51
|
Production and characterization of composite films with zein nanoparticles based on the complexity of continuous film matrix. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
Roy S, Ezati P, Rhim JW. Fabrication of Antioxidant and Antimicrobial Pullulan/Gelatin Films Integrated with Grape Seed Extract and Sulfur Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2316-2323. [PMID: 35468281 DOI: 10.1021/acsabm.2c00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biopolymer-based functional blend films were prepared using pullulan and gelatin with functional fillers of sulfur nanoparticles (SNPs) and grape seed extract (GSE). A mixture of pullulan/gelatin (1:1) produced a compatible but slightly translucent free-standing film. SNPs capped with enoki mushroom extract and GSE were added as functional fillers to improve the properties (physical and functional) of the pullulan/gelatin-based film. The addition of SNP and GSE significantly (p < 0.05) boosted the UV-light barrier, water vapor barrier, and oxygen barrier properties of the pullulan/gelatin films. The mechanical performance of the pullulan/gelatin-based films was slightly decreased (∼10%), whereas the addition of fillers did not significantly affect the hydrophobicity and thermal stability. The addition of SNP provided the antimicrobial function against foodborne pathogenic bacteria, L. monocytogenes and E. coli, while GSE provided a powerful antioxidant activity to the pullulan/gelatin-based film. Therefore, pullulan/gelatin-based composite films with better UV, water vapor, and oxygen barrier properties and enhanced antioxidant and antibacterial properties are expected to have high utility in active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
53
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
54
|
Choobkar N, Daraei Garmakhany A, Aghajani AR, Ataee M. Response surface optimization of pudding formulation containing fish gelatin and clove ( Syzygium aromaticum) and cinnamon ( Cinnamomum verum) powder: Effect on color, physicochemical, and sensory attributes of the final pudding product. Food Sci Nutr 2022; 10:1257-1274. [PMID: 35432963 PMCID: PMC9007300 DOI: 10.1002/fsn3.2761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/12/2021] [Accepted: 01/02/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, the response surface methodology (RSM) was used to optimize the pudding formulation ingredients including the fish/bovine gelatin ratio and cinnamon and clove powder and determine the color and physicochemical and sensory attributes’ change in final pudding product. Experiments were carried out based on a central composite design (CCD). The results showed that by increasing the ratio of fish gelatin to bovine gelatin (FG/BG) up to 3%, the moisture content increased slightly and then decreased significantly. Increasing the cinnamon powder to 0.5% reduced the moisture content. Increasing the FG/BG in the formulation of pudding samples reduced the protein content. The effects of cinnamon and clove powder on the protein content were increasing and decreasing, respectively. By increasing the FG/BG ratio, the samples syneresis showed a significant decrease, while the effects of cinnamon and clove powder on the syneresis were nonsignificant. As the level of cinnamon and clove powder increased, the L* value decreased. Cinnamon and clove powder had a linear effect, and the interaction of gelatins and clove powder had a significant effect on changes in redness. The effects of cinnamon and clove powder on b* value were significant. In terms of sensory evaluation, increasing the cinnamon powder concentration increased the appearance scores, while in the case of fish gelatin, this trend was downward. The linear effect of cinnamon powder on taste was significant, while other variables had no significant effect on the taste of the samples. The sample texture was significantly affected by fish gelatin and clove powder. Increasing FG/BG from 0% to 2.5% increased the texture score, but after this range, a decrease in the texture score was observed. The overall acceptance of samples was more affected by spice powder compared to gelatin. By increasing the cinnamon powder and FG/BG, the overall acceptance increased and decreased, respectively. In conclusion, the optimal FG/BG and cinnamon and clove powder were introduced 1.479%, 0.288%, and 0.619% respectively.
Collapse
Affiliation(s)
- Nasrin Choobkar
- Department of Fisheries Faculty of Agriculture Kermanshah Branch Islamic Azad University Kermanshah Iran
| | - Amir Daraei Garmakhany
- Department of Food Science and Technology Toyserkan Faculty of Engineering and Natural Resources Bu-Ali Sina University Hamedan Iran
| | - Abdolraza R Aghajani
- Department of Food Science and Technology Faculty of Industrial and Mechanical Engineering Qazvin Branch Islamic Azad University Qazvin Iran
| | - Maryam Ataee
- Department of Food Science and Technology, Science and Research Tehran branch Islamic Azad University Tehran Iran
| |
Collapse
|
55
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
56
|
|
57
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
58
|
Torres CE, Cifuentes J, Gómez SC, Quezada V, Giraldo KA, Puentes PR, Rueda-Gensini L, Serna JA, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Microfluidic Synthesis and Purification of Magnetoliposomes for Potential Applications in the Gastrointestinal Delivery of Difficult-to-Transport Drugs. Pharmaceutics 2022; 14:315. [PMID: 35214047 PMCID: PMC8877506 DOI: 10.3390/pharmaceutics14020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and 90% by varying the total flow rates (TFRs), flow rate ratios (FRRs), and MNPs concentration. Moreover, remarkable biocompatibility was attained with the obtained MLPs in terms of hemocompatibility (hemolysis below 1%), platelet aggregation (less than 10% with respect to PBS 1×), and cytocompatibility (cell viability higher than 80% in AGS and Vero cells at concentrations below 0.1 mg/mL). Additionally, promising delivery results were obtained, as evidenced by high internalization, low endosomal entrapment (AGS cells: PCC of 0.28 and covered area of 60% at 0.5 h and PCC of 0.34 and covered area of 99% at 4 h), and negligible nuclear damage and DNA condensation. These results confirm that the developed microfluidic devices allow high-throughput production of MLPs for potential encapsulation and efficient delivery of nanostructured cell-penetrating agents. Nevertheless, further in vitro analysis must be carried out to evaluate the prevalent intracellular trafficking routes as well as to gain a detailed understanding of the existing interactions between nanovehicles and cells.
Collapse
Affiliation(s)
- Carlos E. Torres
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Valentina Quezada
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Kevin A. Giraldo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| |
Collapse
|
59
|
Fukada K, Tajima T, Seyama M. Thermoresponsive Gelatin/Chitosan Hydrogel Films for a Degradable Capacitor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59006-59011. [PMID: 34817996 DOI: 10.1021/acsami.1c14905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ingestible electronic devices are tools for exploring the condition of the gastrointestinal tract and adjacent organs without a burden on the patients. Making them safe requires that they be fabricated with harmless materials. In this study, we developed a capacitor using food materials for a wireless sensing component. As a safer approach, gelatin, an ingredient responsive to external stimuli, was selected as a substrate for deforming the device at the desired time. Gelatin experiences sol-gel changes near body temperature; however, it is instantly dissolved and is not suitable for long-term use in the body. Thus, to maintain its thermal responsiveness, we used a tangle of gel networks created by mixing gelatin and chitosan without cross-linking agents. Our search for the appropriate gel mixing ratio provided insights into the criteria for achieving slow sol-gel changes and how to improve the thermal durability. We transferred a sputtered gold film onto the gel films to produce electrodes and then made a capacitor by sandwiching a naturally dried sodium polyacrylate film between the electrodes. The resonance frequency measurement of RLC circuits in combination with commercial plane coils showed that the capacitor worked in the megahertz band and that it collapsed when immersed in hot water. Gastric acid detection was also achieved with this capacitor. This electronic part will contribute to the development of implanted or ingestible medical devices and a wide range of environmental sensors composed of natural ingredients.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Labs, NTT Corporation 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takuro Tajima
- NTT Device Technology Labs, NTT Corporation 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Michiko Seyama
- NTT Device Technology Labs, NTT Corporation 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
60
|
Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. Int J Biol Macromol 2021; 192:1160-1168. [PMID: 34678378 DOI: 10.1016/j.ijbiomac.2021.10.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023]
Abstract
Antioxidant and antimicrobial chitosan (CS) films incorporated with different concentrations (0, 3, 6 and 9% w/w based on chitosan) of pomegranate peel powder (PPP) were prepared through a simple and low-cost process and characterized. The physicochemical property, antioxidant and antibacterial properties of the films were investigated. Results showed that incorporation with PPP increased the thickness, water solubility (WS), water vapor permeability (WVP), opacity and total phenolic content (TPC) of chitosan films, but decreased the moisture content (MC) and mechanical property. Fourier transform infrared (FTIR) spectroscopy indicated the formation of hydrogen bonds between chitosan and PPP. In addition, scanning electron microscopy (SEM) analysis presented that microstructural attributes of chitosan film changed by enriching with pomegranate peel. The films with concentrations of PPP at 6 and 9% presented great ultraviolet-visible light barrier properties. Moreover, the antioxidant ability of films with PPP was significantly increased compared to the chitosan film. The addition of PPP also promoted the antibacterial capacity of the control film. These results revealed that incorporation of PPP in chitosan film could fabricate an economical active film with antioxidant and antibacterial properties, and which had the potential for developing food-grade packaging material.
Collapse
|
61
|
Zhu H, Cheng JH, Han Z, Han Z. Cold plasma enhanced natural edible materials for future food packaging: structure and property of polysaccharides and proteins-based films. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34766864 DOI: 10.1080/10408398.2021.2002258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural edible films have recently gained a lot of interests in future food packaging. Polysaccharides and proteins in edible materials are not toxic and widely available, which have been confirmed as sustainable and green materials used for packaging films due to their good film-forming abilities. However, polysaccharides and proteins are hydrophilic in nature, they exhibit some undesirable material properties. Cold plasma (CP), as an innovative and highly efficient technology, has been introduced to improve the performance of polysaccharides and proteins-based films. This review mainly presents the basic information of polysaccharides and proteins-based films, principles of CP modified biopolymer films, and the effects of CP on the structural changes including surface morphology, surface composition, and bulk modification, and properties including wettability, mechanical properties, barrier properties, and thermal properties of polysaccharides, proteins, and polysaccharide/protein composite-based films. It is concluded that the CP modified performances are mainly depending on the polysaccharides and proteins raw materials, CP generation types and treatment conditions. The existing difficulties and future trends are also discussed. Despite natural materials currently not fully substitute for traditional plastic materials, CP has exhibited an effective solution to shape the future of natural materials for food packaging.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
62
|
Development and characterization of Caesalpinia pulcherrima seed gum-based films to determine their applicability in food packaging. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
63
|
Elaboration of Whey Protein-Based Films in Food Products: Emphasis on the Addition of Natural Edible Bio-nanocomposites With Antioxidant and Antimicrobial Activity. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
: Food spoilage is one of the major elements of food insecurity that has acquired significant attention over recent decades due to global human population growth. Several studies have investigated increasing shelf life of food products using natural and environmentally friendly compounds. Whey protein (WP) can be an important additive material because it is well-known for its high value of nutrition and well characteristics for the formation of edible films. Furthermore, natural bioactive compounds have been incorporated with WP-based films to confer their antioxidant and antimicrobial activities. Herein, nanotechnology has been effectively potentiated the antimicrobial and antioxidant properties of WP films. A wide range of bioactive agents has been embedded in the WP films, such as essential oils (EOs), TiO2, nano-clay, and even lactic acid bacteria. The current paper reviews the antioxidant and antimicrobial effects of different types of WP films and their applications in food products. This study also discussed the impact of WP films on shelf life, chemical and microbiological quality indices of meats, processed meats, poultry meat products, and fish.
Collapse
|
64
|
Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, Ren F, Miao M, Tian Y, Jin Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
65
|
Yuan D, Meng H, Huang Q, Li C, Fu X. Preparation and characterization of chitosan-based edible active films incorporated with Sargassum pallidum polysaccharides by ultrasound treatment. Int J Biol Macromol 2021; 183:473-480. [PMID: 33915213 DOI: 10.1016/j.ijbiomac.2021.04.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
In this study, Sargassum pallidum polysaccharides (SPPs) were incorporated into chitosan (CH) to develop a novel edible active film (CH/SPPs-US) via ultrasonication. The mechanical, water vapor permeability, surface morphology, crystallinity, antioxidant, and fruit preservation properties of CH/SPPs-US films prepared under sequences of matrix ratios and ultrasound treatment were investigated. The results revealed that the addition of SPPs combined with ultrasonic treatment could significantly enhance the transparency, elongation and tensile strength of the films whereas the water vapor permeability was decreased. Tensile strength and elongation at break of the C2/SP1.2-US film were 12.07 N and 54.18%, respectively, which were significantly higher than those for CH film. Meanwhile, the water vapor permeability value of C2/SP1.2-US was reduced by as high as 40.2% compared with that of chitosan film. In addition, antioxidant effect evaluation showed that the CH-based films added with SPPs exhibited better antioxidant activity than CH film, and ultrasonic treatment could further strengthen the antioxidant activity of the film. The CH/SPPs-US films could effectively extend the shelf life and inhibit the deterioration of the strawberry at room temperature (25 ± 1 °C) and 70% ± 5% relative humidity for 7 days. These results indicated that the CH/SPPs edible films via ultrasonication could be developed as edible packaging films for the preservation of fresh fruits.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China.
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China.
| |
Collapse
|
66
|
Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
About one-third of the total food produced is wasted, rising the concern to adopt proper management. Simultaneously with the increase in population, demand for food is increasing which may lead to scarcity. Adequate packaging is one of the ways to avoid deterioration of food and prevent wastage. In recent years, active packaging has attained interest due to its commendable results in food preservation. Several studies proved that the embodiment of antimicrobial components into the packaging material has the ability to prevent microbial contamination. Antimicrobial peptides (AMP) are newly discovered antimicrobial agents for impregnation into packaging material. Among various sources for AMP, insects have shown great resistivity against a wide spectrum of microorganisms. Insects feed on substances consisting of a varying range of contaminations, which often results in infections. Insects synthesise AMPs to fight such infections and survive in that atmosphere. The disease-causing agents in humans are the same as those found in insects. Hence, AMPs extracted from insects have the potential to fight the microorganisms that act as hazards to human health. This review highlights the harvesting and synthesis of AMPs from Hermetia illucens, which is a promising source for AMP and its applications in the food packaging industry.
Collapse
|
67
|
Agarose Stearate-Carbomer 940 as Stabilizer and Rheology Modifier for Surfactant-Free Cosmetic Formulations. Mar Drugs 2021; 19:md19060344. [PMID: 34208474 PMCID: PMC8235605 DOI: 10.3390/md19060344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Some commonly used surfactants in cosmetic products raise concerns due to their skin-irritating effects and environmental contamination. Multifunctional, high-performance polymers are good alternatives to overcome these problems. In this study, agarose stearate (AS) with emulsifying, thickening, and gel properties was synthesized. Surfactant-free cosmetic formulations were successfully prepared from AS and carbomer940 (CBM940) mixed systems. The correlation of rheological parameter with skin feeling was determined to study the usability of the mixed systems in cosmetics. Based on rheological analysis, the surfactant-free cosmetic cream (SFC) stabilized by AS-carbomer940 showed shear-thinning behavior and strongly synergistic action. The SFC exhibited a gel-like behavior and had rheological properties similar to commercial cosmetic creams. Scanning electron microscope images proved that the AS-CBM940 network played an important role in SFC’s stability. Oil content could reinforce the elastic characteristics of the AS-CBM940 matrix. The SFCs showed a good appearance and sensation during and after rubbing into skin. The knowledge gained from this study may be useful for designing surfactant-free cosmetic cream with rheological properties that can be tailored for particular commercial cosmetic applications. They may also be useful for producing medicine products with highly viscous or gel-like textures, such as some ointments and wound dressings.
Collapse
|
68
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
69
|
Daniloski D, Petkoska AT, Lee NA, Bekhit AED, Carne A, Vaskoska R, Vasiljevic T. Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
70
|
An S, Shang W, Jiang M, Luo Y, Fu B, Song C, Tao P, Deng T. Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. Proc Natl Acad Sci U S A 2021; 118:e2021077118. [PMID: 33876757 PMCID: PMC8054021 DOI: 10.1073/pnas.2021077118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the increasing pursuit of intelligent systems, the integration of human components into functional systems provides a promising route to the ultimate human-compatible intelligent systems. In this work, we explored the integration of the human hand as the powerless and multiplexed infrared (IR) light source in different functional systems. With the spontaneous IR radiation, the human hand provides a different option as an IR light source. Compared to engineered IR light sources, the human hand brings sustainability with no need of external power and also additional level of controllability to the functional systems. Besides the whole hand, each finger of the hand can also independently provide IR radiation, and the IR radiation from each finger can be selectively diffracted by specific gratings, which helps the hand serve as a multiplexed IR light source. Considering these advantages, we show that the human hand can be integrated into various engineered functional systems. The integration of hand in an encryption/decryption system enables both unclonable and multilevel information encryption/decryption. We also demonstrate the use of the hand in complex signal generation systems and its potential application in sign language recognition, which shows a simplified recognition process with a high level of accuracy and robustness. The use of the human hand as the IR light source provides an alternative sustainable solution that will not only reduce the power used but also help move forward the effort in the integration of human components into functional systems to increase the level of intelligence and achieve ultimate control of these systems.
Collapse
Affiliation(s)
- Shun An
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Shang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Modi Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yini Luo
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Benwei Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengyi Song
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Tao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Deng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
71
|
Fabrication, characterization, and anti‐free radical performance of edible packaging‐chitosan film synthesized from shrimp shell incorporated with ginger essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00875-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
72
|
Iqbal S, Nadeem S, Bano R, Bahadur A, Ahmad Z, Javed M, AL‐Anazy MM, Qasier AA, Laref A, Shoaib M, Liu G, Qayyum MA. Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging application. J Appl Polym Sci 2021. [DOI: 10.1002/app.50604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shahid Iqbal
- School of Chemistry and Materials Engineering Huizhou University Huizhou Guangdong China
| | - Sohail Nadeem
- Department of Chemistry, School of Science University of Management & Technology Lahore Pakistan
| | - Razia Bano
- Department of Chemistry, School of Science University of Management & Technology Lahore Pakistan
| | - Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University Seoul 08826 South Korea
| | - Zahoor Ahmad
- Department of Chemistry University of Engineering and Technology Lahore Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science University of Management & Technology Lahore Pakistan
| | - Murefah Mana AL‐Anazy
- Department of Chemistry, College of Science Princess Nurah bint Abdulrahman University Riyadh Saudi Arabia
| | - Asif Ali Qasier
- Department of Chemistry, School of Science University of Management & Technology Lahore Pakistan
| | - Amel Laref
- Department of Physics and Astronomy, College of Science King Saud University Riyadh Saudi Arabia
| | - Muhammad Shoaib
- Department of Chemistry Government Postgraduate College Samanabad Faisalabad Pakistan
| | - Guocong Liu
- School of Chemistry and Materials Engineering Huizhou University Huizhou Guangdong China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore Lahore Pakistan
| |
Collapse
|
73
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
74
|
Zibaei R, Hasanvand S, Hashami Z, Roshandel Z, Rouhi M, Guimarães JDT, Mortazavian AM, Sarlak Z, Mohammadi R. Applications of emerging botanical hydrocolloids for edible films: A review. Carbohydr Polym 2020; 256:117554. [PMID: 33483057 DOI: 10.1016/j.carbpol.2020.117554] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
In recent years, many studies have been conducted on the production of edible films from emerging gums, which are mostly made from botanical sources. However, each one interacts differently with the film compounds, producing films with different properties that may improve or hinder their utilization in food packaging. Therefore, the aim of this review was to investigate and compare the physical, mechanical, thermal and structural properties of edible films produced with these emerging gums. The results of this review showed that it is possible to produce edible films with desirable physical, mechanical and thermal properties by optimizing the amounts and type of compounds in film formulations such as plasticizers, nanoparticles, lipid compounds, crosslinkers and combination of gums with other biopolymers. The future trends of this research include the deepening of knowledge to understand the molecular structures of emerging gums and to address the shortcomings of films based on these gums for their industrial-scale application in food packaging.
Collapse
Affiliation(s)
- Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jonas de Toledo Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Amir Mohammad Mortazavian
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sarlak
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
75
|
Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS. Modified Fish Gelatin as an Alternative to Mammalian Gelatin in Modern Food Technologies. Polymers (Basel) 2020; 12:E3051. [PMID: 33352683 PMCID: PMC7766531 DOI: 10.3390/polym12123051] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022] Open
Abstract
This review considers the main properties of fish gelatin that determine its use in food technologies. A comparative analysis of the amino acid composition of gelatin from cold-water and warm-water fish species, in comparison with gelatin from mammals, which is traditionally used in the food industry, is presented. Fish gelatin is characterized by a reduced content of proline and hydroxyproline which are responsible for the formation of collagen-like triple helices. For this reason, fish gelatin gels are less durable and have lower gelation and melting temperatures than mammalian gelatin. These properties impose significant restrictions on the use of fish gelatin in the technology of gelled food as an alternative to porcine and bovine gelatin. This problem can be solved by modifying the functional characteristics of fish gelatin by adding natural ionic polysaccharides, which, under certain conditions, are capable of forming polyelectrolyte complexes with gelatin, creating additional nodes in the spatial network of the gel.
Collapse
Affiliation(s)
| | - Nikolay G. Voron’ko
- Department of Chemistry, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (Y.A.K.); (D.S.K.)
| | | | | |
Collapse
|