma cells.
Collapse
Affiliation(s)
- Anna Smirnova
- UMR 7156 - Molecular Genetics, Genomics, Microbiology (GMGM), University of Strasbourg/CNRS, Strasbourg, France
| | - Ludovic Richert
- UMR 7021 - Laboratory of Biophotonics and Pharmacology (LBP), University of Strasbourg/CNRS, Illkirch, France
| | - Alexandre Smirnov
- UMR 7156 - Molecular Genetics, Genomics, Microbiology (GMGM), University of Strasbourg/CNRS, Strasbourg, France
| | - Yves Mély
- UMR 7021 - Laboratory of Biophotonics and Pharmacology (LBP), University of Strasbourg/CNRS, Illkirch, France
| | - Ivan Tarassov
- UMR 7156 - Molecular Genetics, Genomics, Microbiology (GMGM), University of Strasbourg/CNRS, Strasbourg, France.
| |
Collapse
|
71
|
Dumas L, Herviou P, Dassi E, Cammas A, Millevoi S. G-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends Biochem Sci 2020; 46:270-283. [PMID: 33303320 DOI: 10.1016/j.tibs.2020.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions.
Collapse
Affiliation(s)
- Leïla Dumas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Pauline Herviou
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, (TN), Italy
| | - Anne Cammas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France.
| |
Collapse
|
72
|
RNA Crosslinking to Analyze the Mitochondrial RNA-Binding Proteome. Methods Mol Biol 2020. [PMID: 33230772 DOI: 10.1007/978-1-0716-0834-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Even though the mammalian mitochondrial genome (mtDNA) is very small and only codes for 13 proteins, all being subunits of the oxidative phosphorylation system, it requires several hundred nuclear encoded proteins for its maintenance and expression. These include replication and transcription factors, approximately 80 mitoribosomal proteins and many proteins involved in the posttranscriptional modification, processing, and stability of mitochondrial RNAs. In recent years, many of these factors have been identified and functionally characterized, but the complete mtRNA-interacting proteome is not firmly established. Shotgun proteomics has been used successfully to define whole-cell polyadenylated RNA (poly(A)-RNA) interacting proteomes using the nucleotide analogue 4-thiouridine (4SU) combined with UV crosslinking, poly(A)-RNA isolation and mass spectrometry to identify all poly(A)-RNA bound proteins. Although in this case also a considerable number of mitochondrial proteins were identified, the method was not specifically directed at the mitochondrial poly(A)-RNA bound proteome. Here we describe a method for enrichment of the mitochondrial poly(A)-RNA bound proteome based on 4SU labeling and UV crosslinking. The method can be applied either for isolated mitochondria prior to UV crosslinking or for whole-cell crosslinking followed by mitochondrial isolation.
Collapse
|
73
|
Gao ST, Girma DD, Bionaz M, Ma L, Bu DP. Hepatic transcriptomic adaptation from prepartum to postpartum in dairy cows. J Dairy Sci 2020; 104:1053-1072. [PMID: 33189277 DOI: 10.3168/jds.2020-19101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022]
Abstract
The transition from pregnancy to lactation is the most challenging period for high-producing dairy cows. The liver plays a key role in biological adaptation during the peripartum. Prior works have demonstrated that hepatic glucose synthesis, cholesterol metabolism, lipogenesis, and inflammatory response are increased or activated during the peripartum in dairy cows; however, those works were limited by a low number of animals used or by the use of microarray technology, or both. To overcome such limitations, an RNA sequencing analysis was performed on liver biopsies from 20 Holstein cows at 7 ± 5d before (Pre-P) and 16 ± 2d after calving (Post-P). We found 1,475 upregulated and 1,199 downregulated differently expressed genes (DEG) with a false discovery rate adjusted P-value < 0.01 between Pre-P and Post-P. Bioinformatic analysis revealed an activation of the metabolism, especially lipid, glucose, and amino acid metabolism, with increased importance of the mitochondria and a key role of several signaling pathways, chiefly peroxisome proliferators-activated receptor (PPAR) and adipocytokines signaling. Fatty acid oxidation and gluconeogenesis, with a likely increase in amino acid utilization to produce glucose, were among the most important functions revealed by the transcriptomic adaptation to lactation in the liver. Although gluconeogenesis was induced, data indicated decrease in expression of glucose transporters. The analysis also revealed high activation of cell proliferation but inhibition of xenobiotic metabolism, likely due to the liver response to inflammatory-like conditions. Co-expression network analysis disclosed a tight connection and coordination among genes driving biological processes associated with protein synthesis, energy and lipid metabolism, and cell proliferation. Our data confirmed the importance of metabolic adaptation to lipid and glucose metabolism in the liver of early Post-P cows, with a pivotal role of PPAR and adipocytokines.
Collapse
Affiliation(s)
- S T Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - D D Girma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - L Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
74
|
Summer S, Smirnova A, Gabriele A, Toth U, Fasemore AM, Förstner KU, Kuhn L, Chicher J, Hammann P, Mitulović G, Entelis N, Tarassov I, Rossmanith W, Smirnov A. YBEY is an essential biogenesis factor for mitochondrial ribosomes. Nucleic Acids Res 2020; 48:9762-9786. [PMID: 32182356 PMCID: PMC7515705 DOI: 10.1093/nar/gkaa148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3′-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts). Here we show that the deletion of human YBEY results in a severe respiratory deficiency and morphologically abnormal mitochondria as an apparent consequence of impaired mitochondrial translation. Reduced stability of 12S rRNA and the deficiency of several proteins of the small ribosomal subunit in YBEY knockout cells pointed towards a defect in mitochondrial ribosome biogenesis. The specific interaction of mitoribosomal protein uS11m with YBEY suggests that the latter helps to properly incorporate uS11m into the nascent small subunit in its late assembly stage. This scenario shows similarities with final stages of cytosolic ribosome biogenesis, and may represent a late checkpoint before the mitoribosome engages in translation.
Collapse
Affiliation(s)
- Sabrina Summer
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Smirnova
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Alessandro Gabriele
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany.,TH Köln - University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne D-50678, Germany.,ZB MED - Information Centre for Life Sciences, Cologne D-50931, Germany
| | - Lauriane Kuhn
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Johana Chicher
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Philippe Hammann
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Goran Mitulović
- Proteomics Core Facility, Clinical Department for Laboratory Medicine, Medical University of Vienna, Vienna A-1090, Austria
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexandre Smirnov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| |
Collapse
|
75
|
Bickler SW, Prieto JM, Cauvi DM, De Cos V, Nasamran C, Ameh E, Amin S, Nicholson S, Din H, Mocumbi AO, Noormahomed EV, Tellez-Isaias G, Fisch KM, De Maio A. Differential expression of nuclear genes encoding mitochondrial proteins from urban and rural populations in Morocco. Cell Stress Chaperones 2020; 25:847-856. [PMID: 32319023 PMCID: PMC7591688 DOI: 10.1007/s12192-020-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural populations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages edgeR and limma were used to identify genes with different expression. The experimental design was modeled upon location and sex. Nuclear genes encoding mitochondrial proteins were identified from the MitoCarta2.0 database. Of the 1158 genes listed in the MitoCarta2.0 database, 847 genes (73%) were available for analysis in the Moroccan dataset. The urban-rural comparison with the greatest environmental differences showed that 76.5% of the MitoCarta2.0 genes were differentially expressed, with 97% of the genes having an increased expression in the urban area. Enrichment analysis revealed 367 significantly enriched pathways (adjusted p value < 0.05), with oxidative phosphorylation, insulin secretion and glucose regulations (adj.p values = 6.93E-16) being the top three. Four significantly perturbed KEGG disease pathways were associated with urbanization-three degenerative neurological diseases (Huntington's, Alzheimer's, and Parkinson's diseases) and herpes simplex infection (false discover rate corrected p value (PGFdr) < 0.2). Mitochondrial RNA metabolic processing and translational elongation were the biological processes that had the greatest enrichment (enrichment ratios 14.0 and 14.8, respectively, FDR < 0.5). Our study links urbanization in Morocco with changes in the expression of the nuclear genes encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Stephen W. Bickler
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - James M. Prieto
- Department of Surgery, Naval Medical Center San Diego, San Diego, CA USA
| | - David M. Cauvi
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - Victor De Cos
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Emmanuel Ameh
- Department of Pediatric Surgery, National Hospital, Abuja, Nigeria
| | - Said Amin
- Department of Histopathology, National Hospital, Abuja, Nigeria
| | - Sneha Nicholson
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Hena Din
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Ana Olga Mocumbi
- Instituto Nacional de Saúde, Maputo, Mozambique
- Department of Microbiology, Faculty of Medicine, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | | | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
76
|
Abshire ET, Hughes KL, Diao R, Pearce S, Gopalakrishna S, Trievel RC, Rorbach J, Freddolino PL, Goldstrohm AC. Differential processing and localization of human Nocturnin controls metabolism of mRNA and nicotinamide adenine dinucleotide cofactors. J Biol Chem 2020; 295:15112-15133. [PMID: 32839274 PMCID: PMC7606674 DOI: 10.1074/jbc.ra120.012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/06/2020] [Indexed: 01/02/2023] Open
Abstract
Nocturnin (NOCT) is a eukaryotic enzyme that belongs to a superfamily of exoribonucleases, endonucleases, and phosphatases. In this study, we analyze the expression, processing, localization, and cellular functions of human NOCT. We find that NOCT protein is differentially expressed and processed in a cell and tissue type-specific manner to control its localization to the cytoplasm or mitochondrial exterior or interior. The N terminus of NOCT is necessary and sufficient to confer import and processing in the mitochondria. We measured the impact of cytoplasmic NOCT on the transcriptome and observed that it affects mRNA levels of hundreds of genes that are significantly enriched in osteoblast, neuronal, and mitochondrial functions. Recent biochemical data indicate that NOCT dephosphorylates NADP(H) metabolites, and thus we measured the effect of NOCT on these cofactors in cells. We find that NOCT increases NAD(H) and decreases NADP(H) levels in a manner dependent on its intracellular localization. Collectively, our data indicate that NOCT can regulate levels of both mRNAs and NADP(H) cofactors in a manner specified by its location in cells.
Collapse
Affiliation(s)
- Elizabeth T Abshire
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kelsey L Hughes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rucheng Diao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sarah Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institute, Solna, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institute Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institute, Solna, Sweden
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institute, Solna, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institute Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
77
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
78
|
Xu YX, Stanclift C, Nagai TH, Yu H, Vellarikkal SK, Deik A, Bullock K, Schenone M, Cowan C, Clish CB, Carr S, Kathiresan S. Interactomics Analyses of Wild-Type and Mutant A1CF Reveal Diverged Functions in Regulating Cellular Lipid Metabolism. J Proteome Res 2020; 19:3968-3980. [PMID: 32786677 DOI: 10.1021/acs.jproteome.0c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Population genetic studies highlight a missense variant (G398S) of A1CF that is strongly associated with higher levels of blood triglycerides (TGs) and total cholesterol (TC). Functional analyses suggest that the mutation accelerates the secretion of very low-density lipoprotein (VLDL) from the liver by an unknown mechanism. Here, we used multiomics approaches to interrogate the functional difference between the WT and mutant A1CF. Using metabolomics analyses, we captured the cellular lipid metabolite changes induced by transient expression of the proteins, confirming that the mutant A1CF is able to relieve the TG accumulation induced by WT A1CF. Using a proteomics approach, we obtained the interactomic data of WT and mutant A1CF. Networking analyses show that WT A1CF interacts with three functional protein groups, RNA/mRNA processing, cytosolic translation, and, surprisingly, mitochondrial translation. The mutation diminishes these interactions, especially with the group of mitochondrial translation. Differential analyses show that the WT A1CF-interacting proteins most significantly different from the mutant are those for mitochondrial translation, whereas the most significant interacting proteins with the mutant are those for cytoskeleton and vesicle-mediated transport. RNA-seq analyses validate that the mutant, but not the WT, A1CF increases the expression of the genes responsible for cellular transport processes. On the contrary, WT A1CF affected the expression of mitochondrial matrix proteins and increased cell oxygen consumption. Thus, our studies confirm the previous hypothesis that A1CF plays broader roles in regulating gene expression. The interactions of the mutant A1CF with the vesicle-mediated transport machinery provide mechanistic insight in understanding the increased VLDL secretion in the A1CF mutation carriers.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Caroline Stanclift
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Taylor Hanta Nagai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Haojie Yu
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | | | - Amy Deik
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Kevin Bullock
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Chad Cowan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Clary B Clish
- The Metabolomics Program, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Steven Carr
- The Proteomics Platform, Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
79
|
Jolly CE, Douglas O, Kamalian L, Jenkins RE, Beckett AJ, Penman SL, Williams DP, Monshouwer M, Simic D, Snoeys J, Park BK, Chadwick AE. The utility of a differentiated preclinical liver model, HepaRG cells, in investigating delayed toxicity via inhibition of mitochondrial-replication induced by fialuridine. Toxicol Appl Pharmacol 2020; 403:115163. [PMID: 32730777 PMCID: PMC7456776 DOI: 10.1016/j.taap.2020.115163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/29/2023]
Abstract
During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 μM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.
Collapse
Affiliation(s)
- Carol E Jolly
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Oisin Douglas
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Laleh Kamalian
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Alison J Beckett
- Cellular and Molecular Physiology, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Sophie L Penman
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Dominic P Williams
- Innovative Medicines and Early Development, Drug Safety and Metabolism, Translational Safety, AstraZeneca, Cambridge, UK
| | - Mario Monshouwer
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium
| | - Damir Simic
- Mechanistic and Investigative Toxicology, Janssen Research and Development, Spring House, PA, USA
| | - Jan Snoeys
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium
| | - B Kevin Park
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, The Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| |
Collapse
|
80
|
Durairajanayagam D, Singh D, Agarwal A, Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia 2020; 53:e13666. [PMID: 32510691 DOI: 10.1111/and.13666] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria have multiple functions, including synthesis of adenine triphosphate, production of reactive oxygen species, calcium signalling, thermogenesis and apoptosis. Mitochondria have a significant contribution in regulating the various physiological aspects of reproductive function, from spermatogenesis up to fertilisation. Mitochondrial functionality and intact mitochondrial membrane potential are a pre-requisite for sperm motility, hyperactivation, capacitation, acrosin activity, acrosome reaction and DNA integrity. Optimal mitochondrial activity is therefore crucial for human sperm function and semen quality. However, the precise role of mitochondria in spermatozoa remains to be fully explored. Defects in sperm mitochondrial function severely impair the maintenance of energy production required for sperm motility and may be an underlying cause of asthenozoospermia. Sperm mtDNA is susceptible to oxidative damage and mutations that could compromise sperm function leading to infertility. Males with abnormal semen parameters have increased mtDNA copy number and reduced mtDNA integrity. This review discusses the role of mitochondria in sperm function, along with the causes and impact of its dysfunction on male fertility. Greater understanding of sperm mitochondrial function and its correlation with sperm quality could provide further insights into their contribution in the assessment of the infertile male.
Collapse
Affiliation(s)
- Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Malaysia
| | - Dipty Singh
- Department of Neuroendocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Belville, South Africa
| |
Collapse
|
81
|
Bruni F, Proctor-Kent Y, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin. FEBS J 2020; 288:437-451. [PMID: 32329962 PMCID: PMC7891357 DOI: 10.1111/febs.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt‐mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA‐binding complex has been implicated in maintaining mt‐mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt‐mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt‐mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt‐mRNA onto the mitoribosome.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Italy
| | - Yasmin Proctor-Kent
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, UK
| | | |
Collapse
|
82
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
83
|
Chen H, Shi Z, Guo J, Chang KJ, Chen Q, Yao CH, Haigis MC, Shi Y. The human mitochondrial 12S rRNA m 4C methyltransferase METTL15 is required for mitochondrial function. J Biol Chem 2020; 295:8505-8513. [PMID: 32371392 DOI: 10.1074/jbc.ra119.012127] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/30/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial DNA gene expression is coordinately regulated both pre- and post-transcriptionally, and its perturbation can lead to human pathologies. Mitochondrial rRNAs (mt-rRNAs) undergo a series of nucleotide modifications after release from polycistronic mitochondrial RNA precursors, which is essential for mitochondrial ribosomal biogenesis. Cytosine N 4-methylation (m4C) at position 839 (m4C839) of the 12S small subunit mt-rRNA was identified decades ago; however, its biogenesis and function have not been elucidated in detail. Here, using several approaches, including immunofluorescence, RNA immunoprecipitation and methylation assays, and bisulfite mapping, we demonstrate that human methyltransferase-like 15 (METTL15), encoded by a nuclear gene, is responsible for 12S mt-rRNA methylation at m4C839 both in vivo and in vitro We tracked the evolutionary history of RNA m4C methyltransferases and identified a difference in substrate preference between METTL15 and its bacterial ortholog rsmH. Additionally, unlike the very modest impact of a loss of m4C methylation in bacterial small subunit rRNA on the ribosome, we found that METTL15 depletion results in impaired translation of mitochondrial protein-coding mRNAs and decreases mitochondrial respiration capacity. Our findings reveal that human METTL15 is required for mitochondrial function, delineate the evolution of methyltransferase substrate specificities and modification patterns in rRNA, and highlight a differential impact of m4C methylation on prokaryotic ribosomes and eukaryotic mitochondrial ribosomes.
Collapse
Affiliation(s)
- Hao Chen
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhennan Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaojiao Guo
- College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Kao-Jung Chang
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qianqian Chen
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
84
|
Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int 2020; 135:104694. [DOI: 10.1016/j.neuint.2020.104694] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
85
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
86
|
Wahwah N, Kras KA, Roust LR, Katsanos CS. Subpopulation-specific differences in skeletal muscle mitochondria in humans with obesity: insights from studies employing acute nutritional and exercise stimuli. Am J Physiol Endocrinol Metab 2020; 318:E538-E553. [PMID: 31990577 DOI: 10.1152/ajpendo.00463.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria from skeletal muscle of humans with obesity often display alterations with respect to their morphology, proteome, biogenesis, and function. These changes in muscle mitochondria are considered to contribute to metabolic abnormalities observed in humans with obesity. Most of the evidence describing alterations in muscle mitochondria in humans with obesity, however, lacks reference to a specific subcellular location. This is despite data over the years showing differences in the morphology and function of subsarcolemmal (found near the plasma membrane) and intermyofibrillar (nested between the myofibrils) mitochondria in skeletal muscle. Recent studies reveal that impairments in mitochondrial function in obesity with respect to the subcellular location of the mitochondria in muscle are more readily evident following exposure of the skeletal muscle to physiological stimuli. In this review, we highlight the need to understand skeletal muscle mitochondria metabolism in obesity in a subpopulation-specific manner and in the presence of physiological stimuli that modify mitochondrial function in vivo. Experimental approaches employed under these conditions will allow for more precise characterization of impairments in skeletal muscle mitochondria and their implications in inducing metabolic dysfunction in human obesity.
Collapse
Affiliation(s)
- Nisreen Wahwah
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| | - Katon A Kras
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| | - Lori R Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Christos S Katsanos
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| |
Collapse
|
87
|
Gopanenko AV, Malygin AA, Kossinova OA, Tupikin AE, Kabilov MR, Karpova GG. Degenerate consensus sequences in the 3'-untranslated regions of cellular mRNAs as specific motifs potentially involved in the YB-1-mediated packaging of these mRNAs. Biochimie 2020; 170:152-162. [PMID: 31935443 DOI: 10.1016/j.biochi.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The multifunctional protein YB-1 has previously been shown to be the only protein of the cytoplasmic extract of HEK293 cells, which is able to specifically interact with imperfect RNA hairpins containing motifs that are often found in exosomal (e) RNAs. In addition, it has been revealed that similar hairpins formed by degenerate consensus sequences corresponding to three eRNA-specific motifs are responsible for the cooperative binding of YB-1 to RNA in vitro. Here, using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method applied to HEK293 cells producing FLAG-labeled YB-1, we identified mRNAs cross-linked to YB-1 in vivo and then carried out a search for the aforementioned sequences in the regions of the YB-1 cross-linking sites. It turned out that many of the mRNAs found cross-linked to YB-1 encode proteins associated with various regulatory processes, including responses to stress. More than half of all cross-linked mRNAs contained degenerate consensus sequences, which were preferably located in 3'-untranslated regions (UTRs), where most of the YB-1 cross-linking sites appeared, although not close to these sequences. Furthermore, YB-1 was mainly cross-linked to those mRNAs with degenerate consensus sequences, which could be classified as packaged because their translation levels were low compared to cellular levels. This suggests that the cooperative binding of YB-1 to mRNAs through the above sequences probably triggers the well-known multimerization of YB-l, leading to the packaging of these mRNAs. Thus, our findings indicate a previously unknown link between the degenerate consensus sequences present in the 3'-UTRs of many cytoplasmic mRNAs and YB-1-mediated translational silencing.
Collapse
Affiliation(s)
- Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia; Department of Molecular Biology, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga A Kossinova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva 8, Novosibirsk, 630090, Russia; Department of Molecular Biology, Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
88
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
89
|
Gopalakrishna S, Pearce SF, Dinan AM, Schober FA, Cipullo M, Spåhr H, Khawaja A, Maffezzini C, Freyer C, Wredenberg A, Atanassov I, Firth AE, Rorbach J. C6orf203 is an RNA-binding protein involved in mitochondrial protein synthesis. Nucleic Acids Res 2019; 47:9386-9399. [PMID: 31396629 PMCID: PMC6755124 DOI: 10.1093/nar/gkz684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.
Collapse
Affiliation(s)
- Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Adam M Dinan
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Florian A Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Henrik Spåhr
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
90
|
Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, Szczesny RJ. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res 2019; 47:7502-7517. [PMID: 31226201 PMCID: PMC6698753 DOI: 10.1093/nar/gkz542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Maintenance of mitochondrial gene expression is crucial for cellular homeostasis. Stress conditions may lead to a temporary reduction of mitochondrial genome copy number, raising the risk of insufficient expression of mitochondrial encoded genes. Little is known how compensatory mechanisms operate to maintain proper mitochondrial transcripts levels upon disturbed transcription and which proteins are involved in them. Here we performed a quantitative proteomic screen to search for proteins that sustain expression of mtDNA under stress conditions. Analysis of stress-induced changes of the human mitochondrial proteome led to the identification of several proteins with poorly defined functions among which we focused on C6orf203, which we named MTRES1 (Mitochondrial Transcription Rescue Factor 1). We found that the level of MTRES1 is elevated in cells under stress and we show that this upregulation of MTRES1 prevents mitochondrial transcript loss under perturbed mitochondrial gene expression. This protective effect depends on the RNA binding activity of MTRES1. Functional analysis revealed that MTRES1 associates with mitochondrial RNA polymerase POLRMT and acts by increasing mitochondrial transcription, without changing the stability of mitochondrial RNAs. We propose that MTRES1 is an example of a protein that protects the cell from mitochondrial RNA loss during stress.
Collapse
Affiliation(s)
- Anna V Kotrys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Sylwia D Czarnomska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
91
|
Shinoda S, Kitagawa S, Nakagawa S, Wei FY, Tomizawa K, Araki K, Araki M, Suzuki T, Suzuki T. Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Res 2019; 47:8734-8745. [PMID: 31287866 PMCID: PMC6895283 DOI: 10.1093/nar/gkz575] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional modifications in mitochondrial tRNAs (mt-tRNAs) play critical roles in mitochondrial protein synthesis, which produces respiratory chain complexes. In this study, we took advantage of mass spectrometric analysis to map 5-methylcytidine (m5C) at positions 48–50 in eight mouse and six human mt-tRNAs. We also confirmed the absence of m5C in mt-tRNAs isolated from Nsun2 knockout (KO) mice, as well as from NSUN2 KO human culture cells. In addition, we successfully reconstituted m5C at positions 48–50 of mt-tRNA in vitro with NSUN2 protein in the presence of S-adenosylmethionine. Although NSUN2 is predominantly localized to the nucleus and introduces m5C into cytoplasmic tRNAs and mRNAs, structured illumination microscopy clearly revealed NSUN2 foci inside mitochondria. These observations provide novel insights into the role of NSUN2 in the physiology and pathology of mitochondrial functions.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Kitagawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
92
|
Wallis CP, Scott LH, Filipovska A, Rackham O. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190185. [PMID: 31787043 DOI: 10.1098/rstb.2019.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many conventional, modern genome engineering tools cannot be used to study mitochondrial genetics due to the unusual structure and physiology of the mitochondrial genome. Here, we review a number of newly developed, synthetic biology-based approaches for altering levels of mutant mammalian mitochondrial DNA and mitochondrial RNAs, including transcription activator-like effector nucleases, zinc finger nucleases and engineered RNA-binding proteins. These approaches allow researchers to manipulate and visualize mitochondrial processes and may provide future therapeutics. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Christopher P Wallis
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
93
|
van Esveld SL, Cansız-Arda Ş, Hensen F, van der Lee R, Huynen MA, Spelbrink JN. A Combined Mass Spectrometry and Data Integration Approach to Predict the Mitochondrial Poly(A) RNA Interacting Proteome. Front Cell Dev Biol 2019; 7:283. [PMID: 31803741 PMCID: PMC6873792 DOI: 10.3389/fcell.2019.00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 01/03/2023] Open
Abstract
In order to synthesize the 13 oxidative phosphorylation proteins encoded by mammalian mtDNA, a large assortment of nuclear encoded proteins is required. These include mitoribosomal proteins and various RNA processing, modification and degradation enzymes. RNA crosslinking has been successfully applied to identify whole-cell poly(A) RNA-binding proteomes, but this method has not been adapted to identify mitochondrial poly(A) RNA-binding proteomes. Here we developed and compared two related methods that specifically enrich for mitochondrial poly(A) RNA-binding proteins and analyzed bound proteins using mass spectrometry. To obtain a catalog of the mitochondrial poly(A) RNA interacting proteome, we used Bayesian data integration to combine these two mitochondrial-enriched datasets as well as published whole-cell datasets of RNA-binding proteins with various online resources, such as mitochondrial localization from MitoCarta 2.0 and co-expression analyses. Our integrated analyses ranked the complete human proteome for the likelihood of mtRNA interaction. We show that at a specific, inclusive cut-off of the corrected false discovery rate (cFDR) of 69%, we improve the number of predicted proteins from 185 to 211 with our mass spectrometry data as input for the prediction instead of the published whole-cell datasets. The chosen cut-off determines the cFDR: the less proteins included, the lower the cFDR will be. For the top 100 proteins, inclusion of our data instead of the published whole-cell datasets improve the cFDR from 54% to 31%. We show that the mass spectrometry method most specific for mitochondrial RNA-binding proteins involves ex vivo 4-thiouridine labeling followed by mitochondrial isolation with subsequent in organello UV-crosslinking.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Radboud Center for Mitochondrial Medicine, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Şirin Cansız-Arda
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Fenna Hensen
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Robin van der Lee
- Radboud Center for Mitochondrial Medicine, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Martijn A. Huynen
- Radboud Center for Mitochondrial Medicine, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Johannes N. Spelbrink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
94
|
Hensen F, Potter A, van Esveld SL, Tarrés-Solé A, Chakraborty A, Solà M, Spelbrink JN. Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB. Nucleic Acids Res 2019; 47:3680-3698. [PMID: 30715486 PMCID: PMC6468249 DOI: 10.1093/nar/gkz047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 01/13/2023] Open
Abstract
Newly synthesized mitochondrial RNA is concentrated in structures juxtaposed to nucleoids, called RNA granules, that have been implicated in mitochondrial RNA processing and ribosome biogenesis. Here we show that two classical mtDNA replication factors, the mtDNA helicase Twinkle and single-stranded DNA-binding protein mtSSB, contribute to RNA metabolism in mitochondria and to RNA granule biology. Twinkle colocalizes with both mitochondrial RNA granules and nucleoids, and it can serve as bait to greatly enrich established RNA granule proteins, such as G-rich sequence factor 1, GRSF1. Likewise, mtSSB also is not restricted to the nucleoids, and repression of either mtSSB or Twinkle alters mtRNA metabolism. Short-term Twinkle depletion greatly diminishes RNA granules but does not inhibit RNA synthesis or processing. Either mtSSB or GRSF1 depletion results in RNA processing defects, accumulation of mtRNA breakdown products as well as increased levels of dsRNA and RNA:DNA hybrids. In particular, the processing and degradation defects become more pronounced with both proteins depleted. These findings suggest that Twinkle is essential for RNA organization in granules, and that mtSSB is involved in the recently proposed GRSF1-mtRNA degradosome pathway, a route suggested to be particularly aimed at degradation of G-quadruplex prone long non-coding mtRNAs.
Collapse
Affiliation(s)
- Fenna Hensen
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Alisa Potter
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Selma L van Esveld
- Radboud Center for Mitochondrial Medicine & Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Aleix Tarrés-Solé
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Arka Chakraborty
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, "Maria de Maeztu" Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Johannes N Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
95
|
Saoura M, Powell CA, Kopajtich R, Alahmad A, AL‐Balool HH, Albash B, Alfadhel M, Alston CL, Bertini E, Bonnen PE, Bratkovic D, Carrozzo R, Donati MA, Di Nottia M, Ghezzi D, Goldstein A, Haan E, Horvath R, Hughes J, Invernizzi F, Lamantea E, Lucas B, Pinnock K, Pujantell M, Rahman S, Rebelo‐Guiomar P, Santra S, Verrigni D, McFarland R, Prokisch H, Taylor RW, Levinger L, Minczuk M. Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing. Hum Mutat 2019; 40:1731-1748. [PMID: 31045291 PMCID: PMC6764886 DOI: 10.1002/humu.23777] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.
Collapse
Affiliation(s)
| | | | - Robert Kopajtich
- Genetics of Mitochondrial Disorders, Institute of Human GeneticsTechnische Universität MünchenMunichGermany
- Genetics of Mitochondrial Disorders, Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Ahmad Alahmad
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- Kuwait Medical Genetics CenterKuwait CityKuwait
| | | | | | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research CentreKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesu' Children's Research Hospital, IRCCSRomeItaly
| | - Penelope E. Bonnen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Drago Bratkovic
- Metabolic ClinicWomen's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesu' Children's Research Hospital, IRCCSRomeItaly
| | | | - Michela Di Nottia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesu' Children's Research Hospital, IRCCSRomeItaly
| | - Daniele Ghezzi
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Amy Goldstein
- Mitochondrial Medicine Frontier ProgramChildren's Hospital of PhiladelphiaPhiladelphiaUSA
| | - Eric Haan
- Metabolic ClinicWomen's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Joanne Hughes
- National Centre for Inherited Metabolic DisordersTemple Street Children's University HospitalDublinIreland
| | - Federica Invernizzi
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Eleonora Lamantea
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Benjamin Lucas
- York CollegeThe City University of New YorkJamaicaNew York
| | | | | | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Pedro Rebelo‐Guiomar
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Graduate Program in Areas of Basic and Applied BiologyUniversity of PortoPortoPortugal
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Daniela Verrigni
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesu' Children's Research Hospital, IRCCSRomeItaly
| | - Robert McFarland
- Genetics of Mitochondrial Disorders, Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Holger Prokisch
- Genetics of Mitochondrial Disorders, Institute of Human GeneticsTechnische Universität MünchenMunichGermany
- Genetics of Mitochondrial Disorders, Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Louis Levinger
- York CollegeThe City University of New YorkJamaicaNew York
| | - Michal Minczuk
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
96
|
Wagner A, Hofmeister O, Rolland SG, Maiser A, Aasumets K, Schmitt S, Schorpp K, Feuchtinger A, Hadian K, Schneider S, Zischka H, Leonhardt H, Conradt B, Gerhold JM, Wolf A. Mitochondrial Alkbh1 localizes to mtRNA granules and its knockdown induces the mitochondrial UPR in humans and C. elegans. J Cell Sci 2019; 132:jcs.223891. [PMID: 31434717 DOI: 10.1242/jcs.223891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
The Fe(II) and 2-oxoglutarate-dependent oxygenase Alkb homologue 1 (Alkbh1) has been shown to act on a wide range of substrates, like DNA, tRNA and histones. Thereby different enzymatic activities have been identified including, among others, demethylation of N 3-methylcytosine (m3C) in RNA- and single-stranded DNA oligonucleotides, demethylation of N 1-methyladenosine (m1A) in tRNA or formation of 5-formyl cytosine (f5C) in tRNA. In accordance with the different substrates, Alkbh1 has also been proposed to reside in distinct cellular compartments in human and mouse cells, including the nucleus, cytoplasm and mitochondria. Here, we describe further evidence for a role of human Alkbh1 in regulation of mitochondrial protein biogenesis, including visualizing localization of Alkbh1 into mitochondrial RNA granules with super-resolution 3D SIM microscopy. Electron microscopy and high-resolution respirometry analyses revealed an impact of Alkbh1 level on mitochondrial respiration, but not on mitochondrial structure. Downregulation of Alkbh1 impacts cell growth in HeLa cells and delays development in Caenorhabditis elegans, where the mitochondrial role of Alkbh1 seems to be conserved. Alkbh1 knockdown, but not Alkbh7 knockdown, triggers the mitochondrial unfolded protein response (UPRmt) in C. elegans.
Collapse
Affiliation(s)
- Anita Wagner
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Olga Hofmeister
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephane G Rolland
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Koit Aasumets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, 80802 Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, 80802 Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Joachim M Gerhold
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
97
|
Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed Pharmacother 2019; 117:109182. [DOI: 10.1016/j.biopha.2019.109182] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
|
98
|
Baechler SA, Dalla Rosa I, Spinazzola A, Pommier Y. Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle 2019; 18:2377-2384. [PMID: 31345095 DOI: 10.1080/15384101.2019.1646563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria contain their own genome (mtDNA), encoding 13 proteins of the enzyme complexes of the oxidative phosphorylation. Synthesis of these 13 mitochondrial proteins requires a specific translation machinery, the mitoribosomes whose RNA components are encoded by the mtDNA, whereas more than 80 proteins are encoded by nuclear genes. It has been well established that mitochondrial topoisomerase I (TOP1MT) is important for mtDNA integrity and mitochondrial transcription as it prevents excessive mtDNA negative supercoiling and releases topological stress during mtDNA replication and transcription. We recently showed that TOP1MT also supports mitochondrial protein synthesis, and thus is critical for promoting tumor growth. Impaired mitochondrial protein synthesis leads to activation of the mitonuclear stress response through the transcription factor ATF4, and induces cytoprotective genes in order to prevent mitochondrial and cellular dysfunction. In this perspective, we highlight the novel role of TOP1MT in mitochondrial protein synthesis and as potential target for chemotherapy.
Collapse
Affiliation(s)
- Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
99
|
Chu Q, Ding Y, Cai W, Liu L, Zhang H, Song J. Marek's Disease Virus Infection Induced Mitochondria Changes in Chickens. Int J Mol Sci 2019; 20:ijms20133150. [PMID: 31252692 PMCID: PMC6651546 DOI: 10.3390/ijms20133150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are crucial cellular organelles in eukaryotes and participate in many cell processes including immune response, growth development, and tumorigenesis. Marek’s disease (MD), caused by an avian alpha-herpesvirus Marek’s disease virus (MDV), is characterized with lymphomas and immunosuppression. In this research, we hypothesize that mitochondria may play roles in response to MDV infection. To test it, mitochondrial DNA (mtDNA) abundance and gene expression in immune organs were examined in two well-defined and highly inbred lines of chickens, the MD-susceptible line 72 and the MD-resistant line 63. We found that mitochondrial DNA contents decreased significantly at the transformation phase in spleen of the MD-susceptible line 72 birds in contrast to the MD-resistant line 63. The mtDNA-genes and the nucleus-genes relevant to mtDNA maintenance and transcription, however, were significantly up-regulated. Interestingly, we found that POLG2 might play a potential role that led to the imbalance of mtDNA copy number and gene expression alteration. MDV infection induced imbalance of mitochondrial contents and gene expression, demonstrating the indispensability of mitochondria in virus-induced cell transformation and subsequent lymphoma formation, such as MD development in chicken. This is the first report on relationship between virus infection and mitochondria in chicken, which provides important insights into the understanding on pathogenesis and tumorigenesis due to viral infection.
Collapse
Affiliation(s)
- Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Wentao Cai
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Lei Liu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
100
|
Niazi AK, Delannoy E, Iqbal RK, Mileshina D, Val R, Gabryelska M, Wyszko E, Soubigou-Taconnat L, Szymanski M, Barciszewski J, Weber-Lotfi F, Gualberto JM, Dietrich A. Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells 2019; 8:E583. [PMID: 31200566 PMCID: PMC6627697 DOI: 10.3390/cells8060583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a "buffering" mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleus.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan.
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Rana Khalid Iqbal
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Romain Val
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Marta Gabryelska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Maciej Szymanski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, A. Mickiewicz University Poznan, Ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
- NanoBioMedical Centre of the Adam Mickiewicz University, Umultowska 85, 61614 Poznan, Poland.
| | - Frédérique Weber-Lotfi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - José Manuel Gualberto
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|