51
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
52
|
Katranidis A, Fitter J. Single-Molecule Techniques and Cell-Free Protein Synthesis: A Perfect Marriage. Anal Chem 2019; 91:2570-2576. [PMID: 30648382 DOI: 10.1021/acs.analchem.8b03855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule techniques are currently an essential tool to study conformational changes as well as the synthesis and folding of proteins. However, the preparation of suitable protein samples is often time-consuming and demanding. The rapid development of cell-free protein synthesis over the last few years opened new perspectives for fast and easy sample preparation, but this was not fully exploited until now. Here, we take a look at the advancements in sample preparation as well as in the development of technical approaches and analytical tools, which unavoidably lead to the combination of single-molecule techniques and cell-free protein synthesis. It is an ideal combination that can unlock the full potential of studying complex biological processes in the near future.
Collapse
Affiliation(s)
| | - Jörg Fitter
- Forschungszentrum Jülich , Institute of Complex Systems ICS-5, Jülich , Germany.,RWTH Aachen , I. Physikalisches Institut (IA) , Aachen , Germany
| |
Collapse
|
53
|
Aw R, Polizzi KM. Biosensor‐assisted engineering of a high‐yield
Pichia pastoris
cell‐free protein synthesis platform. Biotechnol Bioeng 2019; 116:656-666. [DOI: 10.1002/bit.26901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rochelle Aw
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| | - Karen M. Polizzi
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| |
Collapse
|
54
|
Liu WQ, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
55
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
56
|
Zhang Y, Huang Q, Deng Z, Xu Y, Liu T. Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Jiao Y, Liu Y, Luo D, Huck WTS, Yang D. Microfluidic-Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29308-29313. [PMID: 30102514 DOI: 10.1021/acsami.8b09324] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell-free protein synthesis (CFPS) is a robust platform for the simple, rapid, and cost-effective in vitro production of proteins, as well as an important tool for cell-free synthetic biology research. Here, a microfluidic clay microgel system is reported, which creates compartmentalized microenvironments for CFPS capable of high-yield and repeated protein synthesis, as well as an artificial cell-like structure. As an advantageous platform for CFPS, a modular manner to prepare clay microgels with rationally designed functions is demonstrated: (i) gene/clay microgels enhance protein expression, (ii) gene/clay/magnetic nanoparticle microgels enable a repeated protein production system, and (iii) gene/clay microgels in microfluidic droplets serve as a cell-like structure. Beyond CFPS, considering the compatibility of clay microgels with hydrophilic functional materials, our clay microgels will provide a more general platform for preparing a variety of functional materials such as encapsulating drugs and cells, enabling more biomedical applications.
Collapse
Affiliation(s)
- Yi Jiao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Dan Luo
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
- Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Dayong Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
58
|
Contreras-Llano LE, Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth Biol (Oxf) 2018; 3:ysy012. [PMID: 32995520 PMCID: PMC7445777 DOI: 10.1093/synbio/ysy012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.
Collapse
Affiliation(s)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
59
|
Fritz SE, Haque N, Hogg JR. Highly efficient in vitro translation of authentic affinity-purified messenger ribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2018; 24:982-989. [PMID: 29724884 PMCID: PMC6004058 DOI: 10.1261/rna.065730.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Cell-free systems are widely used to study mechanisms and regulation of translation, but the use of in vitro transcribed (IVT) mRNAs as translation substrates limits their efficiency and utility. Here, we present an approach for in vitro translation of messenger ribonucleoprotein (mRNP) complexes affinity purified in association with tagged mRNAs expressed in mammalian cells. We show that in vitro translation of purified mRNPs is much more efficient than that achieved using standard IVT mRNA substrates and is compatible with physiological ionic conditions. The high efficiency of affinity-purified mRNP in vitro translation is attributable to both copurified protein components and proper mRNA processing and modification. Further, we use translation inhibitors to show that translation of purified mRNPs consists of separable phases of run-off elongation by copurified ribosomes and de novo initiation by ribosomes present in the translation extracts. We expect that this in vitro system will enhance mechanistic studies of eukaryotic translation and translation-associated processes by allowing the use of endogenous mRNPs as translation substrates under physiological buffer conditions.
Collapse
Affiliation(s)
- Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
60
|
Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder I, Thiel G. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 2018; 150:637-646. [PMID: 29487088 PMCID: PMC5881443 DOI: 10.1085/jgp.201711904] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that membrane proteins can be efficiently synthesized in vitro before spontaneously inserting into soluble nanoscale lipid bilayers called nanodiscs (NDs). In this paper, we present experimental details that allow a combination of in vitro translation of ion channels into commercially available NDs followed by their direct reconstitution from these nanobilayers into standard bilayer setups for electrophysiological characterization. We present data showing that two model K+ channels, Kcv and KcsA, as well as a recently discovered dual-topology F- channel, Fluc, can be reliably reconstituted from different types of NDs into bilayers without contamination from the in vitro translation cocktail. The functional properties of Kcv and KcsA were characterized electrophysiologically and exhibited sensitivity to the lipid composition of the target DPhPC bilayer, suggesting that the channel proteins were fully exposed to the target membrane and were no longer surrounded by the lipid/protein scaffold. The single-channel properties of the three tested channels are compatible with studies from recordings of the same proteins in other expression systems. Altogether, the data show that synthesis of ion channels into NDs and their subsequent reconstitution into conventional bilayers provide a fast and reliable method for functional analysis of ion channels.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel L Turman
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA
| | - Christian Braun
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
61
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
62
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
63
|
Jiang L, Zhao J, Lian J, Xu Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synth Syst Biotechnol 2018; 3:90-96. [PMID: 29900421 PMCID: PMC5995451 DOI: 10.1016/j.synbio.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022] Open
Abstract
Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS) has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors) to speed up design-build-test (DBT) cycles of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
64
|
Chan KP, Chao SH, Kah JCY. Universal mRNA Translation Enhancement with Gold Nanoparticles Conjugated to Oligonucleotides with a Poly(T) Sequence. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5203-5212. [PMID: 29363938 DOI: 10.1021/acsami.7b16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA-conjugated gold nanoparticles (AuNPs) have been shown to enhance the translation of mRNA. However, the specific sequence on the DNA dictates the specific mRNA to be enhanced. This study describes poly(thymine)-functionalized AuNPs (AuNP-p(T)DNA) capable of enhancing the translation of any mRNA template that is incorporated into pcDNA6 vector with bovine growth hormone (BGH) polyadenylation signal (P(A)). We demonstrated this by incorporating four genes: green fluorescence protein (GFP), general control nonderepressible 5 (GCN5), cAMP-responsive element binding protein 1 (CREB1), and X-box-binding protein 1-spliced (XBP-1S) separately into pcDNA6 vector with BGH P(A) before their expression in HeLa lysate. The addition of AuNP-p(T)DNA to HeLa lysate containing GFP, GCN5, CREB1, and XBP-1S mRNA increased protein synthesis 1.80, 1.99, 1.95, and 2.20 times, respectively. Similar translation enhancement was also observed in a multiplex reaction containing the mRNA of three genes together in the lysate. Complementary p(T)DNA hybridization to the poly(A) tail of the mRNA was critical as the removal of either p(T)DNA or BGH P(A) in XBP-1S mRNA or the replacement of p(T)DNA with p(A)DNA reduced the translation back to baseline level. Finally, an optimum length of 25 nucleotides for the DNA oligomer and a AuNP-p(T)DNA:mRNA ratio of 0.658 achieved a 3.08-fold translation enhancement. The AuNP-p(T)DNA nanoconstruct could be incorporated into commercial cell-free protein synthesis kits as a universal translation enhancer.
Collapse
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Microbiology and Immunology, National University of Singapore , 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597, Singapore
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| |
Collapse
|
65
|
Expression, Purification and Characterization of the Human Cannabinoid 1 Receptor. Sci Rep 2018; 8:2935. [PMID: 29440756 PMCID: PMC5811539 DOI: 10.1038/s41598-018-19749-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
The human cannabinoid 1 receptor (hCB1) is involved in numerous physiological processes and therefore provides a wide scope of potential therapeutic opportunities to treat maladies such as obesity, cardio-metabolic disorders, substance abuse, neuropathic pain, and multiple sclerosis. Structure-based drug design using the current knowledge of the hCB1 receptor binding site is limited and requires purified active protein. Heterologous expression and purification of functional hCB1 has been the bottleneck for ligand binding structural studies using biophysical methods such as mass spectrometry, x-ray crystallography and NMR. We constructed several plasmids for in-cell or in vitro Escherichia coli (E. coli) based expression of truncated and stabilized hCB1 receptor (hΔCB1 and hΔCB1T4L) variants and evaluated their competency to bind the CP-55,940 ligand. MALDI-TOF MS analysis of in vitro expressed and purified hΔCB1T4Lhis6 variants, following trypsin digestion, generated ~80% of the receptor sequence coverage. Our data demonstrate the feasibility of a cell-free expression system as a promising part of the strategy for the elucidation of ligand binding sites of the hCB1 receptor using a "Ligand Assisted Protein Structure" (LAPS) approach.
Collapse
|
66
|
Gurramkonda C, Rao A, Borhani S, Pilli M, Deldari S, Ge X, Pezeshk N, Han TC, Tolosa M, Kostov Y, Tolosa L, Wood DW, Vattem K, Frey DD, Rao G. Improving the recombinant human erythropoietin glycosylation using microsome supplementation in CHO cell-free system. Biotechnol Bioeng 2018; 115:1253-1264. [PMID: 29384203 DOI: 10.1002/bit.26554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/28/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Cell-Free Protein Synthesis (CFPS) offers many advantages for the production of recombinant therapeutic proteins using the CHO cell-free system. However, many complex proteins are still difficult to express using this method. To investigate the current bottlenecks in cell-free glycoprotein production, we chose erythropoietin (40% glycosylated), an essential endogenous hormone which stimulates the development of red blood cells. Here, we report the production of recombinant erythropoietin (EPO) using CHO cell-free system. Using this method, EPO was expressed and purified with a twofold increase in yield when the cell-free reaction was supplemented with CHO microsomes. The protein was purified to near homogeneity using an ion-metal affinity column. We were able to analyze the expressed and purified products (glycosylated cell-free EPO runs at 25-28 kDa, and unglycosylated protein runs at 20 kDa on an SDS-PAGE), identifying the presence of glycan moieties by PNGase shift assay. The purified protein was predicted to have ∼2,300 IU in vitro activity. Additionally, we tested the presence and absence of sugars on the cell-free EPO using a lectin-based assay system. The results obtained in this study indicate that microsomes augmented in vitro production of the glycoprotein is useful for the rapid production of single doses of a therapeutic glycoprotein drug and to rapidly screen glycoprotein constructs in the development of these types of drugs. CFPS is useful for implementing a lectin-based method for rapid screening and detection of glycan moieties, which is a critical quality attribute in the industrial production of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Chandrasekhar Gurramkonda
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Aniruddha Rao
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Shayan Borhani
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Manohar Pilli
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Sevda Deldari
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Niloufar Pezeshk
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Tzu-Chiang Han
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio
| | - Michael Tolosa
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Yordan Kostov
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio
| | | | - Douglas D Frey
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST) and Department of Chemical Biochemical and Environmental Engineering (CBEE), University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
67
|
Cleveland TE, He W, Evans AC, Fischer NO, Lau EY, Coleman MA, Butler P. Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles. Protein Sci 2018; 27:780-789. [PMID: 29266475 DOI: 10.1002/pro.3365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Abstract
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.
Collapse
Affiliation(s)
- Thomas E Cleveland
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899.,Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, Maryland, 20850
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, California, 94550
| | - Angela C Evans
- Lawrence Livermore National Laboratory, Livermore, California, 94550
| | | | - Edmond Y Lau
- Lawrence Livermore National Laboratory, Livermore, California, 94550
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, California, 94550
| | - Paul Butler
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996-1600
| |
Collapse
|
68
|
Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits. Methods Mol Biol 2018; 1772:61-93. [PMID: 29754223 DOI: 10.1007/978-1-4939-7795-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a new generation of cell-free transcription-translation (TXTL) systems has been devised for emerging multidisciplinary applications. The DNA-dependent in vitro protein synthesis technology has been developed to tackle applications in synthetic biology, biological and chemical engineering, as well as quantitative disciplines such as biophysics. In addition to being convenient at the biosafety level, the new TXTL platforms are user-friendly; more affordable; more versatile at the level of transcription, with a TX repertoire covering hundreds of parts; and more powerful, with protein production reaching a few mg/mL in batch and continuous modes. As a consequence, TXTL is rising up as a popular research tool and is used by a growing research community. While TXTL is proving reliable for an increasing number of applications, it is important to gain appropriate TXTL skills, especially for quantitative applications. TXTL has become particularly useful to rapidly prototype genetic devices , from single regulatory elements to elementary circuit motifs . In this chapter, we describe the basic procedures to develop appropriate TXTL practices for the characterization of such genetic parts. We use an all E. coli TXTL system developed in our lab, now commercialized by Arbor Biosciences under the name myTXTL.
Collapse
|
69
|
Applications and Advances in Bioelectronic Noses for Odour Sensing. SENSORS 2018; 18:s18010103. [PMID: 29301263 PMCID: PMC5795383 DOI: 10.3390/s18010103] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 01/15/2023]
Abstract
A bioelectronic nose, an intelligent chemical sensor array system coupled with bio-receptors to identify gases and vapours, resembles mammalian olfaction by which many vertebrates can sniff out volatile organic compounds (VOCs) sensitively and specifically even at very low concentrations. Olfaction is undertaken by the olfactory system, which detects odorants that are inhaled through the nose where they come into contact with the olfactory epithelium containing olfactory receptors (ORs). Because of its ability to mimic biological olfaction, a bio-inspired electronic nose has been used to detect a variety of important compounds in complex environments. Recently, biosensor systems have been introduced that combine nanoelectronic technology and olfactory receptors themselves as a source of capturing elements for biosensing. In this article, we will present the latest advances in bioelectronic nose technology mimicking the olfactory system, including biological recognition elements, emerging detection systems, production and immobilization of sensing elements on sensor surface, and applications of bioelectronic noses. Furthermore, current research trends and future challenges in this field will be discussed.
Collapse
|
70
|
Abstract
Protein biologics have emerged as a safe and effective group of drug products that can be used in a variety of medical disorders and clinical settings, including treatment of orphan diseases, personalized medicine, and point-of-care applications. However, the full potential of protein biologics for such applications will not be realized until there are methods available for rapid and cost-effective production of small scale products for individual needs. Here, we describe a modular and scalable method for rapid and adaptable production of protein-based medical products at small doses. The method includes cell-free synthesis of the protein target in a reactor module followed by a fluidic process for protein purification. As a proof of concept, we describe the application of this method for expression and purification of a bioactive pharmaceutically relevant protein biologic, recombinant human erythropoietin, at a single dose within 24 h. This method can be applied toward the development of automated platforms for rapid and adaptive production of protein biologics at the point of care in response to specific medical needs.
Collapse
|
71
|
Nomoto M, Tada Y. Cloning-free template DNA preparation for cell-free protein synthesis via two-step PCR using versatile primer designs with short 3'-UTR. Genes Cells 2017; 23:46-53. [PMID: 29235215 DOI: 10.1111/gtc.12547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/05/2017] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis (CFPS) systems largely retain the endogenous translation machinery of the host organism, making them highly applicable for proteomics analysis of diverse biological processes. However, laborious and time-consuming cloning procedures hinder progress with CFPS systems. Herein, we report the development of a rapid and efficient two-step polymerase chain reaction (PCR) method to prepare linear DNA templates for a wheat germ CFPS system. We developed a novel, effective short 3'-untranslated region (3'-UTR) sequence that facilitates translation. Application of the short 3'-UTR to two-step PCR enabled the generation of various transcription templates from the same plasmid, including fusion proteins with N- or C-terminal tags, and truncated proteins. Our method supports the cloning-free expression of target proteins using an mRNA pool from biological material. The established system is a highly versatile platform for in vitro protein synthesis using wheat germ CFPS.
Collapse
Affiliation(s)
- Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Center for Gene Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
72
|
Woznicka-Misaila A, Juillan-Binard C, Baud D, Pebay-Peyroula E, Ravaud S. Cell-free production, purification and characterization of human mitochondrial ADP/ATP carriers. Protein Expr Purif 2017; 144:46-54. [PMID: 29217202 DOI: 10.1016/j.pep.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
Mitochondrial Carriers (MCs) are responsible for fluent traffic of a variety of compounds that need to be shuttled via mitochondrial inner membranes to maintain cell metabolism. The ADP/ATP Carriers (AACs) are responsible for the import of ADP inside the mitochondria and the export of newly synthesized ATP. In human, four different AACs isoforms are described which are expressed in tissue-specific manner. They are involved in different genetic diseases and play a role in cancerogenesis. Up to now only the structures of the bovine (isoform 1) and yeast (isoforms 2 and 3) AAC have been determined in one particular conformation, obtained in complex with the CATR inhibitor. Herein, we report that full-length human ADP/ATP Carriers isoform 1 and 3 were successfully expressed in cell-free system and purified in milligram amounts in detergent-solubilized state. The proteins exhibited the expected secondary structure content. Thermostability profiles showing stabilization by the CATR inhibitor suggest that the carriers are well folded.
Collapse
Affiliation(s)
| | - Céline Juillan-Binard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Delphine Baud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
73
|
Failmezger J, Rauter M, Nitschel R, Kraml M, Siemann-Herzberg M. Cell-free protein synthesis from non-growing, stressed Escherichia coli. Sci Rep 2017; 7:16524. [PMID: 29184159 PMCID: PMC5705671 DOI: 10.1038/s41598-017-16767-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Cell-free protein synthesis is a versatile protein production system. Performance of the protein synthesis depends on highly active cytoplasmic extracts. Extracts from E. coli are believed to work best; they are routinely obtained from exponential growing cells, aiming to capture the most active translation system. Here, we report an active cell-free protein synthesis system derived from cells harvested at non-growth, stressed conditions. We found a downshift of ribosomes and proteins. However, a characterization revealed that the stoichiometry of ribosomes and key translation factors was conserved, pointing to a fully intact translation system. This was emphasized by synthesis rates, which were comparable to those of systems obtained from fast-growing cells. Our approach is less laborious than traditional extract preparation methods and multiplies the yield of extract per cultivation. This simplified growth protocol has the potential to attract new entrants to cell-free protein synthesis and to broaden the pool of applications. In this respect, a translation system originating from heat stressed, non-growing E. coli enabled an extension of endogenous transcription units. This was demonstrated by the sigma factor depending activation of parallel transcription. Our cell-free expression platform adds to the existing versatility of cell-free translation systems and presents a tool for cell-free biology.
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Rauter
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
74
|
Nieß A, Failmezger J, Kuschel M, Siemann-Herzberg M, Takors R. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions. ACS Synth Biol 2017. [PMID: 28627886 DOI: 10.1021/acssynbio.7b00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free (in vitro) protein synthesis (CFPS) systems provide a versatile tool that can be used to investigate different aspects of the transcription-translation machinery by reducing cells to the basic functions of protein formation. Recent improvements in reaction stability and lysate preparation offer the potential to expand the scope of in vitro biosynthesis from a research tool to a multifunctional and versatile platform for protein production and synthetic biology. To date, even the best-performing CFPS systems are drastically slower than in vivo references. Major limitations are imposed by ribosomal activities that progress in an order of magnitude slower on the mRNA template. Owing to the complex nature of the ribosomal machinery, conventional "trial and error" experiments only provide little insight into how the desired performance could be improved. By applying a DNA-sequence-oriented mechanistic model, we analyzed the major differences between cell-free in vitro and in vivo protein synthesis. We successfully identified major limiting elements of in vitro translation, namely the supply of ternary complexes consisting of EFTu and tRNA. Additionally, we showed that diluted in vitro systems suffer from reduced ribosome numbers. On the basis of our model, we propose a new experimental design predicting 90% increased translation rates, which were well achieved in experiments. Furthermore, we identified a shifting control in the translation rate, which is characterized by availability of the ternary complex under in vitro conditions and the initiation of translation in a living cell. Accordingly, the model can successfully be applied to sensitivity analyses and experimental design.
Collapse
Affiliation(s)
- Alexander Nieß
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Jurek Failmezger
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Maike Kuschel
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | | | - Ralf Takors
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| |
Collapse
|
75
|
Foshag D, Henrich E, Hiller E, Schäfer M, Kerger C, Burger-Kentischer A, Diaz-Moreno I, García-Mauriño SM, Dötsch V, Rupp S, Bernhard F. The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 2017; 40:245-260. [PMID: 28943390 DOI: 10.1016/j.nbt.2017.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.
Collapse
Affiliation(s)
- Daniel Foshag
- Institute for Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Ekkehard Hiller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Miriam Schäfer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
76
|
Jang YJ, Lee KH, Yoo TH, Kim DM. Complementary Cell-Free Translational Assay for Quantification of Amino Acids. Anal Chem 2017; 89:9638-9642. [PMID: 28776976 DOI: 10.1021/acs.analchem.7b01956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we present a simple and economical method that enables rapid quantification of amino acids based on their polymerization into a signal-generating protein. This method harnesses amino acid-deficient cell-free protein synthesis systems that generate fluorescence signals in response to exogenous amino acids. When premixed with assay samples containing the amino acids in question, incubation of the cell-free synthesis reaction mixture rapidly resulted in the production of sfGFP, the fluorescence intensity of which was linearly proportional to the concentration of the amino acids. The assay method achieved a limit of detection as low as ∼100 nM and was successfully applied to the quantification of disease-related amino acids in biological samples. Compared with standard methods in current use that require chemical derivatization of amino acids and chromatographic equipment, the complementation assay method developed in this work enables the direct translation of amino acid titer into measurable biofluorescence intensity in a much shorter period, providing a more affordable and flexible option for the quantification of amino acids.
Collapse
Affiliation(s)
- Yeon-Jae Jang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University , 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
77
|
Kwon SJ, Kim D, Lee I, Kim J, Dordick JS. In vitro gene expression-coupled bacterial cell chip for screening species-specific antimicrobial enzymes. Biotechnol Bioeng 2017; 114:1648-1657. [PMID: 28369698 DOI: 10.1002/bit.26300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Targeting infectious bacterial pathogens is important for reducing the evolution of antibiotic-resistant bacteria and preserving the endogenous human microbiome. Cell lytic enzymes including bacteriophage endolysins, bacterial autolysins, and other bacteriolysins are useful antibiotic alternatives due to their exceptional target selectivity, which may be used to lysins rapidly kill target bacteria and their high specificity permit the normal commensal microflora to be left undisturbed. Genetic information of numerous lysins is currently available, but the identification of their antimicrobial function and specificity has been limited because most lysins are often poorly expressed and exhibit low solubilities. Here, we report the development of bacterial cell chip for rapidly accessing the function of diverse genes that are suggestive of encoding lysins. This approach can be used to evaluate rapidly the species-specific antimicrobial activity of diverse lysins synthesized from in vitro transcription and translation (TNT) of plasmid DNA. In addition, new potent lysins can be assessed that are not expressed in hosts and display low solubility. As a result of evaluating the species-specific antimicrobial function of 11 (un)known lysins with an in vitro TNT-coupled bacterial cell chip, a potent recombinant lysin against Staphylococcus strains, SA1, was identified. The SA1 was highly potent against not only S. aureus, but also both lysostaphin-resistant S. simulans and S. epidermidis cells. To this end, the SA1 may be applicable to treat both methicillin-resistant S. aureus (MRSA) and lysostaphin-resistant MRSA mutants. Biotechnol. Bioeng. 2017;114: 1648-1657. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Domyoung Kim
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| |
Collapse
|
78
|
Kempf N, Remes C, Ledesch R, Züchner T, Höfig H, Ritter I, Katranidis A, Fitter J. A Novel Method to Evaluate Ribosomal Performance in Cell-Free Protein Synthesis Systems. Sci Rep 2017; 7:46753. [PMID: 28436469 PMCID: PMC5402277 DOI: 10.1038/srep46753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems were designed to produce proteins with a minimal set of purified components, thus offering the possibility to follow translation as well as protein folding. In order to characterize the performance of the ribosomes in such a system, it is crucial to separately quantify the two main components of productivity, namely the fraction of active ribosomes and the number of synthesizing cycles. Here, we provide a direct and highly reliable measure of ribosomal activity in any given CFPS system, introducing an enhanced-arrest peptide variant. We observe an almost complete stalling of ribosomes that produce GFPem (~95%), as determined by common centrifugation techniques and fluorescence correlation spectroscopy (FCS). Moreover, we thoroughly study the effect of different ribosomal modifications independently on activity and number of synthesizing cycles. Finally, employing two-colour coincidence detection and two-colour colocalisation microscopy, we demonstrate real-time access to key productivity parameters with minimal sample consumption on a single ribosome level.
Collapse
Affiliation(s)
- Noémie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ralph Ledesch
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tina Züchner
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Henning Höfig
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| | - Ilona Ritter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Jörg Fitter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| |
Collapse
|
79
|
Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 2017; 61:AAC.01414-16. [PMID: 27872062 DOI: 10.1128/aac.01414-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
Novel antifungal drugs and targets are urgently needed. Group III hybrid histidine kinases (HHKs) represent an appealing new therapeutic drug target because they are widely expressed in fungi but absent from humans. We investigated the mode of action of the widely utilized, effective fungicide fludioxonil. The drug acts in an HHK-dependent manner by constitutive activation of the HOG (high-osmolarity glycerol) pathway, but its mechanism of action is poorly understood. Here, we report a new mode of drug action that entails conversion of the HHK from a kinase into a phosphatase. We expressed Drk1 (dimorphism-regulating kinase), which is an intracellular group III HHK from the fungal pathogen Blastomyces dermatitidis, in Saccharomyces cerevisiae Drk1 engendered drug sensitivity in B. dermatitidis and conferred sensitivity upon S. cerevisiae In response to fludioxonil, Drk1 behaved as a phosphatase rather than as a kinase, leading to dephosphorylation of its downstream target, Ypd1, constitutive activation of the HOG pathway, and yeast cell death. Aspartic acid residue 1140 in the Drk1 receiver domain was required for in vivo phosphatase activity on Ypd1, and Hog1 was required for drug effect, indicating fidelity in HHK-dependent drug action. In in vitro assays with purified protein, intact Drk1 demonstrated intrinsic kinase activity, and the Drk1 receiver domain exhibited intrinsic phosphatase activity. However, fludioxonil failed to induce intact Drk1 to dephosphorylate Ypd1. We conclude that fludioxonil treatment in vivo likely acts on an upstream target that triggers HHK to become a phosphatase, which dephosphorylates its downstream target, Ypd1.
Collapse
|
80
|
Sheng J, Lei S, Yuan L, Feng X. Cell-free protein synthesis of norovirus virus-like particles. RSC Adv 2017. [DOI: 10.1039/c7ra03742b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell-free protein expression of norovirus virus-like-particles.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Shaohua Lei
- Department of Biomedical Sciences and Pathobiology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Xueyang Feng
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
81
|
Failmezger J, Nitschel R, Sánchez-Kopper A, Kraml M, Siemann-Herzberg M. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems. PLoS One 2016; 11:e0168764. [PMID: 27992588 PMCID: PMC5167549 DOI: 10.1371/journal.pone.0168764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems.
Collapse
MESH Headings
- Cell-Free System/chemistry
- Cell-Free System/metabolism
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Magnesium/chemistry
- Magnesium/metabolism
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
82
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
83
|
Mohr BP, Retterer ST, Doktycz MJ. While-you-wait proteins? Producing biomolecules at the point of need. Expert Rev Proteomics 2016; 13:707-9. [PMID: 27402489 DOI: 10.1080/14789450.2016.1209415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Benjamin P Mohr
- a Bredesen Center for Interdisciplinary Research , University of Tennessee , Knoxville , TN , USA.,b Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Scott T Retterer
- a Bredesen Center for Interdisciplinary Research , University of Tennessee , Knoxville , TN , USA.,b Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA.,c Center for Nanophase and Material Sciences , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Mitchel J Doktycz
- a Bredesen Center for Interdisciplinary Research , University of Tennessee , Knoxville , TN , USA.,b Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA.,c Center for Nanophase and Material Sciences , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| |
Collapse
|
84
|
Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit Rev Microbiol 2016; 43:31-42. [PMID: 27387055 DOI: 10.3109/1040841x.2016.1150959] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.
Collapse
Affiliation(s)
- Sanjeev Kumar Gupta
- a Advanced Biotech Lab, Ipca Laboratories Ltd., Kandivli Industrial Estate, Kandivli (west) , Mumbai , Mahrashtra , India
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
85
|
Georgi V, Georgi L, Blechert M, Bergmeister M, Zwanzig M, Wüstenhagen DA, Bier FF, Jung E, Kubick S. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode. LAB ON A CHIP 2016; 16:269-81. [PMID: 26554896 DOI: 10.1039/c5lc00700c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many pharmaceuticals are proteins or their development is based on proteins. Cell-free protein synthesis (CFPS) is an innovative alternative to conventional cell based systems which enables the production of proteins with complex and even new characteristics. However, the short lifetime, low protein production and expensive reagent costs are still limitations of CFPS. Novel automated microfluidic systems might allow continuous, controllable and resource conserving CFPS. The presented microfluidic TRITT platform (TRITT for Transcription - RNA Immobilization & Transfer - Translation) addresses the individual biochemical requirements of the transcription and the translation step of CFPS in separate compartments, and combines the reaction steps by quasi-continuous transfer of RNA templates to enable automated CFPS. In detail, specific RNA templates with 5' and 3' hairpin structures for stabilization against nucleases were immobilized during in vitro transcription by newly designed and optimized hybridization oligonucleotides coupled to magnetizable particles. Transcription compatibility and reusability for immobilization of these functionalized particles was successfully proven. mRNA transfer was realized on-chip by magnetic actuated particle transfer, RNA elution and fluid flow to the in vitro translation compartment. The applicability of the microfluidic TRITT platform for the production of the cytotoxic protein Pierisin with simultaneous incorporation of a non-canonical amino acid for fluorescence labeling was demonstrated. The new reaction mode (TRITT mode) is a modified linked mode that fulfills the precondition for an automated modular reactor system. By continual transfer of new mRNA, the novel procedure overcomes problems caused by nuclease digestion and hydrolysis of mRNA during TL in standard CFPS reactions.
Collapse
Affiliation(s)
- V Georgi
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany. and Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - L Georgi
- Technische Universität Berlin, Faculty Electrical Engineering Computer Science, Microperipheric Technologies, Berlin, Germany
| | - M Blechert
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - M Bergmeister
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - M Zwanzig
- Technische Universität Berlin, Faculty Electrical Engineering Computer Science, Microperipheric Technologies, Berlin, Germany
| | - D A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - F F Bier
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - E Jung
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - S Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| |
Collapse
|
86
|
Lin PC, Chang YC, Lin SS. An in vitro Transcription/translation System for Detection of Protein Interaction. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
87
|
Joedicke L, Trenker R, Langer JD, Michel H, Preu J. Cell-free synthesis of isotopically labelled peptide ligands for the functional characterization of G protein-coupled receptors. FEBS Open Bio 2015; 6:90-102. [PMID: 27047736 PMCID: PMC4794788 DOI: 10.1002/2211-5463.12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022] Open
Abstract
Cell‐free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell‐free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non‐natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein–protein interactions and for studying binding kinetics. In this study we evaluated cell‐free protein production for the generation of radiolabelled ligands for G protein‐coupled receptors (GPCRs). These receptors are seven‐transmembrane‐domain receptors activated by a plethora of extracellular stimuli including peptide ligands. Many GPCR peptide ligands contain disulphide bonds and are thus inherently difficult to produce in bacterial expression hosts or in Escherichia coli‐based cell‐free systems. Here, we established an adapted E. coli‐based cell‐free translation system for the production of disulphide bond‐containing GPCR peptide ligands and specifically introduce tritium labels for detection. The bacterial oxidoreductase DsbA is used as a chaperone to favour the formation of disulphide bonds and to enhance the yield of correctly folded proteins and peptides. We demonstrate the correct folding and formation of disulphide bonds and show high‐affinity ligand binding of the produced radio peptide ligands to the respective receptors. Thus, our system allows the fast, cost‐effective and reliable synthesis of custom GPCR peptide ligands for functional and structural studies.
Collapse
Affiliation(s)
- Lisa Joedicke
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Raphael Trenker
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julia Preu
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| |
Collapse
|
88
|
Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact 2015; 14:198. [PMID: 26655598 PMCID: PMC4676173 DOI: 10.1186/s12934-015-0390-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Adenosine-5'-triphosphate (ATP) is consumed as a biological energy source by many intracellular reactions. Thus, the intracellular ATP supply is required to maintain cellular homeostasis. The dependence on the intracellular ATP supply is a critical factor in bioproduction by cell factories. Recent studies have shown that changing the ATP supply is critical for improving product yields. In this review, we summarize the recent challenges faced by researchers engaged in the development of engineered cell factories, including the maintenance of a large ATP supply and the production of cell factories. The strategies used to enhance ATP supply are categorized as follows: addition of energy substrates, controlling pH, metabolic engineering of ATP-generating or ATP-consuming pathways, and controlling reactions of the respiratory chain. An enhanced ATP supply generated using these strategies improves target production through increases in resource uptake, cell growth, biosynthesis, export of products, and tolerance to toxic compounds.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
89
|
A cell‐free expression and purification process for rapid production of protein biologics. Biotechnol J 2015; 11:238-48. [DOI: 10.1002/biot.201500214] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
|
90
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
91
|
Comparative analysis of eukaryotic cell-free expression systems. Biotechniques 2015; 59:149-51. [PMID: 26345507 DOI: 10.2144/000114327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) allows researchers to rapidly generate functional proteins independent of cell culture. Although advances in eukaryotic lysates have increased the amount of protein that can be produced, the nuances of different translation systems lead to variability in protein production. To help overcome this problem, we have compared the relative yield and template requirements for three commonly used commercial cell-free translation systems: wheat germ extract (WGE), rabbit reticulocyte lysate (RRL), and HeLa cell lysate (HCL). Our results provide a general guide for researchers interested in using cell-free translation to generate recombinant protein for biomedical applications.
Collapse
|
92
|
Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, Lucks JB. Characterizing and prototyping genetic networks with cell-free transcription–translation reactions. Methods 2015; 86:60-72. [DOI: 10.1016/j.ymeth.2015.05.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
|
93
|
Jackson K, Jin S, Fan ZH. Optimization of a miniaturized fluid array device for cell-free protein synthesis. Biotechnol Bioeng 2015; 112:2459-67. [PMID: 26037852 DOI: 10.1002/bit.25668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 11/06/2022]
Abstract
Cell-free protein synthesis (CFPS), which entails synthesizing proteins outside of intact cells, is conducted in several formats with the continuous-exchange cell-free (CECF) format generally having the greatest protein expression yields. With this format, continuous chemical exchange occurs through a dialysis membrane separating a reaction solution from a feeding solution containing supplemental nutrient/energy molecules. Here, we describe the optimization of the miniaturized fluid array device (µFAD) by studying the effects of structural and experimental parameters responsible for the heightened chemical exchange across the dialysis membranes and enhanced protein expression capabilities of the high-throughput device. The interface area and number between the reaction and feeding solutions have a direct impact on protein expression, with a 1.6% enhancement in protein expression yield with each square millimeter increase in area and a 20% decrease with each additional interface. For nutrient/energy availability, an increasing solution volume ratio and height difference increase protein expression yield until the expression yield plateaus at a volume ratio of 20 to 1 (feeding to reaction solution) and a solution height difference of 2 mm. This yield can be further increased by 7% every 30 min with feeding solution replacement. Of the studied experimental factors (feeding solution stirring, device shaking, and temperature increase), feeding solution stirring has a significant effect on protein expression in this device. In the optimized system, green fluorescent protein (GFP), ß-glucuronidase (GUS), ß-galactosidase (LacZ), luciferase, and tissue plasminogen activator (tPA) expression increased 77.8-, 212-, 3.66-, 463-, and 5.43-fold, respectively, compared to the conventional batch format in a standard microplate. These results highlight the significance of structural/experimental conditions on the productive expression of proteins in the CECF format.
Collapse
Affiliation(s)
- Kirsten Jackson
- J.Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, 32611, Florida
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 100266, Gainesville, 32610, Florida
| | - Z Hugh Fan
- J.Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, 32611, Florida. .,Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, 32611, Florida. .,Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, 32611, Florida.
| |
Collapse
|
94
|
Cell Surface and Membrane Engineering: Emerging Technologies and Applications. J Funct Biomater 2015; 6:454-85. [PMID: 26096148 PMCID: PMC4493524 DOI: 10.3390/jfb6020454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/31/2022] Open
Abstract
Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.
Collapse
|
95
|
Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 2015; 112:1663-72. [DOI: 10.1002/bit.25587] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yonatan Chemla
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Vincent Noireaux
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota 55401
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
96
|
Berlow RB, Dyson HJ, Wright PE. Functional advantages of dynamic protein disorder. FEBS Lett 2015; 589:2433-40. [PMID: 26073260 DOI: 10.1016/j.febslet.2015.06.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
97
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
98
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
99
|
Jackson K, Kanamori T, Ueda T, Fan ZH. Protein synthesis yield increased 72 times in the cell-free PURE system. Integr Biol (Camb) 2015; 6:781-8. [PMID: 25008400 DOI: 10.1039/c4ib00088a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to cell-based protein expression, cell-free protein synthesis (CFPS) offers several advantages including a greater control over system additives. This control is further enhanced with a CFPS system called the Protein synthesis Using Recombinant Elements (PURE) system, which consists of 108 purified transcriptional and translational elements. With the PURE system, all elements are known, nuclease and protease activities are reduced, and the concentration of each element can be optimized for maximal protein expression. However, protein expression yield with this system is relatively low due to the consumption of nutrients and energy molecules as well as the accumulation of inhibitory byproducts in the batch format. To enhance protein expression with the PURE system, we developed a feeding solution that was optimized using a miniaturized fluid array device (μFAD) in a continuous-exchange cell-free (CECF) format. The device enabled (1) continuous supply of energy/nutrient molecules from the feeding solution to the reaction solution where protein synthesis occurred, and (2) simultaneous removal of inhibitory expression byproducts from the reaction solution to the feeding solution. Consequently, the synthesis yield of green fluorescent protein (GFP) increased 72.5-fold in comparison with the same reaction in the conventional batch format.
Collapse
Affiliation(s)
- Kirsten Jackson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
100
|
Quast RB, Kortt O, Henkel J, Dondapati SK, Wüstenhagen DA, Stech M, Kubick S. Automated production of functional membrane proteins using eukaryotic cell-free translation systems. J Biotechnol 2015; 203:45-53. [PMID: 25828454 DOI: 10.1016/j.jbiotec.2015.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Due to their high abundance and pharmacological relevance there is a growing demand for the efficient production of functional membrane proteins. In this context, cell-free protein synthesis represents a valuable alternative that allows for the high-throughput synthesis of functional membrane proteins. Here, we demonstrate the potential of our cell-free protein synthesis system, based on lysates from cultured Spodoptera frugiperda 21 cells, to produce pro- and eukaryotic membrane proteins with individual topological characteristics in an automated fashion. Analytical techniques, including confocal laser scanning microscopy, fluorescence detection of eYFP fusion proteins in a microplate reader and in-gel fluorescence of statistically incorporated fluorescent amino acid derivatives were employed. The reproducibility of our automated synthesis approach is underlined by coefficients of variation below 7.2%. Moreover, the functionality of the cell-free synthesized potassium channel KcsA was analyzed electrophysiologically. Finally, we expanded our cell-free membrane protein synthesis system by an orthogonal tRNA/synthetase pair for the site-directed incorporation of p-Azido-l-phenylalanine based on stop codon suppression. Incorporation was optimized by performance of a two-dimensional screening with different Mg(2+) and lysate concentrations. Subsequently, the selective modification of membrane proteins with incorporated p-Azido-l-phenylalanine was exemplified by Staudinger ligation with a phosphine-based fluorescence dye.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Oliver Kortt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|