51
|
Piccioli M, Turano P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
52
|
Abstract
Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.
Collapse
|
53
|
Xu X, Zhang F, Zamponi GW, Horne WA. Solution NMR and calorimetric analysis of Rem2 binding to the Ca2+ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca2+ currents. FASEB J 2015; 29:1794-804. [PMID: 25563298 DOI: 10.1096/fj.14-264499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 12/20/2022]
Abstract
Rem, Rad, Kir/Gem (RGK) proteins, including Rem2, mediate profound inhibition of high-voltage activated Ca(2+) channels containing intracellular regulatory β subunits. All RGK proteins bind to voltage-gated Ca(2+) channel β subunit (Cavβ) subunits in vitro, but the necessity of the interaction for current inhibition remains controversial. This study applies NMR and calorimetric techniques to map the binding site for Rem2 on human Cavβ4a and measure its binding affinity. Our experiments revealed 2 binding surfaces on the β4 guanylate kinase domain contributing to a 156 ± 18 µM Kd interaction: a hydrophobic pocket lined by 4 critical residues (L173, N261, H262, and V303), mutation of any of which completely disrupted binding, and a nearby surface containing 3 residues (D206, L209, and D258) that when individually mutated decreased affinity. Voltage-gated Ca(2+) channel α1A subunit (Cav2.1) Ca(2+) currents were completely inhibited by Rem2 when co-expressed with wild-type Cavβ4a, but were unaffected by Rem2 when coexpressed with a Cavβ4a site 1 (L173A/V303A) or site 2 (D258A) mutant. These results provide direct evidence for a low-affinity Rem2/Cavβ4 interaction and show definitively that the interaction is required for Cav2.1 inhibition.
Collapse
Affiliation(s)
- Xingfu Xu
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fangxiong Zhang
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald W Zamponi
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William A Horne
- *Department of Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
54
|
Nabeshima Y, Mizuguchi M, Kajiyama A, Okazawa H. Segmental isotope-labeling of the intrinsically disordered protein PQBP1. FEBS Lett 2014; 588:4583-9. [PMID: 25447530 DOI: 10.1016/j.febslet.2014.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Polyglutamine tract-binding protein 1 (PQBP1) is an intrinsically disordered protein abundantly expressed in the brain. Mutations in the PQBP1 gene are causative for X-linked mental retardation disorders. Here, we investigated the structure of the C-terminal segment within the context of full-length PQBP1. We produced a segmentally isotope-labeled PQBP1 composed of a non-labeled segment (residues 1-219; N-segment) and a (13)C/(15)N-labeled segment (residues 220-265; C-segment). Our results demonstrate that the segmental isotope-labeling combined with NMR spectroscopy is useful for detecting a very weak intra-molecular interaction in an intrinsically disordered protein.
Collapse
Affiliation(s)
- Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Asagi Kajiyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
55
|
Protein-protein interaction predictions using text mining methods. Methods 2014; 74:47-53. [PMID: 25448298 DOI: 10.1016/j.ymeth.2014.10.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools.
Collapse
|
56
|
Moritsugu K, Terada T, Kidera A. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling. PLoS Comput Biol 2014; 10:e1003901. [PMID: 25340714 PMCID: PMC4207830 DOI: 10.1371/journal.pcbi.1003901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. Dynamic nature of the protein-protein interactions is an important element of cellular processes such as metabolic reactions and signal transduction, but its atomistic details are still unclear. Computational survey using molecular dynamics simulation is a straightforward method to elucidate these atomistic protein-protein interaction processes. However, a sufficient configurational sampling of the large system containing the atomistic protein complex model and explicit solvent remains a great challenge due to the long timescale involved. Here, we demonstrate that the multiscale enhanced sampling (MSES) successfully captured the atomistic details of the association/dissociation processes of a barnase-barstar complex covering the sampled space from the native complex structure to fully non-native configurations. The landscape derived from the simulation indicates that the association process is funnel-like downhill, analogously to the funnel landscape of fast-folding proteins. The funnel was found to be originated from near-native orientations guided by the shape complementarity between barnase and barstar, accelerating the formation of native inter-molecular interactions to complete the final complex structure.
Collapse
Affiliation(s)
- Kei Moritsugu
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- * E-mail:
| | - Tohru Terada
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Akinori Kidera
- Computational Science Research Program, RIKEN, Hirosawa, Wako, Saitama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
57
|
Cui D, Ou S, Patel S. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects. Proteins 2014; 82:3312-26. [DOI: 10.1002/prot.24683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Di Cui
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| | - Shuching Ou
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| | - Sandeep Patel
- Department of Chemistry and Biochemistry; University of Delaware; Newark Delaware 19716
| |
Collapse
|
58
|
Affiliation(s)
- Vasudha Aggarwal
- Center for Biophysics and Computational Biology; University of Illinois Urbana Champaign; Urbana IL USA
| | - Taekjip Ha
- Center for Biophysics and Computational Biology; University of Illinois Urbana Champaign; Urbana IL USA
- Department of Physics; University of Illinois Urbana Champaign; Urbana IL USA
- Howard Hughes Medical Institute; Urbana IL USA
| |
Collapse
|
59
|
Mizuguchi M, Obita T, Serita T, Kojima R, Nabeshima Y, Okazawa H. Mutations in the PQBP1 gene prevent its interaction with the spliceosomal protein U5-15 kD. Nat Commun 2014; 5:3822. [PMID: 24781215 DOI: 10.1038/ncomms4822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/07/2014] [Indexed: 11/09/2022] Open
Abstract
A loss-of-function of polyglutamine tract-binding protein 1 (PQBP1) induced by frameshift mutations is believed to cause X-linked mental retardation. However, the mechanism by which structural changes in PQBP1 lead to mental retardation is unknown. Here we present the crystal structure of a C-terminal fragment of PQBP1 in complex with the spliceosomal protein U5-15 kD. The U5-15 kD hydrophobic groove recognizes a YxxPxxVL motif in PQBP1, and mutations within this motif cause a loss-of-function phenotype of PQBP1 in vitro. The YxxPxxVL motif is absent in all PQBP1 frameshift mutants seen in cases of mental retardation. These results suggest a mechanism by which the loss of the YxxPxxVL motif could lead to the functional defects seen in this type of mental retardation.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2] Graduate School of Innovative Life Science, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [3]
| | - Takayuki Obita
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2]
| | - Tomohito Serita
- Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan
| | - Rieko Kojima
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2]
| | - Yuko Nabeshima
- 1] Faculty of Pharmaceutical Sciences, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan [2] Graduate School of Innovative Life Science, University of Toyama; 2630, Sugitani, Toyama 930-0194, Japan
| | - Hitoshi Okazawa
- 1] Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University; 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan [2] Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
60
|
Wang J, Peng X, Peng W, Wu FX. Dynamic protein interaction network construction and applications. Proteomics 2014; 14:338-52. [DOI: 10.1002/pmic.201300257] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Jianxin Wang
- School of Information Science and Engineering; Central South University; Changsha P. R. China
| | - Xiaoqing Peng
- School of Information Science and Engineering; Central South University; Changsha P. R. China
| | - Wei Peng
- School of Information Science and Engineering; Central South University; Changsha P. R. China
| | - Fang-Xiang Wu
- Department of Mechanical Engineering and Division of Biomedical Engineering; University of Saskatchewan; Saskatoon Canada
| |
Collapse
|
61
|
Gulerez IE, Gehring K. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Methods 2014; 65:175-83. [DOI: 10.1016/j.ymeth.2013.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022] Open
|
62
|
Modulation of human α-synuclein aggregation by a combined effect of calcium and dopamine. Neurobiol Dis 2013; 63:115-28. [PMID: 24269918 DOI: 10.1016/j.nbd.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of aggregated α-syn and its familial mutants into Lewy bodies leading to death of dopaminergic neurons. α-syn is involved in Ca(II) and dopamine (DA) signaling and their adequate balance inside neuronal cytoplasm is essential for maintaining healthy dopaminergic neurons. We have probed the binding energetics of Ca(II) and DA to human α-syn and its familial mutants A30P, A53T and E46K using isothermal titration calorimetry and have investigated the conformational and aggregation aspects using circular dichroism and fluorescence spectroscopy. While binding of Ca(II) to α-syn and its familial mutants was observed to be endothermic in nature, interaction of DA with α-syn was not detectable. Ca(II) enhanced fibrillation of α-syn and its familial mutants while DA promoted the formation of oligomers. However, Ca(II) and DA together critically favored the formation of protofibrils that are more cytotoxic than the mature fibrils. Using fluorescently labeled cysteine mutant A90C, we have shown that different aggregating species of α-syn formed in the presence of Ca(II) and DA are internalized into the human neuroblastoma cells with different rates and are responsible for the differential cytotoxicity depending on their nature. The findings put together suggest that an interplay between the concentrations of Ca(II), DA and α-syn can critically regulate the formation of various aggregating species responsible for the survival of dopaminergic neurons. Modulating this balance leading to either complete suppression of α-syn aggregation or promoting the formation of mature fibrils could be used as a strategy for the development of drugs to cure Parkinson's disease.
Collapse
|
63
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 1039] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
64
|
Expression of the ARPC4 subunit of human Arp2/3 severely affects mycobacterium tuberculosis growth and suppresses immunogenic response in murine macrophages. PLoS One 2013; 8:e69949. [PMID: 23894563 PMCID: PMC3718739 DOI: 10.1371/journal.pone.0069949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The search for molecules against Mycobacterium tuberculosis is urgent. The mechanisms facilitating the intra-macrophage survival of Mycobacterium tuberculosis are as yet not entirely understood. However, there is evidence showing the involvement of host cell cytoskeleton in every step of establishment and persistence of mycobacterial infection. METHODOLOGY/PRINCIPAL FINDINGS Here we show that expression of ARPC4, a subunit of the Actin related protein 2/3 (Arp2/3) protein complex, severely affects the pathogen's growth. TEM studies display shedding of the mycobacterial outer-coat. Furthermore, in infected macrophages, mycobacteria expressing ARPC4 were cleared off at a much faster rate, and were unable to mount a pro-inflammatory cytokine response. The translocation of ARPC4-expressing mycobacteria to the lysosome of the infected macrophage was also impaired. Additionally, the ARPC4 subunit was shown to interact with Rv1626, an essential secretory mycobacterial protein. Real-time PCR analysis showed that upon expression of ARPC4 in mycobacteria, Rv1626 expression is downregulated as much as six-fold. Rv1626 was found to also interact with mammalian cytoskeleton protein, Arp2/3, and enhance the rate of actin polymerization. CONCLUSIONS/SIGNIFICANCE With crystal structures for Rv1626 and ARPC4 subunit already known, our finding lays out the effect of a novel molecule on mycobacteria, and represents a viable starting point for developing potent peptidomimetics.
Collapse
|
65
|
Ali R, Kumar S, Balaram H, Sarma SP. Solution nuclear magnetic resonance structure of the GATase subunit and structural basis of the interaction between GATase and ATPPase subunits in a two-subunit-type GMPS from Methanocaldococcus jannaschii. Biochemistry 2013; 52:4308-23. [PMID: 23724776 DOI: 10.1021/bi400472e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and ¹⁵N backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 ± 0.06 Å for backbone atoms and 0.8 ± 0.06 Å for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed β-sheet that is fenced by five α-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg(2+) interaction has been found to be ∼1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.
Collapse
Affiliation(s)
- Rustam Ali
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | | | |
Collapse
|
66
|
Rid R, Herzog J, Maier RH, Hundsberger H, Eger A, Hintner H, Bauer JW, Onder K. Real-time monitoring of relative peptide-protein interaction strengths in the yeast two-hybrid system. Assay Drug Dev Technol 2013; 11:269-75. [PMID: 23679850 DOI: 10.1089/adt.2012.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast two-hybrid (Y2H) system is one of the most technically straightforward, effective, and widely used tools for the discovery of the binary peptide or protein interactions. However, its exceptional detection sensitivity poses a serious challenge for affinity ranking and hence prioritizing the resultant large number of putative interactors for follow-up analyses. To overcome this apparent bottleneck, we describe here a novel yeast growth curve-based interaction-monitoring approach that permits semiautomatic quantification, comparison, and statistically ascertained scoring of a large collection of Y2H interactions under real-time conditions. Initially, we conducted a proof-of-concept test of five literature-validated peptide-protein interactions with known affinities in the low μM range, and subsequently used the method to classify 88 novel vitamin D receptor-binding peptides derived from high-throughput screening of a highly diverse artificial peptide aptamer library. Based on our in-depth data evaluation, we conclude that real-time monitoring of clone growth as a measure of relative binding strength offers a facile, cost-effective, accurate, reproducible, and further adaptable complement to standard Y2H-derived clone management.
Collapse
Affiliation(s)
- Raphaela Rid
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lian LY. NMR studies of weak protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:59-72. [PMID: 23611315 DOI: 10.1016/j.pnmrs.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/22/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
68
|
Santiveri CM, Sborgi L, de Alba E. Nuclear magnetic resonance study of protein-protein interactions involving apoptosis regulator Diva (Boo) and the BH3 domain of proapoptotic Bcl-2 members. J Mol Recognit 2013. [PMID: 23192964 DOI: 10.1002/jmr.2240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
According to biochemical assays, the Bcl-2 protein Diva from mouse regulates programmed cell death by heterodimerizing with other members of the family and by interacting with the apoptotic protease-activating factor Apaf-1. In typical Bcl-2 heterodimers, peptide fragments comprising the Bcl-2 homology domain 3 (BH3 domain) of proapoptotic members are capable of forming functional complexes with prosurvival proteins. High-resolution structural studies have revealed that the BH3 peptide forms an α-helix positioned in a canonical hydrophobic cleft of the antiapoptotic protein. Because Diva shows mutations in conserved residues within this area, it has been proposed to have a different interacting surface. However, we showed previously that Diva binds through the canonical groove the BH3 peptide of the human Bcl-2 killing member Harakiri. To further test Diva's binding capabilities, here we show Nuclear Magnetic Resonance (NMR) data, indicating that Diva binds peptides derived from the BH3 domain of several other proapoptotic Bcl-2 proteins, including mouse Harakiri, Bid, Bak and Bmf. We have measured the binding affinities of the heterodimers, which show significant variability. Structural models of the protein-peptide complexes based on NMR chemical shift perturbation data indicate that the binding surface is analogous. These models do not rely on NMR NOE (Nuclear Overhauser Effect) data, and thus our results can only suggest that the complexes share similar intermolecular interactions. However, the observed affinity differences correlate with the α-helical population of the BH3-peptides obtained from circular dichroism experiments, which highlights a role of conformational selection in the binding mechanism. Altogether, our results shed light on important factors governing Diva-BH3 peptide molecular recognition mode.
Collapse
Affiliation(s)
- Clara M Santiveri
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| | | | | |
Collapse
|
69
|
Ponterini G. Fluorescence Observables and Enzyme Kinetics in the Investigation of PPI Modulation by Small Molecules: Detection, Mechanistic Insight, and Functional Consequences. DISRUPTION OF PROTEIN-PROTEIN INTERFACES 2013. [PMCID: PMC7123529 DOI: 10.1007/978-3-642-37999-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential of fluorescence-based methods and kinetic analysis in the screening and molecular-scale mechanistic investigation of PPI modulation by small molecules is discussed through several representative examples collected and commented. These experimental approaches take advantage of a variety of observables. Changes in the protein aggregation pattern have been monitored through fluorescence properties such as spectra, intensities (related to quantum yields), time-decays, and anisotropies of intrinsic protein fluorophores, of extrinsic fluorescent tags and, even, of the same small molecules added to modulate PPIs, as well as through bimolecular excited-state processes such as static and collisional quenching, including electron and excitation-energy transfer, or exciton interaction, whose efficiencies are crucially structure dependent. Besides allowing for qualitative and quantitative information on the small-molecule induced PPI modulation, these approaches can take advantage from the sensitivity of fluorescence observables on fine structural details to shed light on the molecular-scale mechanisms of action and their functional consequences. Direct investigation of the latter by kinetic inhibition analysis represents a useful change in perspective whenever PPI are relevant for enzyme activity. Dissociative inhibition, that is, the ability of some small molecules to inhibit enzymes by disrupting their active oligomeric assembly is shortly reviewed.
Collapse
|
70
|
Söderberg CAG, Lambert W, Kjellström S, Wiegandt A, Wulff RP, Månsson C, Rutsdottir G, Emanuelsson C. Detection of crosslinks within and between proteins by LC-MALDI-TOFTOF and the software FINDX to reduce the MSMS-data to acquire for validation. PLoS One 2012; 7:e38927. [PMID: 22723907 PMCID: PMC3377668 DOI: 10.1371/journal.pone.0038927] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
Lysine-specific chemical crosslinking in combination with mass spectrometry is emerging as a tool for the structural characterization of protein complexes and protein-protein interactions. After tryptic digestion of crosslinked proteins there are thousands of peptides amenable to MSMS, of which only very few are crosslinked peptides of interest. Here we describe how the advantage offered by off-line LC-MALDI-TOF/TOF mass spectrometry is exploited in a two-step workflow to focus the MSMS-acquisition on crosslinks mainly. In a first step, MS-data are acquired and all the peak list files from the LC-separated fractions are merged by the FINDX software and screened for presence of crosslinks which are recognized as isotope-labeled doublet peaks. Information on the isotope doublet peak mass and intensity can be used as search constraints to reduce the number of false positives that match randomly to the observed peak masses. Based on the MS-data a precursor ion inclusion list is generated and used in a second step, where a restricted number of MSMS-spectra are acquired for crosslink validation. The decoupling of MS and MSMS and the peptide sorting with FINDX based on MS-data has the advantage that MSMS can be restricted to and focused on crosslinks of Type 2, which are of highest biological interest but often lowest in abundance. The LC-MALDI TOF/TOF workflow here described is applicable to protein multisubunit complexes and using (14)N/(15)N mixed isotope strategy for the detection of inter-protein crosslinks within protein oligomers.
Collapse
Affiliation(s)
- Christopher A. G. Söderberg
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Wietske Lambert
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Alena Wiegandt
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Ragna Peterson Wulff
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Cecilia Månsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Gudrun Rutsdottir
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
71
|
MacDonald JA, Ishida H, Butler EI, Ulke-Lemée A, Chappellaz M, Tulk SE, Chik JK, Vogel HJ. Intrinsically disordered N-terminus of calponin homology-associated smooth muscle protein (CHASM) interacts with the calponin homology domain to enable tropomyosin binding. Biochemistry 2012; 51:2694-705. [PMID: 22424482 DOI: 10.1021/bi2019018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The calponin homology-associated smooth muscle (CHASM) protein plays an important adaptive role in smooth and skeletal muscle contraction. CHASM is associated with increased muscle contractility and can be localized to the contractile thin filament via its binding interaction with tropomyosin. We sought to define the structural basis for the interaction of CHASM with smooth muscle tropomyosin as a first step to understanding the contribution of CHASM to the contractile capacity of smooth muscle. Herein, we provide a structure-based model for the tropomyosin-binding domain of CHASM using a combination of hydrogen/deuterium exchange mass spectrometry (HDX-MS) and NMR analyses. Our studies provide evidence that a portion of the N-terminal intrinsically disordered region forms intramolecular contacts with the globular C-terminal calponin homology (CH) domain. Ultimately, cooperativeness between these structurally dissimilar regions is required for CHASM binding to smooth muscle tropomyosin. Furthermore, it appears that the type-2 CH domain of CHASM is required for tropomyosin binding and presents a novel function for this protein domain.
Collapse
Affiliation(s)
- Justin A MacDonald
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4Z6.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Cole SD, Schleif R. A new and unexpected domain-domain interaction in the AraC protein. Proteins 2012; 80:1465-75. [DOI: 10.1002/prot.24044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 11/07/2022]
|
73
|
West XZ, Meller N, Malinin NL, Deshmukh L, Meller J, Mahabeleshwar GH, Weber ME, Kerr BA, Vinogradova O, Byzova TV. Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS One 2012; 7:e31071. [PMID: 22363548 PMCID: PMC3281915 DOI: 10.1371/journal.pone.0031071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/01/2012] [Indexed: 02/05/2023] Open
Abstract
Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its binding to non-phosphorylated β3CT, accommodating an α-helical turn in integrin bound conformation. We also show that Y747 phosphorylation of β3 enhances the above interaction. To demonstrate the importance of β3 phosphorylation in endothelial cell functions, we synthesized β3CT-mimicking Y747 phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in β3 integrin knock-out or β3 integrin knock-in cells expressing β3 with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2.
Collapse
Affiliation(s)
- Xiaoxia Z. West
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Nahum Meller
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Nikolay L. Malinin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lalit Deshmukh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julia Meller
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ganapati H. Mahabeleshwar
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- University Hospitals Harrington-McLaughlin Heart & Vascular Institute and Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Malory E. Weber
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bethany A. Kerr
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (OV); (TVB)
| | - Tatiana V. Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (OV); (TVB)
| |
Collapse
|
74
|
Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein-protein complexation in bioluminescence. Protein Cell 2012; 2:957-72. [PMID: 22231355 DOI: 10.1007/s13238-011-1118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
75
|
Wang Q, Zhuravleva A, Gierasch LM. Exploring weak, transient protein--protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 2011; 50:9225-36. [PMID: 21942871 DOI: 10.1021/bi201287e] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biology relies on functional interplay of proteins in the crowded and heterogeneous environment inside cells, and functional protein interactions are often weak and transient. Thus, methods that preserve these interactions and provide information about them are needed. In-cell nuclear magnetic resonance (NMR) spectroscopy is an attractive method for studying a protein's behavior in cells because it may provide residue-level structural and dynamic information, yet several factors limit the feasibility of protein NMR spectroscopy in cells; among them, slow rotational diffusion has emerged as the most important. In this paper, we seek to elucidate the causes of the dramatically slow protein tumbling in cells and in so doing to gain insight into how the intracellular viscosity and weak, transient interactions modulate protein mobility. To address these questions, we characterized the rotational diffusion of three model globular proteins in Escherichia coli cells using two-dimensional heteronuclear NMR spectroscopy. These proteins have a similar molecular size and globular fold but very different surface properties, and indeed, they show very different rotational diffusion in the E. coli intracellular environment. Our data are consistent with an intracellular viscosity approximately 8 times that of water, too low to be a limiting factor for observation of small globular proteins by in-cell NMR spectroscopy. Thus, we conclude that transient interactions with cytoplasmic components significantly and differentially affect the mobility of proteins and therefore their NMR detectability. Moreover, we suggest that an intricate interplay of total protein charge and hydrophobic interactions plays a key role in regulating these weak intermolecular interactions in cells.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
76
|
Jensen MR, Ortega-Roldan JL, Salmon L, van Nuland N, Blackledge M. Characterizing weak protein-protein complexes by NMR residual dipolar couplings. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1371-81. [PMID: 21710303 DOI: 10.1007/s00249-011-0720-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions occur with a wide range of affinities from tight complexes characterized by femtomolar dissociation constants to weak, and more transient, complexes of millimolar affinity. Many of the weak and transiently formed protein-protein complexes have escaped characterization due to the difficulties in obtaining experimental parameters that report on the complexes alone without contributions from the unbound, free proteins. Here, we review recent developments for characterizing the structures of weak protein-protein complexes using nuclear magnetic resonance spectroscopy with special emphasis on the utility of residual dipolar couplings.
Collapse
Affiliation(s)
- Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | | | | | | | | |
Collapse
|
77
|
Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Transient protein-protein interactions. Protein Eng Des Sel 2011; 24:635-48. [DOI: 10.1093/protein/gzr025] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
78
|
Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. J Biol Chem 2011; 286:29218-29226. [PMID: 21676864 DOI: 10.1074/jbc.m111.252130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spt6 is a highly conserved transcription elongation factor and histone chaperone. It binds directly to the RNA polymerase II C-terminal domain (RNAPII CTD) through its C-terminal region that recognizes RNAPII CTD phosphorylation. In this study, we determined the solution structure of the C-terminal region of Saccharomyces cerevisiae Spt6, and we discovered that Spt6 has two SH2 domains in tandem. Structural and phylogenetic analysis revealed that the second SH2 domain was evolutionarily distant from canonical SH2 domains and represented a novel SH2 subfamily with a novel binding site for phosphoserine. In addition, NMR chemical shift perturbation experiments demonstrated that the tandem SH2 domains recognized Tyr(1), Ser(2), Ser(5), and Ser(7) phosphorylation of RNAPII CTD with millimolar binding affinities. The structural basis for the binding of the tandem SH2 domains to different forms of phosphorylated RNAPII CTD and its physiological relevance are discussed. Our results also suggest that Spt6 may use the tandem SH2 domain module to sense the phosphorylation level of RNAPII CTD.
Collapse
Affiliation(s)
- Jianping Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peng Xiong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongda Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bo Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guowei Lu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
79
|
Salvatore DB, Duraffourg N, Favier A, Persson BA, Lund M, Delage MM, Silvers R, Schwalbe H, Croguennec T, Bouhallab S, Forge V. Investigation at Residue Level of the Early Steps during the Assembly of Two Proteins into Supramolecular Objects. Biomacromolecules 2011; 12:2200-10. [DOI: 10.1021/bm200285e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Delphine B. Salvatore
- Laboratoire de Chimie et Biologie des Métaux (UMR 5249), CEA−Grenoble, 17, rue des Martyrs, F-38057 Grenoble, France
- UMR 1253, INRA, Agrocampus Ouest, Science et Technologie du Lait et de l’Oeuf, 65 rue de Saint-Brieuc, F-35000 Rennes, France
| | - Nicolas Duraffourg
- Laboratoire de Chimie et Biologie des Métaux (UMR 5249), CEA−Grenoble, 17, rue des Martyrs, F-38057 Grenoble, France
| | - Adrien Favier
- Laboratoire de Résonance Magnétique Nucléaire, Institut de Biologie Structurale Jean-Pierre Ebel, 41, rue Jules Horowitz, F-38027 Grenoble, France
| | - Björn A. Persson
- Department of Theoretical Chemistry, University of Lund, POB 124, S-22100 Lund, Sweden
| | - Mikael Lund
- Department of Theoretical Chemistry, University of Lund, POB 124, S-22100 Lund, Sweden
| | - Marie-Madeleine Delage
- UMR 1253, INRA, Agrocampus Ouest, Science et Technologie du Lait et de l’Oeuf, 65 rue de Saint-Brieuc, F-35000 Rennes, France
| | - Robert Silvers
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Thomas Croguennec
- UMR 1253, INRA, Agrocampus Ouest, Science et Technologie du Lait et de l’Oeuf, 65 rue de Saint-Brieuc, F-35000 Rennes, France
| | - Saïd Bouhallab
- UMR 1253, INRA, Agrocampus Ouest, Science et Technologie du Lait et de l’Oeuf, 65 rue de Saint-Brieuc, F-35000 Rennes, France
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux (UMR 5249), CEA−Grenoble, 17, rue des Martyrs, F-38057 Grenoble, France
| |
Collapse
|
80
|
Rowe AJ. Ultra-weak reversible protein–protein interactions. Methods 2011; 54:157-66. [DOI: 10.1016/j.ymeth.2011.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/15/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022] Open
|
81
|
Krissinel E. Macromolecular complexes in crystals and solutions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:376-85. [PMID: 21460456 PMCID: PMC3069753 DOI: 10.1107/s0907444911007232] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 02/25/2011] [Indexed: 11/10/2022]
Abstract
This paper presents a discussion of existing methods for the analysis of macromolecular interactions and complexes in crystal packing. Typical situations and conditions where wrong answers may be obtained in the course of ordinary procedures are presented and discussed. The more general question of what the relationship is between natural (in-solvent) and crystallized assemblies is discussed and researched. A computational analysis suggests that weak interactions with K(d) ≥ 100 µM have a considerable chance of being lost during the course of crystallization. In such instances, crystal packing misrepresents macromolecular complexes and interactions. For as many as 20% of protein dimers in the PDB the likelihood of misrepresentation is estimated to be higher than 50%. Given that weak macromolecular interactions play an important role in many biochemical processes, these results suggest that a complementary noncrystallographic study should be always conducted when inferring structural aspects of weakly bound complexes.
Collapse
Affiliation(s)
- Evgeny Krissinel
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, England.
| |
Collapse
|
82
|
Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
83
|
Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M. Structure, dynamics, and kinetics of weak protein-protein complexes from NMR spin relaxation measurements of titrated solutions. Angew Chem Int Ed Engl 2011; 50:3755-9. [PMID: 21425222 DOI: 10.1002/anie.201100310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Loïc Salmon
- Protein Dynamics and Flexibility, Institute de Biologie, Structurale Jean-Pierre Ebel, CNRS-CEA-UJF UMR 5075, 41 rue Jules Horowitz, 38027-Grenoble Cedex, France
| | | | | | | | | | | | | |
Collapse
|
84
|
Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. Transient protein-protein interactions: structural, functional, and network properties. Structure 2011; 18:1233-43. [PMID: 20947012 DOI: 10.1016/j.str.2010.08.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/13/2010] [Accepted: 08/02/2010] [Indexed: 11/28/2022]
Abstract
Transient interactions, which involve protein interactions that are formed and broken easily, are important in many aspects of cellular function. Here we describe structural and functional properties of transient interactions between globular domains and between globular domains, short peptides, and disordered regions. The importance of posttranslational modifications in transient interactions is also considered. We review techniques used in the detection of the different types of transient protein-protein interactions. We also look at the role of transient interactions within protein-protein interaction networks and consider their contribution to different aspects of these networks.
Collapse
Affiliation(s)
- James R Perkins
- Department of Structural and Molecular Biology, University College of London, Gower Street, WC1E 6BT London, UK.
| | | | | | | | | |
Collapse
|
85
|
Vinogradova O, Qin J. NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Top Curr Chem (Cham) 2011; 326:35-45. [PMID: 21809187 DOI: 10.1007/128_2011_216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions are crucial for a wide variety of biological processes. These interactions range from high affinity (K (d)<nM) to very low affinity (K (d)>mM). While much is known about the nature of high affinity protein complexes, our knowledge about structural characteristics of weak protein-protein interactions (wPPIs) remains limited: in addition to the technical difficulties associated with their investigation, historically wPPIs used to be considered physiologically irrelevant. However, emerging evidence suggests that wPPIs, either in the form of intact protein complexes or as part of large molecular machineries, are fundamentally important for promoting rapid on/off switches of signal transduction, reversible cell-cell contacts, transient assembly/disassembly of signaling complexes, and enzyme-substrate recognition. Therefore an atomic-level elucidation of wPPIs is vital to understanding a cornucopia of diverse cellular events. Nuclear magnetic resonance (NMR) is famous for its unique abilities to study wPPIs and, by utilization of the new technical developments combined with sparse data based computational analysis, it now allows rapid identification and structural characterization of wPPIs. Here we present our perspective on the NMR methods employed.
Collapse
Affiliation(s)
- Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA.
| | | |
Collapse
|
86
|
Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O. NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry 2010; 50:48-62. [PMID: 21121635 DOI: 10.1021/bi101594a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to monoubiqiuitin and exhibits preferences for K63-linked chains. In the present paper, we report the solution NMR structure of the Stam2-VHS domain in complex with monoubiquitin by means of chemical shift perturbations, spin relaxation, and paramagnetic relaxation enhancements. We also characterize the interaction of Stam2-VHS with K48- and K63-linked diubiquitin chains and report the first evidence that VHS binds differently to these two chains. Our data reveal that VHS enters the hydrophobic pocket of K48-linked diubiquitin and binds the two ubiquitin subunits with different affinities. In contrast, VHS interacts with K63-linked diubiquitin in a mode similar to its interaction with monoubiquitin. We also suggest possible structural models for both K48- and K63-linked diubiquitin in interaction with VHS. Our results, which demonstrate a different mode of binding of VHS for K48- and K63-linked diubiquitin, may explain the preference of VHS for K63- over K48-linked diubiquitin chains and monoubiquitin.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, UMR-CNRS 5180 Sciences Analytiques, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
87
|
Láng A, Major B, Szilágyi K, Gáspári Z, Gál P, Závodszky P, Perczel A. Interaction between separated consecutive complement control modules of human C1r: Implications for dimerization of the full-length protease. FEBS Lett 2010; 584:4565-9. [DOI: 10.1016/j.febslet.2010.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/26/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
88
|
Mädler S, Seitz M, Robinson J, Zenobi R. Does chemical cross-linking with NHS esters reflect the chemical equilibrium of protein-protein noncovalent interactions in solution? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1775-1783. [PMID: 20708949 DOI: 10.1016/j.jasms.2010.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/20/2010] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
Chemical cross-linking in combination with mass spectrometry has emerged as a powerful tool to study noncovalent protein complexes. Nevertheless, there are still many questions to answer. Does the amount of detected cross-linked complex correlate with the amount of protein complex in solution? In which concentration and affinity range is specific cross-linking possible? To answer these questions, we performed systematic cross-linking studies with two complexes, using the N-hydroxysuccinimidyl ester disuccinimidyl suberate (DSS): (1) NCoA-1 and mutants of the interacting peptide STAT6Y, covering a K(D) range of 30 nM to >25 μM, and (2) α-thrombin and basic pancreatic trypsin inhibitor (BPTI), a system that shows a buffer-dependent K(D) value between 100 and 320 μM. Samples were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For NCoA-1•STAT6Y, a good correlation between the amount of cross-linked species and the calculated fraction of complex present in solution was observed. Thus, chemical cross-linking in combination with MALDI-MS can be used to rank binding affinities. For the mid-affinity range up to about K(D) ≈ 25 μM, experiments with a nonbinding peptide and studies of the concentration dependence showed that only specific complexes undergo cross-linking with DSS. To study in which affinity range specific cross-linking can be applied, the weak α-thrombin•BPTI complex was investigated. We found that the detected complex is a nonspecifically cross-linked species. Consequently, based on the experimental approach used in this study, chemical cross-linking is not suitable for studying low-affinity complexes with K(D) >> 25 μM.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
89
|
Calzolai L, Franchini F, Gilliland D, Rossi F. Protein--nanoparticle interaction: identification of the ubiquitin--gold nanoparticle interaction site. NANO LETTERS 2010; 10:3101-5. [PMID: 20698623 DOI: 10.1021/nl101746v] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate that it is possible to identify the protein--nanoparticle interaction site at amino acid scale in solution. Using NMR, chemical shift perturbation analysis, and dynamic light scattering we have identified a specific domain of human ubiquitin that interacts with gold nanoparticles. This method allows a detailed structural analysis of proteins absorbed onto surfaces of nanoparticles in physiological conditions and it will provide much needed experimental data for better modeling and prediction of protein--nanoparticle interactions.
Collapse
Affiliation(s)
- Luigi Calzolai
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, I-21027 Ispra, Varese, Italy
| | | | | | | |
Collapse
|
90
|
Abstract
Despite increased attention, little is known about how the crowded intracellular environment affects basic phenomena like protein diffusion. Here, we use NMR to quantify the rotational and translational diffusion of a 7.4-kDa test protein, chymotrypsin inhibitor 2 (CI2), in solutions of glycerol, synthetic polymers, proteins, and cell lysates. As expected, translational diffusion and rotational diffusion decrease with increasing viscosity. In glycerol, for example, the decrease follows the Stokes-Einstein and Stokes-Einstein-Debye laws. Synthetic polymers cause negative deviation from the Stokes laws and affect translation more than rotation. Surprisingly, however, protein crowders have the opposite effect, causing positive deviation and reducing rotational diffusion more than translational diffusion. Indeed, bulk proteins severely attenuate the rotational diffusion of CI2 in crowded protein solutions. Similarly, CI2 diffusion in cell lysates is comparable to its diffusion in crowded protein solutions, supporting the biological relevance of the results. The rotational attenuation is independent of the size and total charge of the crowding protein, suggesting that the effect is general. The difference between the behavior of synthetic polymers and protein crowders suggests that synthetic polymers may not be suitable mimics of the intracellular environment. NMR relaxation data reveal that the source of the difference between synthetic polymers and proteins is the presence of weak interactions between the proteins and CI2. In summary, weak but nonspecific, noncovalent chemical interactions between proteins appear to fundamentally impact protein diffusion in cells.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Conggang Li
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
91
|
Elshemey WM, Mohammad IA, Elsayed AA. Wide-angle X-ray scattering as a probe for insulin denaturation. Int J Biol Macromol 2010; 46:471-7. [DOI: 10.1016/j.ijbiomac.2010.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
92
|
Vezzoli A, Bonadies N, Allen MD, Freund SMV, Santiveri CM, Kvinlaug BT, Huntly BJP, Göttgens B, Bycroft M. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 2010; 17:617-9. [PMID: 20400950 DOI: 10.1038/nsmb.1797] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 03/02/2010] [Indexed: 12/26/2022]
Abstract
Trimethylation of Lys36 in histone H3 (H3K36me3) coordinates events associated with the elongation phase of transcription and is also emerging as an important epigenetic regulator of cell growth and differentiation. We have identified the PWWP domain of bromo and plant homeodomain (PHD) finger-containing protein 1 (BRPF1) as a H3K36me3 binding module and have determined the structure of this domain in complex with an H3K36me3-derived peptide.
Collapse
|
93
|
Qi Y, Dhiman HK, Bhola N, Budyak I, Kar S, Man D, Dutta A, Tirupula K, Carr BI, Grandis J, Bar-Joseph Z, Klein-Seetharaman J. Systematic prediction of human membrane receptor interactions. Proteomics 2010; 9:5243-55. [PMID: 19798668 DOI: 10.1002/pmic.200900259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high-throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system-wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome.
Collapse
Affiliation(s)
- Yanjun Qi
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
|
95
|
O'Connell MR, Gamsjaeger R, Mackay JP. The structural analysis of proteinâprotein interactions by NMR spectroscopy. Proteomics 2009; 9:5224-32. [DOI: 10.1002/pmic.200900303] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
96
|
Christensen DE, Klevit RE. Dynamic interactions of proteins in complex networks: identifying the complete set of interacting E2s for functional investigation of E3-dependent protein ubiquitination. FEBS J 2009; 276:5381-9. [PMID: 19712108 PMCID: PMC2973559 DOI: 10.1111/j.1742-4658.2009.07249.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A ubiquitin ligase (E3) functions at the crossroad between ubiquitin activation and the attachment of ubiquitin to protein substrates. During this process, the E3 interacts with both a substrate and a ubiquitin-conjugating enzyme (E2). Although a major goal when investigating an E3 is to identify its substrates, recent evidence indicates that the E2 dictates the type of ubiquitin modification that will occur on the substrate. There are approximately 30 E2s identified in the human genome, many of which remain to be characterized. We found that the RING E3 BRCA1/BARD1 can interact with 10 different E2s. The ability of BRCA1 to interact with multiple E2s is likely to be a common feature among other RING and U-box E3s. We and others have also found that certain E2s show a preference for attaching either the first ubiquitin to a substrate lysine or ubiquitin to itself (chain building), suggesting that E2s may play a role in dictating product formation. Therefore, when investigating the functions of an E3 it is advisable to identify all E2s that interact with the E3 so that these can be used in E3-dependent substrate-ubiquitination assays. We describe a method used to identify all the E2s that interact with BRCA1. Defining the set of E2s that interact with other RING and U-box E3s will open the door for predictive models and lead to a better understand of substrate ubiquitination.
Collapse
Affiliation(s)
- Devin E Christensen
- Department of Biochemistry, University of Utah, Salt Lake City, UT 98195, USA
| | | |
Collapse
|
97
|
Hu J, Cui G, Li C, Liu C, Shang E, Lai L, Jin C, Wang J, Xia B. Structure and novel functional mechanism of Drosophila SNF in sex-lethal splicing. PLoS One 2009; 4:e6890. [PMID: 19727396 PMCID: PMC2731243 DOI: 10.1371/journal.pone.0006890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/29/2009] [Indexed: 11/18/2022] Open
Abstract
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B'', and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF(1621) binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination.
Collapse
Affiliation(s)
- Jicheng Hu
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Gaofeng Cui
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Congmin Li
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Cong Liu
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Erchang Shang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Jiwu Wang
- Allele Biotechnology & Pharmaceuticals, Inc., San Diego, California, United States of America
- * E-mail: (BX); (JW)
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
- * E-mail: (BX); (JW)
| |
Collapse
|
98
|
Melo MN, Sousa FJR, Carneiro FA, Castanho MARB, Valente AP, Almeida FCL, Da Poian AT, Mohana-Borges R. Interaction of the Dengue virus fusion peptide with membranes assessed by NMR: The essential role of the envelope protein Trp101 for membrane fusion. J Mol Biol 2009; 392:736-46. [PMID: 19619560 PMCID: PMC7094664 DOI: 10.1016/j.jmb.2009.07.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 11/30/2022]
Abstract
Dengue virus (DV) infection depends on a step of membrane fusion, which occurs in the acidic environment of the endosome. This process is mediated by virus surface envelope glycoprotein, in which the loop between residues D98-G112 is considered to be crucial, acting as a fusion peptide. Here, we have characterized functionally and structurally the interaction between the DV fusion peptide and different model membranes by fluorescence and NMR. Its interaction was strongest in dodecylphosphocholine (DPC) micelles and anionic phosphatidylcholine/phosphatidylglycerol vesicles, the only vesicle that was fused by DV fusion peptide. The three-dimensional structure of DV fusion peptide bound to DPC micelles was solved by solution homonuclear NMR with an r.m.s.d. of 0.98 A. The most striking result obtained from the solution structure was the hydrophobic triad formed by residues W101, L107, and F108, pointing toward the same direction, keeping the segment between G102 and G106 in a loop conformation. The interaction of DV fusion peptide with phosphatidylcholine/phosphatidylglycerol vesicles was also mapped by transfer-nuclear Overhauser enhancement (NOE) experiments, in which the majority of the NOE cross-peaks were from the hydrophobic triad, corroborating the DPC-bound structure. Substitution of the residue W101 by an alanine residue completely abolished membrane binding and, thus, fusion by the peptide and its NOE cross-peaks. In conclusion, the 15-residue DV fusion peptide has intrinsic ability to promote membrane fusion, most likely due to the hydrophobic interaction among the residues W101, L107, and F108, which maintains its loop in the correct spatial conformation.
Collapse
Affiliation(s)
- Manuel Nuno Melo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Ortega-Roldan JL, Jensen MR, Brutscher B, Azuaga AI, Blackledge M, van Nuland NAJ. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex. Nucleic Acids Res 2009; 37:e70. [PMID: 19359362 PMCID: PMC2685109 DOI: 10.1093/nar/gkp211] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes.
Collapse
Affiliation(s)
- Jose Luis Ortega-Roldan
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
100
|
Li C, Pielak GJ. Using NMR to distinguish viscosity effects from nonspecific protein binding under crowded conditions. J Am Chem Soc 2009; 131:1368-9. [PMID: 19140727 PMCID: PMC2645536 DOI: 10.1021/ja808428d] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional NMR approaches to detect weak protein binding and aggregation are hindered by the increased viscosity brought about by crowding. We describe a simple and reliable NMR method to distinguish viscosity effects from binding and aggregation under crowded conditions.
Collapse
Affiliation(s)
- Conggang Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC,27599
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC,27599
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC,27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,27599.
| |
Collapse
|