51
|
Hergli E, Aschi A. Polycation-globular protein complex: Ionic strength and chain length effects on the structure and properties. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe effect of high salt concentration and pH on the binding of globular protein to polycation at different molar masses has been investigated by dynamic light scattering (DLS), turbidimetry and electrostatic modeling for the protein. In dilute concentration regime, DLS and pH titrations showed three remarkable pH transitions: pHc, the pH where soluble complexes of bovine serum albumin (BSA) and linear synthetic Polyethylenemine (PEI) are formed, pHc’ presents the end of primary soluble complex and pHφ presents the first appearance of microcoacervate droplets. All pH transitions increase with increasing NaCl concentration. The Adaptive Poisson-Boltzmann Solver (APBS) identify with precision the functional sites at the surface of BSA and shows that the strength of electrostatic interactions depends hugely on the variation of pH and ionic strength. At a very high concentration of salt, no remarkable effect on a mixture formed of a long chain of polycation and globular protein.
Collapse
Affiliation(s)
- Eya Hergli
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Tunis, 2092, Tunisia
| | - Adel Aschi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Tunis, 2092, Tunisia
| |
Collapse
|
52
|
Guo Y, Zhang J, Ding F, Pan G, Li J, Feng J, Zhu X, Zhang C. Stressing the Role of DNA as a Drug Carrier: Synthesis of DNA-Drug Conjugates through Grafting Chemotherapeutics onto Phosphorothioate Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807533. [PMID: 30847970 DOI: 10.1002/adma.201807533] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Indexed: 05/24/2023]
Abstract
To stress the role of deoxyribonucleic acid (DNA) as a drug carrier, an efficient conjugation strategy in which chemotherapeutics can be grafted onto a phosphorothiolated DNA backbone through the reaction between the phosphorothioate group (PS) and a benzyl bromide group is proposed. As a proof of concept, benzyl-bromide-modified paclitaxel (PTX) is employed to graft onto the DNA backbone at the PS modification sites. Due to the easy preparation of phosphorothiolated DNA at any desired position during its solid-phase synthesis, diblock DNA strands containing both normal phosphodiester segment (PO DNA) and phosphorothiolate segment (PS DNA) are directly grafted with a multitude of PTXs without using complicated and exogenous linkers. Then, the resulting amphiphilic PO DNA-blocked-(PS DNA-grafted PTX) conjugates (PO DNA-b-(PS DNA-g-PTX)) assemble into PTX-loaded spherical nucleic acid (SNA)-like micellar nanoparticles (PTX-SNAs) with a high drug loading ratio up to ≈53%. Importantly, the PO DNA segment maintains its molecular recognition property and biological functions, which allows the as-prepared PTX-SNAs to be further functionalized with tumor-targeting aptamers, fluorescent probe strands, or antisense sequences. These multifunctional PTX-SNAs demonstrate active tumor-targeting delivery, efficient inhibition of tumor growth, and the reversal of drug resistance both in vitro and in vivo for comprehensive antitumor therapy.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiao Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Gaifang Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Li
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201400, China
| | - Jing Feng
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201400, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
53
|
Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, Jia L, Gao Y. Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Curr Cancer Drug Targets 2019; 19:257-276. [DOI: 10.2174/1568009618666180628160211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Background:Effective cancer therapy is still a great challenge for modern medical research due to the complex underlying mechanisms of tumorigenesis and tumor metastasis, and the limitations commonly associated with currently used cancer therapeutic options. Nanotechnology has been implemented in cancer therapeutics with immense potential for improving cancer treatment.Objective:Through information about the recent advances regarding cancer hallmarks, we could comprehensively understand the pharmacological effects and explore the mechanisms of the interaction between the nanomaterials, which could provide opportunities to develop mechanism-based nanomedicine to treat human cancers.Methods:We collected related information and data from articles.Results:In this review, we discussed the characteristics of cancer including tumor angiogenesis, abnormalities in tumor blood vessels, uncontrolled cell proliferation markers, multidrug resistance, tumor metastasis, cancer cell metabolism, and tumor immune system that provide opportunities and challenges for nanomedicine to be directed to specific cancer cells and portray the progress that has been accomplished in application of nanotechnology for cancer treatment.Conclusion:The information presented in this review can provide useful references for further studies on developing effective nanomedicine for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yingying Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Tingting Lv
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
54
|
Gorshkov NI, Murko AY, Gavrilova II, Malakhova II, Krasikov VD, Panarin EF. Water-Soluble Metal–Polymer Gallium Complexes with N-Vinylpyrrolidone–N-Vinylformamide–N-Vinyliminodiacetic Acid Terpolymer. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Noh J, Jung E, Lee J, Hyun H, Hong S, Lee D. Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation. Biomacromolecules 2019; 20:1109-1117. [DOI: 10.1021/acs.biomac.8b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Elzahhar P, Belal ASF, Elamrawy F, Helal NA, Nounou MI. Bioconjugation in Drug Delivery: Practical Perspectives and Future Perceptions. Methods Mol Biol 2019; 2000:125-182. [PMID: 31148014 DOI: 10.1007/978-1-4939-9516-5_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the past three decades, pharmaceutical research has been mainly converging to novel carrier systems and nanoparticulate colloidal technologies for drug delivery, such as nanoparticles, nanospheres, vesicular systems, liposomes, or nanocapsules to impart novel functions and targeting abilities. Such technologies opened the gate towards more sophisticated and effective multi-acting platform(s) which can offer site-targeting, imaging, and treatment using a single multifunctional system. Unfortunately, such technologies faced major intrinsic hurdles including high cost, low stability profile, short shelf-life, and poor reproducibility across and within production batches leading to harsh bench-to-bedside transformation.Currently, pharmaceutical industry along with academic research is investing heavily in bioconjugate structures as an appealing and advantageous alternative to nanoparticulate delivery systems with all its flexible benefits when it comes to custom design and tailor grafting along with avoiding most of its shortcomings. Bioconjugation is a ubiquitous technique that finds a multitude of applications in different branches of life sciences, including drug and gene delivery applications, biological assays, imaging, and biosensing.Bioconjugation is simple, easy, and generally a one-step drug (active pharmaceutical ingredient) conjugation, using various smart biocompatible, bioreducible, or biodegradable linkers, to targeting agents, PEG layer, or another drug. In this chapter, the different types of bioconjugates, the techniques used throughout the course of their synthesis and characterization, as well as the well-established synthetic approaches used for their formulation are presented. In addition, some exemplary representatives are outlined with greater emphasis on the practical tips and tricks of the most prominent techniques such as click chemistry, carbodiimide coupling, and avidin-biotin system.
Collapse
Affiliation(s)
- Perihan Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fatema Elamrawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nada A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Ismail Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, USA.
| |
Collapse
|
57
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Lee S, Stubelius A, Hamelmann N, Tran V, Almutairi A. Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40378-40387. [PMID: 30067018 PMCID: PMC7170936 DOI: 10.1021/acsami.8b08254] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stimuli-responsive nanoparticles (NPs) are especially interesting to enhance the drug delivery specificity for biomedical applications. With the aim to achieve a highly stable and inflammation-specific drug release, we designed a reactive oxygen species (ROS)-responsive dextran-drug conjugate (Nap-Dex). By blending Nap-Dex with the acid-sensitive acetalated dextran polymer, we achieved a dual-responsive NP with high specificity toward the inflammatory environment. The inflammatory environment not only has elevated ROS levels but also has a lower pH than healthy tissues, making pH and ROS highly suitable triggers to target inflammatory diseases. The anti-inflammatory cyclooxygenase inhibitor naproxen was modified with an ROS-responsive phenylboronic acid (PBA) and conjugated onto dextran. The dextran units were functionalized with up to 87% modified naproxen. This resulted in a complete drug release from the polymer within 20 min at 10 mM H2O2. The dual-responsive NPs reduced the levels of the proinflammatory cytokine IL-6 120 times more efficiently and TNFα 6 times more efficiently than free naproxen from lipopolysaccharide (LPS)-activated macrophages. These additional anti-inflammatory effects were found to be mainly attributed to ROS-scavenging effects. In addition, the model cargo fluorescein diacetate was released in an LPS-induced inflammatory response in vitro. We believe that drug conjugation using PBA can be applied to various drugs and dextran-based materials for enhanced drug efficacy, where this work demonstrates the significance of functionalized carbohydrates polymer-drug conjugates.
Collapse
Affiliation(s)
| | | | - Naomi Hamelmann
- Department of Biomolecular Nanotechnology, MESA+ Institute of Nanotechnology, Faculty of Science and Technology , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | | | | |
Collapse
|
59
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
60
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
61
|
Rodriguez‐Otormin F, Duro‐Castano A, Conejos‐Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1532. [DOI: 10.1002/wnan.1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Aroa Duro‐Castano
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
62
|
Rades N, Licha K, Haag R. Dendritic Polyglycerol Sulfate for Therapy and Diagnostics. Polymers (Basel) 2018; 10:E595. [PMID: 30966629 PMCID: PMC6403730 DOI: 10.3390/polym10060595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic polyglycerol sulfate (dPGS) has originally been investigated as an anticoagulant to potentially substitute for the natural glycosaminoglycan heparin. Compared to unfractionated heparin, dPGS possesses lower anticoagulant activity but a much higher anticomplementary effect. Since coagulation, complement activation, and inflammation are often present in the pathophysiology of numerous diseases, dPGS polymers with both anticoagulant and anticomplementary activities represent promising candidates for the development of polymeric drugs of nanosized architecture. In this review, we describe the nanomedical applications of dPGS based on its anti-inflammatory activity. Furthermore, the application of dPGS as a carrier molecule for diagnostic molecules and therapeutic drugs is reviewed, based on the ability to target tumors and localize in tumor cells. Finally, the application of dPGS for inhibition of virus infections is described.
Collapse
Affiliation(s)
- Nadine Rades
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Kai Licha
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
63
|
Gorshkov NI, Alekseev IE, Miroslavov AE, Murko AY, Lumpov AA, Krasikov VD, Suglobov DN. Mixed-ligand complexes of N-vinylpyrrolidone/N-vinylformamide/N-vinyl iminodiacedic acid copolymers and diethyldithiocarbamate as a co-ligand with indium/indium-111. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2017.1421060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N. I. Gorshkov
- Department of Water Soluble Polymers, Institute of Macromolecular Compounds, Federal State Budgetary Institution of Science, Russian Academy of Sciences, St. Petersburg, Russia
| | - I. E. Alekseev
- Department of Fundamental Radiochemistry, Khlopin Radium Institute Joint-Stock Company, St. Petersburg, Russia
| | - A. E. Miroslavov
- Department of Fundamental Radiochemistry, Khlopin Radium Institute Joint-Stock Company, St. Petersburg, Russia
| | - A. Y. Murko
- Department of Water Soluble Polymers, Institute of Macromolecular Compounds, Federal State Budgetary Institution of Science, Russian Academy of Sciences, St. Petersburg, Russia
| | - A. A. Lumpov
- Department of Fundamental Radiochemistry, Khlopin Radium Institute Joint-Stock Company, St. Petersburg, Russia
| | - V. D. Krasikov
- Department of Water Soluble Polymers, Institute of Macromolecular Compounds, Federal State Budgetary Institution of Science, Russian Academy of Sciences, St. Petersburg, Russia
| | - D. N. Suglobov
- Department of Fundamental Radiochemistry, Khlopin Radium Institute Joint-Stock Company, St. Petersburg, Russia
| |
Collapse
|
64
|
Gorshkov NI, Gavrilova II, Krasikov VD, Panarin EF. Study of complexation between perrhenate ion and N-methyl-N-vinylacetamide and N-methyl-N-vinylamine copolymers in aqueous solutions by fast monolith high-performance liquid chromatography (HPLC). INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2017.1413619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N. I. Gorshkov
- Department of Water Soluble Polymers, Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - I. I. Gavrilova
- Department of Water Soluble Polymers, Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - V. D. Krasikov
- Department of Water Soluble Polymers, Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - E. F. Panarin
- Department of Water Soluble Polymers, Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Department of the Medical Physics, St. Petersburg Peter the Great Polytechnical Institutе of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
65
|
Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, Zhao Y, Zhang T, Ho RJ. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 2018; 68:137-153. [PMID: 29288085 DOI: 10.1016/j.actbio.2017.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
A novel redox-sensitive system for co-delivering hydrophobic drugs and hydrophilic siRNA or shRNA was developed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs) through amide bonds, which is called GA-conjugated PAAs (PAG). PAG can self-assemble into micelles as amphiphilic block copolymers, which exhibits an excellent loading ability for the co-delivery of docetaxel (DTX) and MMP-9 shRNA with adjustable dosing ratios. In addition, confocal microscopy, flow cytometry and in vitro transfection analyses demonstrated more efficient cellular internalization of DTX and MMP-9 shRNA after incubation with PAG/DTX- MMP-9 shRNA micelles (PAG/DTX-shRNA) than with free drugs. Unlike traditional amphiphilic copolymer micelles, GA conjugated in PAG possesses an intrinsic anticancer efficacy. The presence of disulfide bonds in PAAs enables rapid disassembly of PAG micelles in response to reducing agents, inducing the release of loaded drugs (DTX, GA and MMP-9 shRNA). In vitro cellular assays revealed that PAG/DTX-shRNA micelles inhibited MCF-7 cell proliferation more efficiently than the single drug or single drug-loaded micelles. In vivo biodistribution and anti-tumor effect studies using an MCF-7 breast cancer xenograft mouse model have indicated that PAG/DTX-shRNA micelles can enhance drug accumulation compared with the free drug, thereby sustaining the therapeutic effect on tumors. Additionally, PAG/DTX-shRNA micelles displayed a greater anti-tumor efficacy than Taxotere® and PAG-shRNA micelles. These results suggest that the redox-sensitive PAG platform is a promising co-delivery system for combining drugs and gene therapy for the treatment of cancer. STATEMENT OF SIGNIFICANCE The PAG micelles were designed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs), which would serve dual purposes as both gene and drugs co-delivery carrier and an anti-tumor prodrug. Unlike traditional amphiphilic micelles, GA conjugated in PAG could exert its intrinsic efficacy and provide synergistic antiproliferative effects with docetaxel (DTX) on MCF-7 cells. Disulfide bonds in PAG enables a rapid disassembly of PAG micelles in response to reducing agents and to release all loaded drugs (DTX, GA and MMP-9 shRNA) at tumor sites. PAG/DTX-shRNA micelles displayed greater anti-tumor efficacy than that of Taxotere®, indicating the design concept for PAG works well. And the strategy for PAG could be used to develop a series of similar co-delivery systems through conjugations of other small-molecule drugs with PAAs, such as doxorubicin, methotrexate and other drugs with carboxy groups in their structure.
Collapse
|
66
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
67
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
68
|
Gorshkov NI, Miroslavov АЕ, Аlekseev IЕ, Lumpov АА, Мurko АY, Gavrilova II, Saprykina NN, Bezrukova МА, Kipper АI, Krasikov VD, Suglobov DN, Tyupina MY, Panarin ЕF. Study of N-vinylpyrrolidone-N-vinylformamide copolymers labelled with indium-113m. J Labelled Comp Radiopharm 2017; 60:302-311. [PMID: 28349626 DOI: 10.1002/jlcr.3503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 11/07/2022]
Abstract
The procedure of the directed synthesis of N-vinylpyrrolidone-N-vinylformamide (VP-VFA) copolymers with grafted iminodiacetate (IDA) chelating units is presented. The methods for labelling resulting conjugates with indium-113m were developed. The metal-copolymer conjugates were characterized by different physicochemical methods, including IR and NMR, viscometry, light scattering, and exclusion high-performance liquid chromatography. Parameters of radiochemical synthesis of the conjugates labelled with indium-113m were optimized. It was shown that the VP-VFA-IDA copolymer firmly binds indium-113m both in the acid and alkaline solutions, with pH of the reaction mixture having almost no effect on the complexation. VP-VFA-IDA-In conjugates were found to be unstable in histidine challenge reaction.
Collapse
Affiliation(s)
- N I Gorshkov
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - А Е Miroslavov
- Khlopin Radium Institute Joint-Stock Company, St Petersburg, Russia.,Radiochemistry Department, St Petersburg State University, St Petersburg, Russia
| | - I Е Аlekseev
- Khlopin Radium Institute Joint-Stock Company, St Petersburg, Russia
| | - А А Lumpov
- Khlopin Radium Institute Joint-Stock Company, St Petersburg, Russia
| | - А Y Мurko
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - I I Gavrilova
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - N N Saprykina
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - М А Bezrukova
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - А I Kipper
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - V D Krasikov
- Institute of Macromolecular Compounds, Federal State Budgetary Institute of Science, Russian Academy of Sciences, St Petersburg, Russia
| | - D N Suglobov
- Khlopin Radium Institute Joint-Stock Company, St Petersburg, Russia
| | - M Y Tyupina
- Khlopin Radium Institute Joint-Stock Company, St Petersburg, Russia
| | - Е F Panarin
- St Petersburg Peter the Great Polytechnical Institutе of the Russian Federation, St Petersburg, Russia
| |
Collapse
|
69
|
Wang T, Feng L, Yang S, Liu Y, Zhang N. Ceramide lipid-based nanosuspension for enhanced delivery of docetaxel with synergistic antitumor efficiency. Drug Deliv 2017; 24:800-810. [PMID: 28502199 PMCID: PMC8241063 DOI: 10.1080/10717544.2016.1225853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ceramide (CE), a bioactive lipid with tumor suppression, has been widely used as a drug carrier and enhancer for cancer therapy. CE-based combination therapy was prone to be attractive in cancer therapy. In our previous study, the combination of CE and docetaxel (DTX) was proved to be an effective strategy for cancer therapy. To further improve the antitumor efficiency of DTX, the CE lipid-based nanosuspensions (LNS) was prepared for the delivery of DTX to exhibit synergistic therapeutic effect. The enhanced delivery and synergistic therapeutic effect of DTX-loaded CE-LNS (CE + DTX-LNS) were evaluated. CE + DTX-LNS exhibited spherical or ellipsoidal shape, uniform particle size distribution (108.1 ± 3.8 nm), sustained release characteristics and good stability in vitro. Notably, CE + DTX-LNS could effectively co-localize CE and DTX into same tumor cell and subsequently play synergistic cell damage effect compared with CE-LNS + DTX-LNS (p < 0.05). The in vivo fluorescence imaging results showed that CE + DTX-LNS could effectively prolong the in vivo circulation time and enhance the accumulation in tumor sites. Moreover, the antitumor efficacy of CE + DTX-LNS observed in B16 murine melanoma model was 93.94 ± 2.77%, significantly higher than that of CE-LNS, DTX-LNS, Duopafei® (p < 0.01) and CE-LNS + DTX-LNS (p < 0.05), respectively, demonstrating that co-delivery of CE and DTX into same tumor cell was the basis for enhanced synergistic therapeutic effect. Furthermore, histological examination of Blank-LNS showed no visible tissue toxicity compared to normal saline. Consequently, CE-LNS could effectively delivery DTX and CE + DTX-LNS exhibit synergistic inhibition of tumor growth due to the co-localization of CE and DTX. CE-LNS hold great potential to be an appropriate carrier for CE-based combination chemotherapy.
Collapse
Affiliation(s)
- Tianqi Wang
- a School of Pharmaceutical Science, Shandong University , Ji'nan , People's Republic of China
| | - Lixia Feng
- a School of Pharmaceutical Science, Shandong University , Ji'nan , People's Republic of China
| | - Shaomei Yang
- a School of Pharmaceutical Science, Shandong University , Ji'nan , People's Republic of China
| | - Yongjun Liu
- a School of Pharmaceutical Science, Shandong University , Ji'nan , People's Republic of China
| | - Na Zhang
- a School of Pharmaceutical Science, Shandong University , Ji'nan , People's Republic of China
| |
Collapse
|
70
|
Jannuzzi GP, Souza NDA, Françoso KS, Pereira RH, Santos RP, Kaihami GH, Almeida JRFD, Batista WL, Amaral AC, Maranhão AQ, Almeida SRD, Ferreira KS. Therapeutic treatment with scFv-PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes Infect 2017; 20:48-56. [PMID: 28951317 DOI: 10.1016/j.micinf.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Nicole de Araújo Souza
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Kátia Sanches Françoso
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Roney Henrique Pereira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Raquel Possemozer Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - André Corrêa Amaral
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
71
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
72
|
Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@mSiO 2 /TiO 2 -TC nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:998-1005. [DOI: 10.1016/j.msec.2017.04.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/23/2023]
|
73
|
Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol Biosci 2017; 18. [PMID: 28805040 DOI: 10.1002/mabi.201700209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Collapse
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
74
|
Ayalew L, Acuna J, Urfano SF, Morfin C, Sablan A, Oh M, Gamboa A, Slowinska K. Conjugation of Paclitaxel to Hybrid Peptide Carrier and Biological Evaluation in Jurkat and A549 Cancer Cell Lines. ACS Med Chem Lett 2017; 8:814-819. [PMID: 28835794 DOI: 10.1021/acsmedchemlett.7b00117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Paclitaxel (PTX) is one of the most potent cancer drugs; however, its low solubility and strong systemic side effects limit its clinical applications. To overcome these issues, new drug formulations and chemical modifications have been proposed. In this study, we present conjugation of PTX to hybrid collagen-cell penetrating peptide (COL-CPP) carriers. The peptide carrier is highly soluble and utilizes a unique stabilization strategy: folding into a triple helix. Here, we report the formation of PTX-COL-CPP prodrug that has similar drug potency as free PTX when tested in Jurkat (human T lymphocyte of acute T cell leukemia) cells but not in A549 (human epithelial of lung carcinoma) cells. Confocal images and flow cytometry show that this behavior originates from lower cellular uptake of COL-CPP and endosomal entrapment of the prodrug in A549, but not in Jurkat cells.
Collapse
Affiliation(s)
- Luladey Ayalew
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Jessica Acuna
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Selina F. Urfano
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Cristobal Morfin
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Anthony Sablan
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Myungeun Oh
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Alicia Gamboa
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Katarzyna Slowinska
- Department of Chemistry and
Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| |
Collapse
|
75
|
Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. NANO TODAY 2017; 15:91-106. [PMID: 29225665 PMCID: PMC5720147 DOI: 10.1016/j.nantod.2017.06.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the advent of technology, the role of nanomaterials in medicine has grown exponentially in the last few decades. The main advantage of such materials has been exploited in drug delivery applications, due to their effective targeting that in turn reduces systemic toxicity compared to the conventional routes of drug administration. Even though these materials offer broad flexibility based on targeting tissue, disease, and drug payload, the demand for more effective yet highly biocompatible nanomaterial-based drugs is increasing. While therapeutically improved and safe materials have been introduced in nanomedicine platforms, issues related to their degradation rates and bio-distribution still exist, thus making their successful translation for human use very challenging. Researchers are constantly improving upon novel nanomaterials that are safer and more effective not only as therapeutic agents but as diagnostic tools as well, making the research in the field of nanomedicine ever more fascinating. In this review stress has been made on the evolution of nanomaterials that have been approved for clinical applications by the United States Food and Drug Administration Agency (FDA).
Collapse
Affiliation(s)
- Shabir Hassan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aycabal Ozturk
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saghi Saghazadeh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad Farhan Sohail
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mehmet Dockmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
76
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
77
|
Gorshkov NI, Shatik SV, Tokarev AV, Gavrilova II, Nazarova OV, Murko AY, Krasikov VD, Panarin EF. Synthesis of complexes of N-vinylpyrrolidone–vinylamine or N-vinylpyrrolidone–allylamine containing macrocyclic polyligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) with gallium-68 isotope and estimation of their in vivo distribution. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1714-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
78
|
Study the role of poly(diethyl aminoethyl methacrylate) as a modified and grafted shell for TiO2 and ZnO nanoparticles, application in flutamide delivery. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
79
|
Desai KGH. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer. J Biomed Mater Res B Appl Biomater 2017. [PMID: 28650116 DOI: 10.1002/jbm.b.33943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oral cancer is among the most prevalent cancers in the world. Moreover, it is one of the major health problems and causes of death in many regions of the world. The traditional treatment modalities include surgical removal, radiation therapy, systemic chemotherapy, or a combination of these methods. In recent decades, there has been significant interest in intraoral site-specific chemoprevention via local drug delivery using polymeric systems. Because of its easy accessibility and clear visibility, the oral mucosa is amenable for local drug delivery. A variety of polymeric systems-such as gels, tablets, films, patches, injectable systems (e.g., millicylindrical implants, microparticles, and in situ-forming depots), and nanosized carriers (e.g., polymeric nanoparticles, nanofibers, polymer-drug conjugates, polymeric micelles, nanoliposomes, nanoemulsions, and polymersomes)-have been developed and evaluated for the local delivery of natural and synthetic chemopreventive agents. The findings of in vitro, ex vivo, and in vivo studies and the positive outcome of clinical trials demonstrate that intraoral site-specific drug delivery is an attractive, highly effective and patient-friendly strategy for the management of oral cancer. Intraoral site-specific drug delivery provides unique therapeutic advantages when compared to systemic chemotherapy. Moreover, intraoral drug delivery systems are self-administrable and can be removed when needed, increasing patient compliance. This article covers important aspects and advances related to the design, development, and efficacy of polymeric systems for intraoral site-specific drug delivery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1383-1413, 2018.
Collapse
Affiliation(s)
- Kashappa Goud H Desai
- Biopharmaceutical Product Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, 19406
| |
Collapse
|
80
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
Kern HB, Srinivasan S, Convertine AJ, Hockenbery D, Press OW, Stayton PS. Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides. Mol Pharm 2017; 14:1450-1459. [PMID: 28277671 PMCID: PMC5823688 DOI: 10.1021/acs.molpharmaceut.6b01178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA300 but not with PEGMA950. MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a red blood cell lysis assay showed a corresponding increase in membrane destabilizing activity (<1% lysis at pH 7.4 versus 95% lysis at pH 6.6). The full carrier-drug system successfully induced apoptosis in SKOV3 ovarian cancer cells in a dose-dependent manner, in comparison to a control polymer containing a scrambled BIM peptide sequence. Mechanistic analysis verified target-dependent activation of caspase 3/7 activity (8.1-fold increase), and positive annexin V staining (72% increase). The increased blood stability of this enzyme-cleavable peptide polymer design, together with the direct polymerization approach that eliminated postsynthetic conjugation steps, suggests that this new carrier design could provide important benefits for intracellular peptide drug delivery.
Collapse
Affiliation(s)
- Hanna B. Kern
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Selvi Srinivasan
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Anthony J. Convertine
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - David Hockenbery
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98108, United States
| | - Oliver W. Press
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98108, United States
| | - Patrick S. Stayton
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
82
|
Mauri E, Papa S, Masi M, Veglianese P, Rossi F. Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv 2017; 14:1305-1313. [DOI: 10.1080/17425247.2017.1285280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emanuele Mauri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Simonetta Papa
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Maurizio Masi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| |
Collapse
|
83
|
Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J Control Release 2016; 247:28-54. [PMID: 28027948 DOI: 10.1016/j.jconrel.2016.12.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided.
Collapse
Affiliation(s)
- Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
84
|
Maeda H, Tsukigawa K, Fang J. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects. Microcirculation 2016; 23:173-82. [PMID: 26237291 DOI: 10.1111/micc.12228] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
Abstract
Solid tumor has unique vascular architecture, excessive production of vascular mediators, and extravasation of macromolecules from blood vessels into the tumor tissue interstitium. These features comprise the phenomenon named the EPR effect of solid tumors, described in 1986. Our investigations on the EPR revealed that many mediators, such as bradykinin, NO, and prostaglandins, are involved in the EPR effect, which is now believed to be the most important element for cancer-selective drug delivery. However, tumors in vivo manifest great diversity, and some demonstrate a poor EPR effect, for example, because of impaired vascular flow involving thrombosis, with poor drug delivery and therapeutic failure. Another important element of this effect is that it operates in metastatic cancers. Because few drugs are currently effective against metastases, the EPR effect offers a great advantage in nanomedicine therapy. The EPR effect can also be augmented two to three times via nitroglycerin, ACE inhibitors, and angiotensin II-induced hypertension. The delivery of nanomedicines to tumors can thereby be enhanced. In traditional PDT, most PSs had low MW and little tumor-selective accumulation. Our hydroxypropylmetacrylamide-polymer-conjugated-PS, zinc protoporphyrin (apparent MW >50 kDa) showed tumor-selective accumulation, as revealed by fluorescent imaging of autochthonous cancers. After one i.v. injection of polymeric PS followed by two or three xenon light irradiation/treatments, most tumors regressed. Thus, nanoprobes with the EPR effect seem to have remarkable effects. Enhancing the EPR effect by using vascular modulators will aid innovations in PDT for greater tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Institute of Drug Delivery Science, Sojo University, Kumamoto, Japan
| | - Kenji Tsukigawa
- Institute of Drug Delivery Science, Sojo University, Kumamoto, Japan
| | - Jun Fang
- Institute of Drug Delivery Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
85
|
Abstract
Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Collapse
Affiliation(s)
- Jianyu Li
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
86
|
Shah NJ, Geiger BC, Quadir MA, Hyder MN, Krishnan Y, Grodzinsky AJ, Hammond PT. Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair. Bioeng Transl Med 2016; 1:347-356. [PMID: 28584879 PMCID: PMC5457159 DOI: 10.1002/btm2.10043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The efficient transport of biological therapeutic materials to target tissues within the body is critical to their efficacy. In cartilage tissue, the lack of blood vessels prevents the entry of systemically administered drugs at therapeutic levels. Within the articulating joint complex, the dense and highly charged extracellular matrix (ECM) hinders the transport of locally administered therapeutic molecules. Consequently, cartilage injury is difficult to treat and frequently results in debilitating osteoarthritis. Here we show a generalizable approach in which the electrostatic assembly of synthetic polypeptides and a protein, insulin‐like growth factor‐1 (IGF‐1), can be used as an early interventional therapy to treat injury to the cartilage. We demonstrated that poly(glutamic acid) and poly(arginine) associated with the IGF‐1 via electrostatic interactions, forming a net charged nanoscale polyelectrolyte complex (nanoplex). We observed that the nanoplex diffused into cartilage plugs in vitro and stimulated ECM production. In vivo, we monitored the transport, retention and therapeutic efficacy of the nanoplex in an established rat model of cartilage injury. A single therapeutic dose, when administered within 48 hr of the injury, conferred protection against cartilage degradation and controlled interleukin‐1 mediated inflammation. IGF‐1 contained in the nanoplex was detected in the joint space for up to 4 weeks following administration and retained bioactivity. The results indicate the potential of this approach as an early intervention therapy following joint injury to delay or even entirely prevent the onset of osteoarthritis.
Collapse
Affiliation(s)
- Nisarg J Shah
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Brett C Geiger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Dept. of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Mohiuddin A Quadir
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Md Nasim Hyder
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Yamini Krishnan
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Alan J Grodzinsky
- Dept. of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Paula T Hammond
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, Cambridge MA 02142
| |
Collapse
|
87
|
Shang J, Hong K, Wang T, Zhu D, Shen J. Dielectric and Mechanical Investigations on the Hydrophilicity and Hydrophobicity of Polyethylene Oxide Modified on a Silicon Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11395-11404. [PMID: 27690462 DOI: 10.1021/acs.langmuir.6b02436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (Mw), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the Mw of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO with higher Mw, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young's modulus decreases and the loss factor increases with the increase in the Mw of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.
Collapse
Affiliation(s)
- Jing Shang
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6494, United States
| | - Tao Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Dan Zhu
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Jian Shen
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| |
Collapse
|
88
|
Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016; 240:93-108. [PMID: 26578439 PMCID: PMC5767577 DOI: 10.1016/j.jconrel.2015.11.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.
Collapse
Affiliation(s)
- Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
89
|
Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase. Int J Mol Sci 2016; 17:ijms17111796. [PMID: 27801788 PMCID: PMC5133797 DOI: 10.3390/ijms17111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022] Open
Abstract
Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of −5.8 kcal/mol and (LIG2) of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.
Collapse
|
90
|
|
91
|
Wang H, Xiong J, Liu G, Wang Y. A pH-Sensitive Phospholipid Polymeric Prodrug Based on Branched Polyethylenimine for Intracellular Drug Delivery. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haibo Wang
- Textile Institute; College of Light Industry; Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Junjie Xiong
- Department of Pancreatic Surgery; West China Hospital; Sichuan University; Chengdu 610041 China
| | - Gongyan Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610065 China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610065 China
| |
Collapse
|
92
|
Simultaneous size and density determination of polymeric colloids by continuous contrast variation in small angle X-ray scattering. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
93
|
Luque-Michel E, Imbuluzqueta E, Sebastián V, Blanco-Prieto MJ. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 2016; 14:75-92. [PMID: 27339650 DOI: 10.1080/17425247.2016.1205585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cancer is a leading cause of death worldwide and efficient new strategies are urgently needed to combat its high mortality and morbidity statistics. Fortunately, over the years, nanotechnology has evolved as a frontrunner in the areas of imaging, diagnostics and therapy, giving the possibility of monitoring, evaluating and individualizing cancer treatments in real-time. Areas covered: Polymer-based nanocarriers have been extensively studied to maximize cancer treatment efficacy and minimize the adverse effects of standard therapeutics. Regarding diagnosis, nanomaterials like quantum dots, iron oxide nanoparticles or gold nanoparticles have been developed to provide rapid, sensitive detection of cancer and, therefore, facilitate early treatment and monitoring of the disease. Therefore, multifunctional nanosystems with both imaging and therapy functionalities bring us a step closer to delivering precision/personalized medicine in the cancer setting. Expert opinion: There are multiple barriers for these new nanosystems to enter the clinic, but it is expected that in the near future, nanocarriers, together with new 'targeted drugs', could replace our current treatments and cancer could become a nonfatal disease with good recovery rates. Joint efforts between scientists, clinicians, the pharmaceutical industry and legislative bodies are needed to bring to fruition the application of nanosystems in the clinical management of cancer.
Collapse
Affiliation(s)
- Edurne Luque-Michel
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| | - Edurne Imbuluzqueta
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| | - Víctor Sebastián
- c Institute of Nanoscience of Aragon (INA) and Department of Chemical, Engineering and Environmental Technology , University of Zaragoza , Zaragoza , Spain.,d CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Centro de Investigación Biomédica en Red , Madrid , Spain
| | - María J Blanco-Prieto
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| |
Collapse
|
94
|
Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker IS. Clinical applications of amylase: Novel perspectives. Surgery 2016; 160:26-37. [PMID: 27117578 DOI: 10.1016/j.surg.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/20/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amylase was the first enzyme to be characterized, and for the previous 200 years, its clinical role has been restricted to a diagnostic aid. Recent interface research has led to a substantial expansion of its role into novel, viable diagnostic, and therapeutic applications to cancer, infection, and wound healing. This review provides a concise "state-of-the-art" overview of the genetics, structure, distribution, and localization of amylase in humans. METHOD A first-generation literature search was performed with the MeSH search string "Amylase AND (diagnost∗ OR therapeut$)" on OVIDSP and PUBMED platforms. A second-generation search was then performed by forward and backward referencing on Web of Knowledge™ and manual indexing, limited to the English Language. RESULTS "State of the Art" in amylase genetics, structure, function distribution, localisation and detection of amylase in humans is provided. To the 4 classic patterns of hyperamylasemia (pancreatic, salivary, macroamylasemia, and combinations) a fifth, the localized targeting of amylase to specific foci of infection, is proposed. CONCLUSIONS The implications are directed at novel therapeutic and diagnostic clinical applications of amylase such as the novel therapeutic drug classes capable of targeted delivery and "smart release" in areas of clinical need. Future directions of research in areas of high clinical benefit are reported.
Collapse
Affiliation(s)
- Ernest Azzopardi
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom.
| | - Catherine Lloyd
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom
| | | | - R Steven Conlan
- Centre for Nanohealth, Swansea University, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
95
|
Zhang T, Lin H, Cui L, An N, Tong R, Chen Y, Yang C, Li X, Liu J, Qu F. Near Infrared Light Triggered Reactive Oxygen Species Responsive Upconversion Nanoplatform for Drug Delivery and Photodynamic Therapy. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
96
|
Studenovský M, Heinrich AK, Lucas H, Mueller T, Mäder K, Etrych T. Dual fluorescent N-(2-hydroxypropyl) methacrylamide-based conjugates for passive tumor targeting with reduction-sensitive drug release: Proof of the concept, tumor accumulation, and biodistribution. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515618975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the field of drug delivery, many different carrier systems have been described to date, including nanoparticles, micelles, liposomes, and water-soluble polymer conjugates, where the active compound could be either incorporated non-covalently or linked to its carrier by a degradable chemical bond. In this study, we synthesized, characterized, and investigated the in vivo fate of N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with a drug model bound via a disulfide bond, which is frequently cited in the literature as being completely stable in the bloodstream but readily cleaved after cell internalization. The concept was based on a “dual” labeling of N-(2-hydroxypropyl)methacrylamide copolymers with two different fluorescent dyes, where the first dye was linked via a disulfide bond, thus representing a model drug, while the second dye was attached as an amide and served as a label for the polymer carrier. Two conjugates, differing in their molecular weights (30 and 104 kDa), were examined using a multispectral optical imaging technique in athymic nude mice inoculated with HT-29 and DLD-1 human colon carcinoma xenografts. Additionally, necropsied organs and tumors were examined ex vivo to obtain more detailed information about polymer and model drug biodistribution. In vivo results confirmed preferential tumor accumulation for both conjugates. Moreover, different fluorescence patterns for the polymer and drug model were observed in both mice and necropsied tumors, indicating tumor-specific “drug” release.
Collapse
Affiliation(s)
- Martin Studenovský
- Institute of Macromolecular Chemistry AS CR, v.v.i., Prague, Czech Republic
| | | | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry AS CR, v.v.i., Prague, Czech Republic
| |
Collapse
|
97
|
Yan Q, Yang Y, Chen W, Hu J, Yang D. Construction of polymer–paclitaxel conjugate linked via a disulfide bond. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:580-5. [DOI: 10.1016/j.msec.2015.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
|
98
|
Li J, Zhang L, Lin Y, Xiao H, Zuo M, Cheng D, Shuai X. A pH-sensitive prodrug micelle self-assembled from multi-doxorubicin-tailed polyethylene glycol for cancer therapy. RSC Adv 2016. [DOI: 10.1039/c5ra27293a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel tetra-doxorubicin-tailed polyethylene glycol via benzoic-imine bond linkage was synthesized and self-assembled to a pH-sensitive prodrug micelle.
Collapse
Affiliation(s)
- Jingguo Li
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Lu Zhang
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yujie Lin
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Hong Xiao
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Mingxiang Zuo
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
99
|
Xie X, Luo S, Mukerabigwi JF, Mei J, Zhang Y, Wang S, Xiao W, Huang X, Cao Y. Targeted nanoparticles from xyloglucan–doxorubicin conjugate loaded with doxorubicin against drug resistance. RSC Adv 2016. [DOI: 10.1039/c6ra01779g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel targeted Xyloglucan–doxorubicin nanoparticle drug delivery systems (DOX nano-DDSs) exhibited improved cellular uptake, increased accumulation in tumor, higher cytotoxicity against drug resistant tumor cells and reduced side effects.
Collapse
Affiliation(s)
- Xuan Xie
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Shiying Luo
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jean Felix Mukerabigwi
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jian Mei
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yuannian Zhang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Shufang Wang
- Blood Transfusion Department
- The General Hospital of the People's Liberation Army
- Beijing 100853
- China
| | - Wang Xiao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xueying Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
100
|
Jacques SA, Leriche G, Mosser M, Nothisen M, Muller CD, Remy JS, Wagner A. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: a rational approach towards improved cleavable linkers for biospecific endosomal release. Org Biomol Chem 2016; 14:4794-803. [DOI: 10.1039/c6ob00846a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action.
Collapse
Affiliation(s)
- Sylvain A. Jacques
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Geoffray Leriche
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Michel Mosser
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Marc Nothisen
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Christian D. Muller
- Laboraroire d'Innovation Thérapeutique
- UMR 7200
- CNRS University of Strasbourg
- Faculty of Pharmacy
- 67400 Illkirch
| | - Jean-Serge Remy
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Alain Wagner
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| |
Collapse
|