51
|
Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, Doran KS. Cas9 Contributes to Group B Streptococcal Colonization and Disease. Front Microbiol 2019; 10:1930. [PMID: 31497003 PMCID: PMC6712506 DOI: 10.3389/fmicb.2019.01930] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a major opportunistic pathogen in certain adult populations, including pregnant women, and remains a leading etiologic agent of newborn disease. During pregnancy, GBS asymptomatically colonizes the vaginal tract of 20-30% of healthy women, but can be transmitted to the neonate in utero or during birth resulting in neonatal pneumonia, sepsis, meningitis, and subsequently 10-15% mortality regardless of antibiotic treatment. While various GBS virulence factors have been implicated in vaginal colonization and invasive disease, the regulation of many of these factors remains unclear. Recently, CRISPR-associated protein-9 (Cas9), an endonuclease known for its role in CRISPR/Cas immunity, has also been observed to modulate virulence in a number of bacterial pathogens. However, the role of Cas9 in GBS colonization and disease pathogenesis has not been well-studied. We performed allelic replacement of cas9 in GBS human clinical isolates of the hypervirulent sequence-type 17 strain lineage to generate isogenic Δcas9 mutants. Compared to parental strains, Δcas9 mutants were attenuated in murine models of hematogenous meningitis and vaginal colonization and exhibited significantly decreased invasion of human brain endothelium and adherence to vaginal epithelium. To determine if Cas9 alters transcription in GBS, we performed RNA-Seq analysis and found that 353 genes (>17% of the GBS genome) were differentially expressed between the parental WT and Δcas9 mutant strain. Significantly dysregulated genes included those encoding predicted virulence factors, metabolic factors, two-component systems (TCS), and factors important for cell wall formation. These findings were confirmed by qRT-PCR and suggest that Cas9 may regulate a significant portion of the GBS genome. We studied one of the TCS regulators, CiaR, that was significantly downregulated in the Δcas9 mutant strain. RNA-Seq analysis of the WT and ΔciaR strains demonstrated that almost all CiaR-regulated genes were also significantly regulated by Cas9, suggesting that Cas9 may modulate GBS gene expression through other regulators. Further we show that CiaR contributes to GBS vaginal colonization and persistence. Altogether, these data highlight the potential complexity and importance of the non-canonical function of Cas9 in GBS colonization and disease.
Collapse
Affiliation(s)
- Brady L. Spencer
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Liwen Deng
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Kathryn A. Patras
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Zachary M. Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Glenda F. Sanches
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Prescilla E. Nagao
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kelly S. Doran
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
52
|
Vaziri F, Brosch R. ESX/Type VII Secretion Systems-An Important Way Out for Mycobacterial Proteins. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0029-2019. [PMID: 31298207 PMCID: PMC10957191 DOI: 10.1128/microbiolspec.psib-0029-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 11/20/2022] Open
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis, has a complex lipid-rich diderm envelope, which acts as a major barrier protecting the bacterium against the hostile environment inside the host cells. For the transfer of diverse molecules across this complex cell envelope, M. tuberculosis has a series of general and specialized protein secretion systems, characterized by the SecA general secretion pathway, the twin-arginine translocation pathway, and five specific ESX type VII secretion systems. In this review, we focus on the latter systems, known as ESX-1 to ESX-5, which were first discovered almost 20 years ago during the in silico analysis of the genome sequence of M. tuberculosis H37Rv. Since then, these systems have been the subject of highly dynamic research due to their involvement in several key biological processes and host-pathogen interactions of the tubercle bacilli.
Collapse
Affiliation(s)
- Farzam Vaziri
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, UMR3525 CNRS, 75015 Paris, France
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, 13164 Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, 13164 Tehran, Iran
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, UMR3525 CNRS, 75015 Paris, France
| |
Collapse
|
53
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
54
|
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. J Bacteriol 2019; 201:JB.00760-18. [PMID: 30833360 DOI: 10.1128/jb.00760-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.
Collapse
|
55
|
Issa E, Salloum T, Panossian B, Ayoub D, Abboud E, Tokajian S. Genome Mining and Comparative Analysis of Streptococcus intermedius Causing Brain Abscess in a Child. Pathogens 2019; 8:pathogens8010022. [PMID: 30781742 PMCID: PMC6471051 DOI: 10.3390/pathogens8010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/09/2023] Open
Abstract
Streptococcus intermedius (SI) is associated with prolonged hospitalization and low survival rates. The genetic mechanisms involved in brain abscess development and genome evolution in comparison to other members of the Streptococcus anginosus group are understudied. We performed a whole-genome comparative analysis of an SI isolate, LAU_SINT, associated with brain abscess following sinusitis with all SI genomes in addition to S. constellatus and S. anginosus. Selective pressure on virulence factors, phages, pan-genome evolution and single-nucleotide polymorphism analysis were assessed. The structural details of the type seven secretion system (T7SS) was elucidated and compared with different organisms. ily and nanA were both abundant and conserved. Nisin resistance determinants were found in 47% of the isolates. Pan-genome and SNPs-based analysis didn’t reveal significant geo-patterns. Our results showed that two SC isolates were misidentified as SI. We propose the presence of four T7SS modules (I–IV) located on various genomic islands. We detected a variety of factors linked to metal ions binding on the GIs carrying T7SS. This is the first detailed report characterizing the T7SS and its link to nisin resistance and metal ions binding in SI. These and yet uncharacterized T7SS transmembrane proteins merit further studies and could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Elio Issa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon.
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon.
| | - Balig Panossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon.
| | - David Ayoub
- Department of Neurosurgery, the Middle East Institute of Health University Hospital, Beirut 60-387, Lebanon.
| | - Edmond Abboud
- Laboratory Department, the Middle East Institute of Health University Hospital, Beirut 60-387, Lebanon.
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon.
| |
Collapse
|
56
|
Wels M, Siezen R, van Hijum S, Kelly WJ, Bachmann H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front Microbiol 2019; 10:4. [PMID: 30766512 PMCID: PMC6365430 DOI: 10.3389/fmicb.2019.00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
Lactococcus lactis is one of the most important micro-organisms in the dairy industry for the fermentation of cheese and buttermilk. Besides the conversion of lactose to lactate it is responsible for product properties such as flavor and texture, which are determined by volatile metabolites, proteolytic activity and exopolysaccharide production. While the species Lactococcus lactis consists of the two subspecies lactis and cremoris their taxonomic position is confused by a group of strains that, despite of a cremoris genotype, display a lactis phenotype. Here we compared and analyzed the (draft) genomes of 43 L. lactis strains, of which 19 are of dairy and 24 are of non-dairy origin. Machine-learning algorithms facilitated the identification of orthologous groups of protein sequences (OGs) that are predictors for either the taxonomic position or the source of isolation. This allowed the unambiguous categorization of the genotype/phenotype disparity of ssp. lactis and ssp. cremoris strains. A detailed analysis of phenotypic properties including plasmid-encoded genes indicates evolutionary changes during niche adaptations. The results are consistent with the hypothesis that dairy isolates evolved from plant isolates. The analysis further suggests that genomes of cremoris phenotype strains are so eroded that they are restricted to a dairy environment. Overall the genome comparison of a diverse set of strains allowed the identification of niche and subspecies specific genes. This explains evolutionary relationships and will aid the identification and selection of industrial starter cultures.
Collapse
Affiliation(s)
- Michiel Wels
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Microbial Bioinformatics, Ede, Netherlands
| | - Sacha van Hijum
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Herwig Bachmann
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
57
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Nath Y, Ray SK, Buragohain AK. Essential role of the ESX-3 associated eccD3 locus in maintaining the cell wall integrity of Mycobacterium smegmatis. Int J Med Microbiol 2018; 308:784-795. [PMID: 30257807 DOI: 10.1016/j.ijmm.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
Mycobacterial pathogens have evolved a unique secretory apparatus called the Type VII secretion system (T7SS) which comprises of five gene clusters designated as ESX1, ESX2, ESX3, ESX4, and ESX5. Of these the ESX3 T7SS plays an important role in the regulatory uptake of iron from the environment, thereby enabling the bacteria to establish successful infection in the host. However, ESX3 secretion system is conserved among all the mycobacterial species including the fast-growing nonpathogenic species M. smegmatis. Although the function of ESX3 T7SS is known to be absolutely critical for establishing infection by M. tuberculosis, its conserved nature in all the pathogenic and nonpathogenic mycobacterial species intrigues to explore the additional functional roles in Mycobacterium species through which potent targets for drugs can be identified and developed. In the present study, we investigated the possible role of EccD3, a transmembrane protein of the ESX3 T7SS in M. smegmatis by deleting the entire eccD3 gene by efficient allelic exchange method. The preliminary investigations through the creation of knockout mutant of the eccD3 gene indicate that this secretory apparatus has an important role in maintaining the cell wall integrity which was evident from the abnormal colony morphology, lack of biofilm formation and difference in cell wall permeability.
Collapse
Affiliation(s)
- Yutika Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India; Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
59
|
EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope. J Bacteriol 2018; 200:JB.00268-18. [PMID: 30082459 DOI: 10.1128/jb.00268-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/31/2018] [Indexed: 11/20/2022] Open
Abstract
The ESAT-6-like secretion system (ESS) of Staphylococcus aureus is assembled in the bacterial membrane from core components that promote the secretion of WXG-like proteins (EsxA, EsxB, EsxC, and EsxD) and the EssD effector. Genes encoding the ESS secretion machinery components, effector, and WXG-like proteins are located in the ess locus. Here, we identify essH, a heretofore uncharacterized gene of the ess locus, whose product is secreted via an N-terminal signal peptide into the extracellular medium of staphylococcal cultures. EssH exhibits two peptidoglycan hydrolase activities, cleaving the pentaglycine cross bridge and the amide bond of N-acetylmuramyl-l-alanine, thereby separating glycan chains and wall peptides with cleaved cross bridges. Unlike other peptidoglycan hydrolases, EssH does not promote the lysis of staphylococci. EssH residues Cys199 and His254, which are conserved in other CHAP domain enzymes, are required for peptidoglycan hydrolase activity and for S. aureus ESS secretion. These data suggest that EssH and its murein hydrolase activity are required for protein secretion by the ESS pathway.IMPORTANCE Gene clusters encoding WXG-like proteins and FtsK/SpoIIIE-like P loop ATPases in Firmicutes encode type 7b secretion systems (T7bSS) for the transport of select protein substrates. The Staphylococcus aureus T7bSS assembles in the bacterial membrane and promotes the secretion of WXG-like proteins and effectors. The mechanisms whereby staphylococci extend the T7SS across the bacterial cell wall envelope are not known. Here, we show that staphylococci secrete EssH to cleave their peptidoglycan, thereby enabling T7bSS transport of proteins across the bacterial cell wall envelope.
Collapse
|
60
|
Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin. J Mol Biol 2018; 430:4344-4358. [PMID: 30194969 PMCID: PMC6193138 DOI: 10.1016/j.jmb.2018.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Gram-positive bacteria deploy the type VII secretion system (T7SS) to facilitate interactions between eukaryotic and prokaryotic cells. In recent work, we identified the TelC protein from Streptococcus intermedius as a T7SS-exported lipid II phosphatase that mediates interbacterial competition. TelC exerts toxicity in the inner wall zone of Gram-positive bacteria; however, intercellular intoxication of sister cells does not occur because they express the TipC immunity protein. In the present study, we sought to characterize the molecular basis of self-protection by TipC. Using sub-cellular localization and protease protection assays, we show that TipC is a membrane protein with an N-terminal transmembrane segment and a C-terminal TelC-inhibitory domain that protrudes into the inner wall zone. The 1.9-Å X-ray crystal structure of a non-protective TipC paralogue reveals that the soluble domain of TipC proteins adopts a crescent-shaped fold that is composed of three α-helices and a seven-stranded β-sheet. Subsequent homology-guided mutagenesis demonstrates that a concave surface formed by the predicted β-sheet of TipC is required for both its interaction with TelC and its TelC-inhibitory activity. S. intermedius cells lacking the tipC gene are susceptible to growth inhibition by TelC delivered between cells; however, we find that the growth of this strain is unaffected by endogenous or overexpressed TelC, although the toxin accumulates in culture supernatants. Together, these data indicate that the TelC-inhibitory activity of TipC is only required for intercellularly transferred TelC and that the T7SS apparatus transports TelC across the cell envelope in a single step, bypassing the cellular compartment in which it exerts toxicity en route. Antibacterial TelC toxin is neutralized in the inner wall zone by membrane-anchored TipC immunity protein. TipC is a crescent-shaped protein that interacts with TelC via its concave surface. TelC and TipC are physically separated by the plasma membrane in TelC-producing cells. The type VII secretion system prevents TelC access to the inner wall zone in TelC-producing bacteria.
Collapse
|
61
|
Das S, Pettersson BMF, Behra PRK, Mallick A, Cheramie M, Ramesh M, Shirreff L, DuCote T, Dasgupta S, Ennis DG, Kirsebom LA. Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing. Sci Rep 2018; 8:12040. [PMID: 30104693 PMCID: PMC6089878 DOI: 10.1038/s41598-018-30152-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the "M"- and the "Aronson"-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Amrita Mallick
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Martin Cheramie
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
62
|
Rapisarda C, Tassinari M, Gubellini F, Fronzes R. Using Cryo-EM to Investigate Bacterial Secretion Systems. Annu Rev Microbiol 2018; 72:231-254. [PMID: 30004822 DOI: 10.1146/annurev-micro-090817-062702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo-electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.
Collapse
Affiliation(s)
- Chiara Rapisarda
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| | - Matteo Tassinari
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Rémi Fronzes
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
63
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
64
|
Ahmed MM, Aboshanab KM, Ragab YM, Missiakas DM, Aly KA. The transmembrane domain of the Staphylococcus aureus ESAT-6 component EssB mediates interaction with the integral membrane protein EsaA, facilitating partially regulated secretion in a heterologous host. Arch Microbiol 2018; 200:1075-1086. [DOI: 10.1007/s00203-018-1519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
65
|
Zilelidou EA, Skandamis PN. Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: microbial interactions from species to strain level. Int J Food Microbiol 2018; 277:10-25. [PMID: 29677551 DOI: 10.1016/j.ijfoodmicro.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Like with all food microorganisms, many basic aspects of L. monocytogenes life are likely to be influenced by its interactions with bacteria living in close proximity. This pathogenic bacterium is a major concern both for the food industry and health organizations since it is ubiquitous and able to withstand harsh environmental conditions. Due to the ubiquity of Listeria monocytogenes, various strains may contaminate foods at different stages of the supply chain. Consequently, simultaneous exposure of consumers to multiple strains is also possible. In this context even strain-to-strain interactions of L. monocytogenes play a significant role in fundamental processes for the life of the pathogen, such as growth or virulence, and subsequently compromise food safety, affect the evolution of a potential infection, or even introduce bias in the detection by classical enrichment techniques. This article summarizes the impact of microbial interactions on the growth and detection of L. monocytogenes primarily in foods and food-associated environments. Furthermore it provides an overview of L. monocytogenes virulence in the presence of other microorganisms.
Collapse
Affiliation(s)
- Evangelia A Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece.
| |
Collapse
|
66
|
Jäger F, Kneuper H, Palmer T. EssC is a specificity determinant for Staphylococcus aureus type VII secretion. MICROBIOLOGY-SGM 2018; 164:816-820. [PMID: 29620499 PMCID: PMC5994694 DOI: 10.1099/mic.0.000650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1-EssC4) that display sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a strain deleted for essC1, and that they are able to mediate secretion of EsxA, an essential component of the secretion apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is only encoded in essC1-specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a model in which the C-terminal domain of EssC interacts with substrate proteins, whereas EsxA interacts elsewhere.
Collapse
Affiliation(s)
- Franziska Jäger
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
67
|
Jamet A, Charbit A, Nassif X. Antibacterial Toxins: Gram-Positive Bacteria Strike Back! Trends Microbiol 2018; 26:89-91. [DOI: 10.1016/j.tim.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 11/27/2022]
|
68
|
Laencina L, Dubois V, Le Moigne V, Viljoen A, Majlessi L, Pritchard J, Bernut A, Piel L, Roux AL, Gaillard JL, Lombard B, Loew D, Rubin EJ, Brosch R, Kremer L, Herrmann JL, Girard-Misguich F. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. Proc Natl Acad Sci U S A 2018; 115:E1002-E1011. [PMID: 29343644 PMCID: PMC5798338 DOI: 10.1073/pnas.1713195115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium abscessus, a rapidly growing mycobacterium (RGM) and an opportunistic human pathogen, is responsible for a wide spectrum of clinical manifestations ranging from pulmonary to skin and soft tissue infections. This intracellular organism can resist the bactericidal defense mechanisms of amoebae and macrophages, an ability that has not been observed in other RGM. M. abscessus can up-regulate several virulence factors during transient infection of amoebae, thereby becoming more virulent in subsequent respiratory infections in mice. Here, we sought to identify the M. abscessus genes required for replication within amoebae. To this end, we constructed and screened a transposon (Tn) insertion library of an M. abscessus subspecies massiliense clinical isolate for attenuated clones. This approach identified five genes within the ESX-4 locus, which in M. abscessus encodes an ESX-4 type VII secretion system that exceptionally also includes the ESX conserved EccE component. To confirm the screening results and to get further insight into the contribution of ESX-4 to M. abscessus growth and survival in amoebae and macrophages, we generated a deletion mutant of eccB4 that encodes a core structural element of ESX-4. This mutant was less efficient at blocking phagosomal acidification than its parental strain. Importantly, and in contrast to the wild-type strain, it also failed to damage phagosomes and showed reduced signs of phagosome-to-cytosol contact, as demonstrated by a combination of cellular and immunological assays. This study attributes an unexpected and genuine biological role to the underexplored mycobacterial ESX-4 system and its substrates.
Collapse
Affiliation(s)
- Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laleh Majlessi
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Justin Pritchard
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Audrey Bernut
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Laura Piel
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Anne-Laure Roux
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Jean-Louis Gaillard
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | - Bérengère Lombard
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Damarys Loew
- Laboratoire de spectrométrie de masse protéomique, Institut Curie, Paris Science and Letters Research University, 75248 Paris, France
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roland Brosch
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, 75015 Paris, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
- INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France;
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, 92380 Garches, France
| | | |
Collapse
|
69
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
70
|
Casabona MG, Buchanan G, Zoltner M, Harkins CP, Holden MTG, Palmer T. Functional analysis of the EsaB component of the Staphylococcus aureus Type VII secretion system. MICROBIOLOGY-SGM 2017; 163:1851-1863. [PMID: 29165232 PMCID: PMC5845737 DOI: 10.1099/mic.0.000580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type VII secretion systems (T7SS) are found in many bacteria and secrete proteins involved in virulence and bacterial competition. In Staphylococcus aureus the small ubiquitin-like EsaB protein has been previously implicated as having a regulatory role in the production of the EsxC substrate. Here we show that in the S. aureus RN6390 strain, EsaB does not genetically regulate production of any T7 substrates or components, but is indispensable for secretion activity. Consistent with EsaB being an essential component of the T7SS, loss of either EsaB or EssC are associated with upregulation of a common set of iron acquisition genes. However, a further subset of genes were dysregulated only in the absence of EsaB. Quantitative western blotting indicates that EsaB is present at very low levels in cells. Substitution of a highly conserved threonine for alanine or arginine resulted in a loss of EsaB activity and destabilisation of the protein. Taken together our findings show that EsaB is essential for T7SS activity in RN6390.
Collapse
Affiliation(s)
- M Guillermina Casabona
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Grant Buchanan
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Martin Zoltner
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Tracy Palmer
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
71
|
WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop in Mycobacterium marinum. Proc Natl Acad Sci U S A 2017; 114:E10772-E10781. [PMID: 29180415 DOI: 10.1073/pnas.1710167114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ESX (ESAT-6 system) export systems play diverse roles across mycobacterial species. Interestingly, genetic disruption of ESX systems in different species does not result in an accumulation of protein substrates in the mycobacterial cell. However, the mechanisms underlying this observation are elusive. We hypothesized that the levels of ESX substrates were regulated by a feedback-control mechanism, linking the levels of substrates to the secretory status of ESX systems. To test this hypothesis, we used a combination of genetic, transcriptomic, and proteomic approaches to define export-dependent mechanisms regulating the levels of ESX-1 substrates in Mycobacterium marinum WhiB6 is a transcription factor that regulates expression of genes encoding ESX-1 substrates. We found that, in the absence of the genes encoding conserved membrane components of the ESX-1 system, the expression of the whiB6 gene and genes encoding ESX-1 substrates were reduced. Accordingly, the levels of ESX-1 substrates were decreased, and WhiB6 was not detected in M. marinum strains lacking genes encoding ESX-1 components. We demonstrated that, in the absence of EccCb1, a conserved ESX-1 component, substrate gene expression was restored by constitutive, but not native, expression of the whiB6 gene. Finally, we found that the loss of WhiB6 resulted in a virulent M. marinum strain with reduced ESX-1 secretion. Together, our findings demonstrate that the levels of ESX-1 substrates in M. marinum are fine-tuned by negative feedback control, linking the expression of the whiB6 gene to the presence, not the functionality, of the ESX-1 membrane complex.
Collapse
|
72
|
Casabona MG, Kneuper H, Alferes de Lima D, Harkins CP, Zoltner M, Hjerde E, Holden MTG, Palmer T. Haem-iron plays a key role in the regulation of the Ess/type VII secretion system of Staphylococcus aureus RN6390. MICROBIOLOGY-SGM 2017; 163:1839-1850. [PMID: 29171824 PMCID: PMC5845736 DOI: 10.1099/mic.0.000579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.
Collapse
Affiliation(s)
- M Guillermina Casabona
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Holger Kneuper
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Daniela Alferes de Lima
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Martin Zoltner
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| | - Erik Hjerde
- Department of Chemistry, Arctic University of Norway, Tromsø, Norway
| | | | - Tracy Palmer
- Division of Molecular Microbiology School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
73
|
Mielich-Süss B, Wagner RM, Mietrach N, Hertlein T, Marincola G, Ohlsen K, Geibel S, Lopez D. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathog 2017; 13:e1006728. [PMID: 29166667 PMCID: PMC5718613 DOI: 10.1371/journal.ppat.1006728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/06/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen. The recently discovered functional membrane microdomains (FMM) of prokaryotic cells contain a protein homologous to the scaffold protein flotillin found in eukaryotic lipid rafts. It remains to be elucidated whether, like their eukaryotic counterparts, flotillin homolog proteins have a scaffold function in bacteria. Here we show that the Staphylococcus aureus flotillin FloA acts as a scaffold protein, to promote more efficient assembly of membrane-associated protein interacting partners of multi-enzyme complexes. In a case study, we provide biochemical evidence that FloA participates in assembly of the Type VII secretion system and thus contributes to S. aureus infective potential. Targeted dispersion of FMM-related processes using anti-FMM molecules opens up new perspectives for microbial therapies to treat persistent S. aureus infections.
Collapse
Affiliation(s)
- Benjamin Mielich-Süss
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Rabea M. Wagner
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Nicole Mietrach
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center - DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Gabriella Marincola
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
| | - Sebastian Geibel
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center - DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology IMIB, University of Würzburg, Würzburg, Germany
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
74
|
Olson RM, Anderson DM. Usurping bacterial virulence factors as self-delivery vehicles for therapeutic use. Virulence 2017. [PMID: 28636422 DOI: 10.1080/21505594.2017.1336595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Rachel M Olson
- a Department of Veterinary Pathobiology and the Laboratory for Infectious Disease Research , University of Missouri , Columbia , MO11 , USA
| | - Deborah M Anderson
- a Department of Veterinary Pathobiology and the Laboratory for Infectious Disease Research , University of Missouri , Columbia , MO11 , USA
| |
Collapse
|
75
|
Abstract
Mycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX) exporters transport proteins across the cytoplasmic membrane. Many proteins transported by ESX systems are then translocated across the mycobacterial cell envelope and secreted from the cell. Although the mechanism underlying protein transport across the mycolate outer membrane remains elusive, the ESX systems are closely connected with and localize to the cell envelope. Links between ESX-associated proteins, cell wall synthesis, and the maintenance of cell envelope integrity have been reported. Genes encoding the ESX systems and those required for biosynthesis of the mycobacterial envelope are coregulated. Here, we review the interplay between ESX systems and the mycobacterial cell envelope.
Collapse
|
76
|
|
77
|
Allen AR. One bacillus to rule them all? - Investigating broad range host adaptation in Mycobacterium bovis. INFECTION GENETICS AND EVOLUTION 2017; 53:68-76. [PMID: 28434972 DOI: 10.1016/j.meegid.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adrian R Allen
- Agri-Food and Biosciences Institute, AFBI Stormont, Department of Bacteriology, Lamont Building, Stoney Road, Belfast BT4 3SD, United Kingdom.
| |
Collapse
|