51
|
Gotkine M, Caraco Y, Lerner Y, Blotnick S, Wanounou M, Slutsky SG, Chebath J, Kuperstein G, Estrin E, Ben-Hur T, Hasson A, Molakandov K, Sonnenfeld T, Stark Y, Revel A, Revel M, Izrael M. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J Transl Med 2023; 21:122. [PMID: 36788520 PMCID: PMC9927047 DOI: 10.1186/s12967-023-03903-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Malfunction of astrocytes is implicated as one of the pathological factors of ALS. Thus, intrathecal injection of healthy astrocytes in ALS can potentially compensate for the diseased astrocytes. AstroRx® is an allogeneic cell-based product, composed of healthy and functional human astrocytes derived from embryonic stem cells. AstroRx® was shown to clear excessive glutamate, reduce oxidative stress, secrete various neuroprotective factors, and act as an immunomodulator. Intrathecal injection of AstroRx® to animal models of ALS slowed disease progression and extended survival. Here we report the result of a first-in-human clinical study evaluating intrathecal injection of AstroRx® in ALS patients. METHODS We conducted a phase I/IIa, open-label, dose-escalating clinical trial to evaluate the safety, tolerability, and therapeutic effects of intrathecal injection of AstroRx® in patients with ALS. Five patients were injected intrathecally with a single dose of 100 × 106 AstroRx® cells and 5 patients with 250 × 106 cells (low and high dose, respectively). Safety and efficacy assessments were recorded for 3 months pre-treatment (run-in period) and 12 months post-treatment (follow-up period). RESULTS A single administration of AstroRx® at either low or high doses was safe and well tolerated. No adverse events (AEs) related to AstroRx® itself were reported. Transient AEs related to the Intrathecal (IT) procedure were all mild to moderate. The study demonstrated a clinically meaningful effect that was maintained over the first 3 months after treatment, as measured by the pre-post slope change in ALSFRS-R. In the 100 × 106 AstroRx® arm, the ALSFRS-R rate of deterioration was attenuated from - 0.88/month pre-treatment to - 0.30/month in the first 3 months post-treatment (p = 0.039). In the 250 × 106 AstroRx® arm, the ALSFRS-R slope decreased from - 1.43/month to - 0.78/month (p = 0.0023). The effect was even more profound in a rapid progressor subgroup of 5 patients. No statistically significant change was measured in muscle strength using hand-held dynamometry and slow vital capacity continued to deteriorate during the study. CONCLUSIONS Overall, these findings suggest that a single IT administration of AstroRx® to ALS patients at a dose of 100 × 106 or 250 × 106 cells is safe. A signal of beneficial clinical effect was observed for the first 3 months following cell injection. These results support further investigation of repeated intrathecal administrations of AstroRx®, e.g., every 3 months. TRIAL REGISTRATION NCT03482050.
Collapse
Affiliation(s)
- Marc Gotkine
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Caraco
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yossef Lerner
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Blotnick
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maor Wanounou
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Elena Estrin
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Kfir Molakandov
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Tehila Sonnenfeld
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Yafit Stark
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Ariel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Michal Izrael
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel.
| |
Collapse
|
52
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
53
|
Marton S, Miquel E, Acosta-Rodríguez J, Fontenla S, Libisch G, Cassina P. SOD1 G93A Astrocyte-Derived Extracellular Vesicles Induce Motor Neuron Death by a miRNA-155-5p-Mediated Mechanism. ASN Neuro 2023; 15:17590914231197527. [PMID: 37644868 PMCID: PMC10467309 DOI: 10.1177/17590914231197527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by upper and lower motor neuron (MN) degeneration. Astrocytes surrounding MNs are known to modulate ALS progression. When cocultured with astrocytes overexpressing the ALS-linked mutant Cu/Zn superoxide dismutase (SOD1G93A) or when cultured with conditioned medium from SOD1G93A astrocytes, MN survival is reduced. The exact mechanism of this neurotoxic effect is unknown. Astrocytes secrete extracellular vesicles (EVs) that transport protein, mRNA, and microRNA species from one cell to another. The size and protein markers characteristic of exosomes were observed in the EVs obtained from cultured astrocytes, indicating their abundance in exosomes. Here, we analyzed the microRNA content of the exosomes derived from SOD1G93A astrocytes and evaluated their role in MN survival. Purified MNs exposed to SOD1G93A astrocyte-derived exosomes showed reduced survival and neurite length compared to those exposed to exosomes derived from non-transgenic (non-Tg) astrocytes. Analysis of the miRNA content of the exosomes revealed that miR-155-5p and miR-582-3p are differentially expressed in SOD1G93A exosomes compared with exosomes from non-Tg astrocytes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicates that miR-155-5p and miR-582-3p predicted targets are enriched in the neurotrophin signaling pathway. Importantly, when levels of miR-155-5p were reduced by incubation with a specific antagomir, SOD1G93A exosomes did not affect MN survival or neurite length. These results demonstrate that SOD1G93A-derived exosomes are sufficient to induce MN death, and miRNA-155-5p contributes to this effect. miRNA-155-5p may offer a new therapeutic target to modulate disease progression in ALS.
Collapse
Affiliation(s)
- Soledad Marton
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín Acosta-Rodríguez
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gabriela Libisch
- Laboratorio Hospedero Patógeno/UBM, Institut Pasteur, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
54
|
Strong MJ, Swash M. Finding Common Ground on the Site of Onset of Amyotrophic Lateral Sclerosis. Neurology 2022; 99:1042-1048. [PMID: 36261296 PMCID: PMC9754652 DOI: 10.1212/wnl.0000000000201387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The fundamental origin of amyotrophic lateral sclerosis (ALS) has remained an enigma since its earliest description as a relentlessly progressive degeneration with prominent neuromuscular manifestations that are associated with upper and lower motor neuron dysfunction. Although this remains the hallmark of ALS, a significant proportion of patients will also demonstrate one or more features of frontotemporal dysfunction, including a frontotemporal dementia (FTD). Understanding whether these 2 seemingly disparate syndromes are simply reflective of the co-occurrence of 2 distinct pathologic processes or the clinical manifestations of a common pathophysiologic derangement involving the brain more widely has gripped contemporary ALS researchers. Supporting a commonality of causation, both ALS and FTD show an alteration in the metabolism of TAR DNA-binding protein 43, marked by a shift in nucleocytoplasmic localization alongside a broad range of neuronal cytoplasmic inclusions consisting of pathologic aggregates of RNA-binding proteins. Similarly, several disease-associated or disease-modifying genetic variants that are shared between the 2 disorders suggest shared underlying mechanisms. In both, a prominent glial response has been postulated to contribute to non-cell-autonomous spread. A more contemporary hypothesis, however, suggests that syndromes of cortical and subcortical dysfunction are driven by impairments in discrete neural networks. This postulates that such networks, including networks subserving motor or cognitive function, possess unique and selective vulnerabilities to either single molecular toxicities or combinations thereof. The co-occurrence of one or more network dysfunctions in ALS and FTD is thus a reflection not of unique neuroanatomic correlates but rather of shared molecular vulnerabilities. The basis of such shared vulnerabilities becomes the fulcrum around which the next advances in our understanding of ALS and its possible therapy will develop.
Collapse
Affiliation(s)
- Michael J Strong
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal.
| | - Michael Swash
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal
| |
Collapse
|
55
|
4-Phenylbutyric Acid (4-PBA) Derivatives Prevent SOD1 Amyloid Aggregation In Vitro with No Effect on Disease Progression in SOD1-ALS Mice. Int J Mol Sci 2022; 23:ijms23169403. [PMID: 36012668 PMCID: PMC9409193 DOI: 10.3390/ijms23169403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the superoxide dismutase (SOD1) gene, causing protein misfolding and aggregation, were suggested as the pathogenic mechanisms involved in familial ALS cases. In the present study, we investigated the potential therapeutic effect of C4 and C5, two derivatives of the chemical chaperone 4-phenylbutyric acid (4-PBA). By combining in vivo and in vitro techniques, we show that, although C4 and C5 successfully inhibited amyloid aggregation of recombinant mutant SOD1 in a dose-dependent manner, they failed to suppress the accumulation of misfolded SOD1. Moreover, C4 or C5 daily injections to SOD1G93A mice following onset had no effect on either the accumulation of misfolded SOD1 or the neuroinflammatory response in the spinal cord and, consequently, failed to extend the survival of SOD1G93A mice or to improve their motor symptoms. Finally, pharmacokinetic (PK) studies demonstrated that high concentrations of C4 and C5 reached the brain and spinal cord but only for a short period of time. Thus, our findings suggest that use of such chemical chaperones for ALS drug development may need to be optimized for more effective results.
Collapse
|
56
|
Pérez-Torres EJ, Utkina-Sosunova I, Mishra V, Barbuti P, De Planell-Saguer M, Dermentzaki G, Geiger H, Basile AO, Robine N, Fagegaltier D, Politi KA, Rinchetti P, Jackson-Lewis V, NYGC ALS Consortium, Harms M, Phatnani H, Lotti F, Przedborski S. Retromer dysfunction in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2022; 119:e2118755119. [PMID: 35749364 PMCID: PMC9245686 DOI: 10.1073/pnas.2118755119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.
Collapse
Affiliation(s)
- Eduardo J. Pérez-Torres
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vartika Mishra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Peter Barbuti
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Mariangels De Planell-Saguer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Georgia Dermentzaki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Heather Geiger
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Anna O. Basile
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Nicolas Robine
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Delphine Fagegaltier
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Kristin A. Politi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Paola Rinchetti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Vernice Jackson-Lewis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | | | - Matthew Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Hemali Phatnani
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Serge Przedborski
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neuroscience, Columbia University, New York, NY 10027
| |
Collapse
|
57
|
Arredondo C, Cefaliello C, Dyrda A, Jury N, Martinez P, Díaz I, Amaro A, Tran H, Morales D, Pertusa M, Stoica L, Fritz E, Corvalán D, Abarzúa S, Méndez-Ruette M, Fernández P, Rojas F, Kumar MS, Aguilar R, Almeida S, Weiss A, Bustos FJ, González-Nilo F, Otero C, Tevy MF, Bosco DA, Sáez JC, Kähne T, Gao FB, Berry JD, Nicholson K, Sena-Esteves M, Madrid R, Varela D, Montecino M, Brown RH, van Zundert B. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 2022; 110:1656-1670.e12. [PMID: 35276083 PMCID: PMC9119918 DOI: 10.1016/j.neuron.2022.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.
Collapse
Affiliation(s)
- Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Cefaliello
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Agnieszka Dyrda
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nur Jury
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo Martinez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Iván Díaz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Armando Amaro
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Helene Tran
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Danna Morales
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Maria Pertusa
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Lorelei Stoica
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elsa Fritz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Daniela Corvalán
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Maxs Méndez-Ruette
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Paola Fernández
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Fabiola Rojas
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Meenakshi Sundaram Kumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Fernando González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile; Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Carolina Otero
- School of Chemistry and Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8320000, Chile
| | - Maria Florencia Tevy
- Cell Biology Laboratory, INTA, University of Chile and GEDIS Biotech, Santiago 7810000, Chile
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - James D Berry
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Katharine Nicholson
- Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rodolfo Madrid
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 9160000, Chile; Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Diego Varela
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago 9160000, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; FONDAP Center for Genome Regulation, Santiago 8370146, Chile
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
58
|
Takahashi F, Zhang C, Hohjoh H, Raveney B, Yamamura T, Hayashi N, Oki S. Immune-mediated neurodegenerative trait provoked by multimodal derepression of long-interspersed nuclear element-1. iScience 2022; 25:104278. [PMID: 35573205 PMCID: PMC9097630 DOI: 10.1016/j.isci.2022.104278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodegeneration is a process involving both cell autonomous and non-cell autonomous neuron loss, followed by a collapse of neural networks, but its pathogenesis is poorly understood. We have previously demonstrated that Eomes-positive helper T (Eomes + Th) cells recognizing LINE-1(L1)-derived prototypic antigen ORF1 mediate neurotoxicity associated with the neurodegenerative pathology of experimental autoimmune encephalomyelitis (EAE). Here, we show that Eomes + Th cells accumulate in the CNS of mouse models of authentic neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and secrete the neurotoxic granzyme B after encounter with ORF1 antigen. Multimodal derepression of neuronal L1 transcription is observed in EAE and ALS/AD models during neurodegeneration in active and cell cycle-mediated manner, respectively. These data suggest that the adventitious concurrence of immune-mediated neurodegenerative traits by Eomes + Th cells and ectopic expression of L1-derived antigen(s) in the inflamed CNS may materialize a communal and previously unappreciated pathogenesis of neurodegeneration. Eomes + Th cells accumulate in the CNS with undergoing neurodegeneration in common Multimodal L1 derepression is emerged in neuron cells under neurodegeneration Eomes + Th cells recognize L1-ORF1 antigen to exert neurotoxicity via granzyme B Immune-mediated neurotoxicity may embody a novel pathogenesis of neurodegeneration
Collapse
Affiliation(s)
- Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nobuhiro Hayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- Corresponding author
| |
Collapse
|
59
|
Shibuya K, Otani R, Suzuki YI, Kuwabara S, Kiernan MC. Neuronal Hyperexcitability and Free Radical Toxicity in Amyotrophic Lateral Sclerosis: Established and Future Targets. Pharmaceuticals (Basel) 2022; 15:ph15040433. [PMID: 35455429 PMCID: PMC9025031 DOI: 10.3390/ph15040433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease with evidence of degeneration involving upper and lower motor neuron compartments of the nervous system. Presently, two drugs, riluzole and edaravone, have been established as being useful in slowing disease progression in ALS. Riluzole possesses anti-glutamatergic properties, while edaravone eliminates free radicals (FRs). Glutamate is the excitatory neurotransmitter in the brain and spinal cord and binds to several inotropic receptors. Excessive activation of these receptors generates FRs, inducing neurodegeneration via damage to intracellular organelles and upregulation of proinflammatory mediators. FRs bind to intracellular structures, leading to cellular impairment that contributes to neurodegeneration. As such, excitotoxicity and FR toxicities have been considered as key pathophysiological mechanisms that contribute to the cascade of degeneration that envelopes neurons in ALS. Recent advanced technologies, including neurophysiological, imaging, pathological and biochemical techniques, have concurrently identified evidence of increased excitability in ALS. This review focuses on the relationship between FRs and excitotoxicity in motor neuronal degeneration in ALS and introduces concepts linked to increased excitability across both compartments of the human nervous system. Within this cellular framework, future strategies to promote therapeutic development in ALS, from the perspective of neuronal excitability and function, will be critically appraised.
Collapse
Affiliation(s)
- Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Ryo Otani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Yo-ichi Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Matthew C. Kiernan
- Brain and Mind Centre, Department of Neurology, University of Sydney, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Correspondence:
| |
Collapse
|
60
|
MacLean M, López-Díez R, Vasquez C, Gugger PF, Schmidt AM. Neuronal-glial communication perturbations in murine SOD1 G93A spinal cord. Commun Biol 2022; 5:177. [PMID: 35228715 PMCID: PMC8885678 DOI: 10.1038/s42003-022-03128-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable disease characterized by proteinaceous aggregate accumulation and neuroinflammation culminating in rapidly progressive lower and upper motor neuron death. To interrogate cell-intrinsic and inter-cell type perturbations in ALS, single-nucleus RNA sequencing was performed on the lumbar spinal cord in the murine ALS model SOD1G93A transgenic and littermate control mice at peri-symptomatic onset stage of disease, age 90 days. This work uncovered perturbed tripartite synapse functions, complement activation and metabolic stress in the affected spinal cord; processes evidenced by cell death and proteolytic stress-associated gene sets. Concomitantly, these pro-damage events in the spinal cord co-existed with dysregulated reparative mechanisms. This work provides a resource of cell-specific niches in the ALS spinal cord and asserts that interwoven dysfunctional neuronal-glial communications mediating neurodegeneration are underway prior to overt disease manifestation and are recapitulated, in part, in the human post-mortem ALS spinal cord. In this paper, single-nucleus RNA sequencing was performed to provide a resource of cell-specific niches in the murine ALS model spinal cord at peri-symptomatic onset stage of disease. The data suggest that dysfunctional neuronal-glial communication occurs prior to disease onset, which is partially recapitulated in human post-mortem ALS spinal cord tissue.
Collapse
Affiliation(s)
- Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
61
|
Arslanbaeva L, Bisaglia M. Activation of the Nrf2 Pathway as a Therapeutic Strategy for ALS Treatment. Molecules 2022; 27:1471. [PMID: 35268572 PMCID: PMC8911691 DOI: 10.3390/molecules27051471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal disease that causes motoneurons degeneration and functional impairment of voluntary muscles, with limited and poorly efficient therapies. Alterations in the Nrf2-ARE pathway are associated with ALS pathology and result in aberrant oxidative stress, making the stimulation of the Nrf2-mediated antioxidant response a promising therapeutic strategy in ALS to reduce oxidative stress. In this review, we first introduce the involvement of the Nrf2 pathway in the pathogenesis of ALS and the role played by astrocytes in modulating such a protective pathway. We then describe the currently developed activators of Nrf2, used in both preclinical animal models and clinical studies, taking into consideration their potentialities as well as the possible limitations associated with their use.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padua, 35131 Padua, Italy
- Center Study for Neurodegeneration (CESNE), University of Padua, 35131 Padua, Italy
| |
Collapse
|
62
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
63
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
64
|
Allison RL, Adelman JW, Abrudan J, Urrutia RA, Zimmermann MT, Mathison AJ, Ebert AD. Microglia Influence Neurofilament Deposition in ALS iPSC-Derived Motor Neurons. Genes (Basel) 2022; 13:241. [PMID: 35205286 PMCID: PMC8871895 DOI: 10.3390/genes13020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motor neuron loss is the primary phenotype, leading to muscle weakness and wasting, respiratory failure, and death. Although a portion of ALS cases are linked to one of over 50 unique genes, the vast majority of cases are sporadic in nature. However, the mechanisms underlying the motor neuron loss in either familial or sporadic ALS are not entirely clear. Here, we used induced pluripotent stem cells derived from a set of identical twin brothers discordant for ALS to assess the role of astrocytes and microglia on the expression and accumulation of neurofilament proteins in motor neurons. We found that motor neurons derived from the affected twin which exhibited increased transcript levels of all three neurofilament isoforms and increased expression of phosphorylated neurofilament puncta. We further found that treatment of the motor neurons with astrocyte-conditioned medium and microglial-conditioned medium significantly impacted neurofilament deposition. Together, these data suggest that glial-secreted factors can alter neurofilament pathology in ALS iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jenica Abrudan
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
| | - Raul A. Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T. Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| |
Collapse
|
65
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
66
|
Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem 2021; 65:847-857. [PMID: 34897457 PMCID: PMC8709892 DOI: 10.1042/ebc20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
How neurons die in neurodegenerative diseases is still unknown. The distinction between apoptosis as a genetically controlled mechanism, and necrosis, which was viewed as an unregulated process, has blurred with the ever-increasing number of necrotic-like death subroutines underpinned by genetically defined pathways. It is therefore pertinent to ask whether any of them apply to neuronal cell death in tauopathies. Although Alzheimer's disease (AD) is the most prevalent tauopathy, tauopathies comprise an array of over 30 diseases in which the cytoplasmic protein tau aggregates in neurons, and also, in some diseases, in glia. Animal models have sought to distil the contribution of tau aggregation to the cell death process but despite intensive research, no one mechanism of cell death has been unequivocally defined. The process of tau aggregation, and the fibrillar structures that form, touch on so many cellular functions that there is unlikely to be a simple linear pathway of death; as one is blocked another is likely to take the lead. It is timely to ask how far we have advanced into defining whether any of the molecular players in the new death subroutines participate in the death process. Here we briefly review the currently known cell death routines and explore what is known about their participation in tau aggregation-related cell death. We highlight the involvement of cell autonomous and the more recent non-cell autonomous pathways that may enhance tau-aggregate toxicity, and discuss recent findings that implicate microglial phagocytosis of live neurons with tau aggregates as a mechanism of death.
Collapse
|
67
|
Liu Y, Jiang H, Qin X, Tian M, Zhang H. PET imaging of reactive astrocytes in neurological disorders. Eur J Nucl Med Mol Imaging 2021; 49:1275-1287. [PMID: 34873637 PMCID: PMC8921128 DOI: 10.1007/s00259-021-05640-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
The reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
68
|
Benarroch E. What Is the Role of Oligodendrocytes in Amyotrophic Lateral Sclerosis? Neurology 2021; 97:776-779. [PMID: 34663738 DOI: 10.1212/wnl.0000000000012706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022] Open
|
69
|
Liu YJ, Kuo HC, Chern Y. A system-wide mislocalization of RNA-binding proteins in motor neurons is a new feature of ALS. Neurobiol Dis 2021; 160:105531. [PMID: 34634461 DOI: 10.1016/j.nbd.2021.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive degeneration of motor neurons. Mislocalization of TAR DNA-binding protein 43 (TDP-43) is an early event in the formation of cytoplasmic TDP-43-positive inclusions in motor neurons and a hallmark of ALS. However, the underlying mechanism and the pathogenic impact of this mislocalization are relatively unexplored. We previously reported that abnormal AMPK activation mediates TDP-43 mislocalization in motor neurons of humans and mice with ALS. In the present study, we hypothesized that other nuclear proteins are mislocalized in the cytoplasm of motor neurons due to the AMPK-mediated phosphorylation of importin-α1 and subsequently contribute to neuronal degeneration in ALS. To test this hypothesis, we analyzed motor neurons of sporadic ALS patients and found that when AMPK is activated, importin-α1 is abnormally located in the nucleus. Multiple integrative molecular and cellular approaches (including proteomics, immunoprecipitation/western blot analysis, immunohistological evaluations and gradient analysis of preribosomal complexes) were employed to demonstrate that numerous RNA binding proteins are mislocalized in a rodent motor neuron cell line (NSC34) and human motor neurons derived from iPSCs during AMPK activation. We used comparative proteomic analysis of importin-α1 complexes that were immunoprecipitated with a phosphorylation-deficient mutant of importin-α1 (importin-α1-S105A) and a phosphomimetic mutant of importin-α1 (importin-α1-S105D) to identify 194 proteins that have stronger affinity for the unphosphorylated form than the phosphorylated form of importin-α1. Furthermore, GO and STRING analyses suggested that RNA processing and protein translation is the major machinery affected by abnormalities in the AMPK-importin-α1 axis. Consistently, the expression of importin-α1-S105D alters the assembly of preribosomal complexes and increases cell apoptosis. Collectively, we propose that by impairing importin-α1-mediated nuclear import, abnormal AMPK activation in motor neurons alters the cellular distribution of many RNA-binding proteins, which pathogenically affect multiple cellular machineries in motor neurons and contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
70
|
Stifani S. Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:707861. [PMID: 34602979 PMCID: PMC8485040 DOI: 10.3389/fncel.2021.707861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are a large group of glial cells that perform a variety of physiological functions in the nervous system. They provide trophic, as well as structural, support to neuronal cells. Astrocytes are also involved in neuroinflammatory processes contributing to neuronal dysfunction and death. Growing evidence suggests important roles for astrocytes in non-cell autonomous mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Understanding these mechanisms necessitates the combined use of animal and human cell-based experimental model systems, at least in part because human astrocytes display a number of unique features that cannot be recapitulated in animal models. Human induced pluripotent stem cell (hiPSC)-based approaches provide the opportunity to generate disease-relevant human astrocytes to investigate the roles of these cells in ALS. These approaches are facing the growing recognition that there are heterogenous populations of astrocytes in the nervous system which are not functionally equivalent. This review will discuss the importance of taking astrocyte heterogeneity into consideration when designing hiPSC-based strategies aimed at generating the most informative preparations to study the contribution of astrocytes to ALS pathophysiology.
Collapse
Affiliation(s)
- Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
71
|
Chen QY, Wen T, Wu P, Jia R, Zhang R, Dang J. Exosomal Proteins and miRNAs as Mediators of Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:718803. [PMID: 34568332 PMCID: PMC8461026 DOI: 10.3389/fcell.2021.718803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the neurobiology and neurogenerative diseases have attracted growing interest in exosomes and their ability to carry and propagate active biomolecules as a means to reprogram recipient cells. Alterations in exosomal protein content and nucleic acid profiles found in human biological fluids have been correlated with various diseases including amyotrophic lateral sclerosis (ALS). In ALS pathogenesis, these lipid-bound nanoscale vesicles have emerged as valuable candidates for diagnostic biomarkers. Moreover, their capacity to spread misfolded proteins and functional non-coding RNAs to interconnected neuronal cells make them putative mediators for the progressive motor degeneration found remarkably apparent in ALS. This review outlines current knowledge concerning the biogenesis, heterogeneity, and function of exosomes in the brain as well as a comprehensive probe of currently available literature on ALS-related exosomal proteins and microRNAs. Lastly, with the rapid development of employing nanoparticles for drug delivery, we explore the therapeutic potentials of exosomes as well as underlying limitations in current isolation and detection methodologies.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|