51
|
Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 2016; 16:193. [PMID: 27724862 PMCID: PMC5057502 DOI: 10.1186/s12872-016-0372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Methods Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Results Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. Conclusions Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xing Wu
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Weiping Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Hui Peng
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xuhua Shen
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lu Ma
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Hongwei Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
52
|
Qiu Y, Chen WY, Wang ZY, Liu F, Wei M, Ma C, Huang YG. Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway. Neurochem Res 2016; 41:2457-2469. [DOI: https:/doi.org/10.1007/s11064-016-1958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
|
53
|
Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway. Neurochem Res 2016; 41:2457-69. [PMID: 27216618 DOI: 10.1007/s11064-016-1958-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.
Collapse
|
54
|
Shin JY, Wey M, Umutesi HG, Sun X, Simecka J, Heo J. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function. J Biol Chem 2016; 291:13699-714. [PMID: 27189938 DOI: 10.1074/jbc.m115.694422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
6-Thiopurine (6-TP) prodrugs include 6-thioguanine and azathioprine. Both are widely used to treat autoimmune disorders and certain cancers. This study showed that a 6-thioguanosine triphosphate (6-TGTP), converted in T-cells from 6-TP, targets Rac1 to form a disulfide adduct between 6-TGTP and the redox-sensitive GXXXXGK(S/T)C motif of Rac1. This study also showed that, despite the conservation of the catalytic activity of RhoGAP (Rho-specific GAP) on the 6-TGTP-Rac1 adduct to produce the biologically inactive 6-thioguanosine diphosphate (6-TGDP)-Rac1 adduct, RhoGEF (Rho-specific GEF) cannot exchange the 6-TGDP adducted on Rac1 with free guanine nucleotide. The biologically inactive 6-TGDP-Rac1 adduct accumulates in cells because of the ongoing combined actions of RhoGEF and RhoGAP. Because other Rho GTPases, such as RhoA and Cdc42, also possess the GXXXXGK(S/T)C motif, the proposed mechanism for the inactivation of Rac1 also applies to RhoA and Cdc42. However, previous studies have shown that CD3/CD28-stimulated T-cells contain more activated Rac1 than other Rho GTPases such as RhoA and Cdc42. Accordingly, Rac1 is the main target of 6-TP in activated T-cells. This explains the T-cell-specific Rac1-targeting therapeutic action of 6-TP that suppresses the immune response. This proposed mechanism for the action of 6-TP on Rac1 performs a critical role in demonstrating the capability to design a Rac1-targeting chemotherapeutic agent(s) for autoimmune disorders. Nevertheless, the results also suggest that the targeting action of other Rho GTPases in other organ cells, such as RhoA in vascular cells, may be linked to cytotoxicities because RhoA plays a key role in vasculature functions.
Collapse
Affiliation(s)
- Jin-Young Shin
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Michael Wey
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Hope G Umutesi
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Xiangle Sun
- the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, and
| | - Jerry Simecka
- the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, and the Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Jongyun Heo
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019,
| |
Collapse
|
55
|
|
56
|
Yuan TY, Chen YC, Zhang HF, Li L, Jiao XZ, Xie P, Fang LH, Du GH. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes. Acta Pharmacol Sin 2016; 37:604-16. [PMID: 27041459 DOI: 10.1038/aps.2015.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
AIM DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. METHODS Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca(2+) concentrations were detected with Fluo-3 AM. RESULTS Pretreatment with DL0805-2 (1-100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10(-7) mol/L) or accumulative addition of Ang II (10(-10)-10(-7) mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca(2+) influx and intracellular Ca(2+) mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca(2+) fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. CONCLUSION DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes.
Collapse
|
57
|
De Silva TM, Miller AA. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front Pharmacol 2016; 7:61. [PMID: 27014073 PMCID: PMC4794483 DOI: 10.3389/fphar.2016.00061] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- T. Michael De Silva
- Department of Pharmacology, Biomedicine Discovery Institute, Monash UniversityMelbourne, VIC, Australia
| | - Alyson A. Miller
- Cerebrovascular and Stroke Laboratory, School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
58
|
Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae: insights from Bartter's and Gitelman's syndromes, human models of endogenous angiotensin II signaling antagonism. J Hypertens 2016; 32:2109-19; discussion 2119. [PMID: 25202962 DOI: 10.1097/hjh.0000000000000321] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin II (Ang II) plays a key role in hypertension, renal and cardiovascular pathophysiology via intracellular pathways that involve the activation of a multiplicity of signaling mechanisms. Although experimental and genetic animal models have been developed and used to explore Ang II signaling's role in hypertension, a complete understanding of the processes mediating Ang II signaling in hypertension in humans remains elusive. One impediment is that these animal models do not exhibit all the traits of human hypertension, making it impossible to extrapolate from them to humans. To overcome this issue, we have used patients with Bartter's and Gitelman's syndromes, a human model of endogenously blunted and blocked Ang II signaling that presents a constellation of clinical findings which manifest themselves as the opposite of hypertension. This article reviews the aspects of the pathophysiology of human hypertension and its short and long term sequelae, and uses the results of our studies in Bartter's and Gitelman's syndromes along with those of others to gain better insight and understanding of the role of Ang II signaling in these processes.
Collapse
|
59
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
60
|
Mu ZH, Jiang Z, Lin XJ, Wang LP, Xi Y, Zhang ZJ, Wang YT, Yang GY. Vessel Dilation Attenuates Endothelial Dysfunction Following Middle Cerebral Artery Occlusion in Hyperglycemic Rats. CNS Neurosci Ther 2016; 22:316-24. [PMID: 26842484 DOI: 10.1111/cns.12500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Dynamically observe cerebral vascular changes in hyperglycemic rats in vivo and explore the effect of diabetes on endothelial function after ischemic stroke. BACKGROUND Diabetes affects both large and small vessels in the brain, but the dynamic process and mechanism are unclear. METHODS We investigated the structural and functional changes of brain vasculature in living hyperglycemic rats and their impact on stroke outcomes via a novel technique: synchrotron radiation angiography. We also examined the effect of prolonged fasudil treatment on arterial reactivity and hemorrhagic transformation. Adult Sprague Dawley rats were treated by streptozotocin to induce type 1 diabetes. These hyperglycemic rats received fasudil pretreatment and then underwent transient middle cerebral artery occlusion. RESULTS We found that diabetes caused arteries narrowing in the circus Willis as early as 2 weeks after streptozotocin injection (P < 0.05). These vessels were further constricted after middle cerebral artery occlusion. L-NAME could induce regional constrictions and impaired relaxation in hyperglycemic animals. Furthermore, hemorrhagic transformation was also increased in the hyperglycemic rats compared to the control (P < 0.05). In fasudil-treated rats, the internal carotid artery narrowing was ameliorated and L-NAME-induced regional constriction was abolished. Importantly, stroke prognosis was improved in fasudil-treated rats compared to the control (P < 0.05). CONCLUSIONS Our dynamic angiographic data demonstrated that diabetes could impair the cerebral arterial reactivity. Prolonged fasudil treatment could attenuate arterial dysfunction and improve the prognosis of ischemic stroke by affecting both the large and small vasculature.
Collapse
Affiliation(s)
- Zhi-Hao Mu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jie Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhi-Jun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
Kuan SL, Förtsch C, Ng DYW, Fischer S, Tokura Y, Liu W, Wu Y, Koynov K, Barth H, Weil T. A Supramolecular Approach toward Bioinspired PAMAM-Dendronized Fusion Toxins. Macromol Biosci 2016; 16:803-10. [PMID: 26833574 DOI: 10.1002/mabi.201500417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/28/2015] [Indexed: 11/07/2022]
Abstract
Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))-biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine-dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non-covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho-inhibitor. The fusion constructs, D3SA-C3 and D2HSA-C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho-inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3-mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christina Förtsch
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David Yuen Wah Ng
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yu Tokura
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Weina Liu
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tanja Weil
- Institute of Organic Chemistry III - Macromolecular Chemistry & Biomaterials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
62
|
Baba I, Egi Y, Suzuki K. Partial deletion of the ROCK2 protein fails to reduce renal fibrosis in a unilateral ureteral obstruction model in mice. Mol Med Rep 2015; 13:231-6. [PMID: 26572751 DOI: 10.3892/mmr.2015.4569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/29/2015] [Indexed: 11/06/2022] Open
Abstract
Renal fibrosis is a well‑known cause for the progression of chronic kidney disease. Rho/Rho‑associated coiled‑coil kinase (ROCK) signaling is involved in renal fibrotic processes. Non‑selective ROCK1/2 inhibitors have been reported to reduce renal interstitial fibrosis in a rodent unilateral ureteral obstruction (UUO) model. To clarify the role and contribution of ROCK2 in renal fibrosis, the present study used ROCK2 heterozygous knockout (HKO) mice to assess collagen deposition and fibrosis‑associated gene expression in the kidney of the UUO model. In the ROCK2 HKO mice, the expression level of ROCK2 in the normal kidney was half of that in the kidney of wild‑type (WT) mice. The expression levels of ROCK1 in the ROCK2 HKO mice and WT mice were equivalent. Furthermore, in the ROCK2 HKO and the WT mice, the hydroxyproline content and the gene expression levels of collagen I and transforming growth factor‑β1 in the obstructed kidneys were augmented following UUO. By contrast, the mRNA expression of α‑smooth muscle actin decreased in the ROCK2 HKO mice, compared with that in the WT mice. The activity of ROCK in the obstructed kidneys, indicated by the phosphorylation of myosin phosphatase target subunit‑1, which is a non‑selective substrate of ROCK1 and ROCK2, was equivalent among the ROCK2 HKO and WT mice. In conclusion, no differences in renal interstitial fibrosis or UUO‑induced ROCK activity were identified between the ROCK2 HKO and WT mice, indicating that the genetic partial disruption of ROCK2 is insufficient for protecting against renal fibrosis.
Collapse
Affiliation(s)
- Itsuko Baba
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑Shi, Saitama 335‑8505, Japan
| | - Yasuhiro Egi
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑Shi, Saitama 335‑8505, Japan
| | - Kazuo Suzuki
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑Shi, Saitama 335‑8505, Japan
| |
Collapse
|
63
|
Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep 2015; 12:8010-20. [PMID: 26498136 PMCID: PMC4758322 DOI: 10.3892/mmr.2015.4467] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is the major cause of chronic kidney disease, and the Rho/Rho-associated coiled-coil kinase (ROCK) signaling cascade is involved in the renal fibrotic processes. Several studies have reported that ROCK inhibitors attenuate renal fibrosis. However, the mechanism of this process remains to be fully elucidated. The present study assessed the inhibitory effect of fasudil, a ROCK inhibitor using immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analyses, in vivo and in vitro, to elucidate the mechanisms underlying renal interstitial fibrosis. In mice induced with unilateral ureteral obstruction (UUO), collagen accumulation, the expression of fibrosis-associated genes and the content of hydroxyproline in the kidney increased 3, 7, and 14 days following UUO. Fasudil attenuated the histological changes, and the production of collagen and extracellular matrix in the UUO kidney. The expression of α-smooth muscle actin (α-SMA) and the transforming growth factor-β (TGFβ)-Smad signaling pathway, and macrophage infiltration were suppressed by fasudil in the kidneys of the UUO mice. The present study also evaluated the role of intrinsic renal cells and infiltrated macrophages using NRK-52E, NRK-49F and RAW264.7 cells. The mRNA and protein expression levels of collagen I and α-SMA increased in the NRK-52E and NRK-49F cells stimulated by TGF-β1. Hydroxyfasudil, a bioactive metabolite of fasudil, attenuated the increase in the mRNA and protein expression levles of α-SMA in the two cell types. However, the reduction in the mRNA expression of collagen I was observed in the NRK-49F cells only. Hydroxyfasudil decreased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1) induced by TGF-β1 in the NRK-52E cells, but not in the NRK-49F cells. In the RAW264.7 cells, the mRNA expression levels of MCP-1, interleukin (IL)-1β, IL-6 and tumor necrosis factor α were increased significantly following lipopolysaccharide stimulation, and were not suppressed by hydroxyfasudil. These data suggested that the inhibition of ROCK activity by fasudil suppressed the transformation of renal intrinsic cells into the myofibroblast cells, and attenuated the infiltration of macrophages, without inhibiting the expression or the activation of cytokine/chemokines, in the progression of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Itsuko Baba
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑shi, Saitama 335‑8505, Japan
| | - Yasuhiro Egi
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑shi, Saitama 335‑8505, Japan
| | - Hiroyuki Utsumi
- Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑shi, Saitama 335‑8505, Japan
| | - Tetsuhiro Kakimoto
- Safety Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑shi, Saitama 335‑8505, Japan
| | - Kazuo Suzuki
- Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda‑shi, Saitama 335‑8505, Japan
| |
Collapse
|
64
|
Jia Z, Johnson AC, Wang X, Guo Z, Dreisbach AW, Lewin JR, Kyle PB, Garrett MR. Allelic Variants in Arhgef11 via the Rho-Rock Pathway Are Linked to Epithelial-Mesenchymal Transition and Contributes to Kidney Injury in the Dahl Salt-Sensitive Rat. PLoS One 2015; 10:e0132553. [PMID: 26172442 PMCID: PMC4501567 DOI: 10.1371/journal.pone.0132553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Previously, genetic analyses identified that variants in Arhgef11 may influence kidney injury in the Dahl salt-sensitive (S) rat, a model of hypertensive chronic kidney disease. To understand the potential mechanism by which altered expression and/or protein differences in Arhgef11 could play a role in kidney injury, stably transduced Arhgef11 knockdown cell lines as well as primary cultures of proximal tubule cells were studied. Genetic knockdown of Arhgef11 in HEK293 and NRK resulted in reduced RhoA activity, decreased activation of Rho-ROCK pathway, and less stress fiber formation versus control, similar to what was observed by pharmacological inhibition (fasudil). Primary proximal tubule cells (PTC) cultured from the S exhibited increased expression of Arhgef11, increased RhoA activity, and up regulation of Rho-ROCK signaling compared to control (small congenic). The cells were also more prone (versus control) to TGFβ-1 induced epithelial-mesenchymal transition (EMT), a hallmark feature of the development of renal interstitial fibrosis, and characterized by development of spindle shape morphology, gene expression changes in EMT markers (Col1a3, Mmp9, Bmp7, and Ocln) and increased expression of N-Cadherin and Vimentin. S derived PTC demonstrated a decreased ability to uptake FITC-albumin compared to the small congenic in vitro, which was confirmed by assessment of albumin re-uptake in vivo by infusion of FITC-albumin and immunofluorescence imaging. In summary, these studies suggest that genetic variants in the S form of Arhgef11 via increased expression and/or protein activity play a role in promoting kidney injury in the S rat through changes in cell morphology (Rho-Rock and/or EMT) that impact the function of tubule cells.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Ashley C. Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Zibiao Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Molecular and Genomics Core Facility, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Albert W. Dreisbach
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jack R. Lewin
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Patrick B. Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| |
Collapse
|
65
|
Ibeawuchi SRC, Agbor LN, Quelle FW, Sigmund CD. Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. J Biol Chem 2015; 290:19208-17. [PMID: 26100637 DOI: 10.1074/jbc.m115.645358] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin-Ring ubiquitin ligases regulate protein turnover by promoting the ubiquitination of substrate proteins, targeting them for proteasomal degradation. It has been shown previously that mutations in Cullin3 (Cul3) causing deletion of 57 amino acids encoded by exon 9 (Cul3Δ9) cause hypertension. Moreover, RhoA activity contributes to vascular constriction and hypertension. We show that ubiquitination and degradation of RhoA is dependent on Cul3 in HEK293T cells in which Cul3 expression is ablated by either siRNA or by CRISPR-Cas9 genome editing. The latter was used to generate a Cul3-null cell line (HEK293T(Cul3KO)). When expressed in these cells, Cul3Δ9 supported reduced ubiquitin ligase activity toward RhoA compared with equivalent levels of wild-type Cul3 (Cul3WT). Consistent with its reduced activity, binding of Cul3Δ9 to the E3 ubiquitin ligase Rbx1 and neddylation of Cul3Δ9 were impaired significantly compared with Cul3WT. Conversely, Cul3Δ9 bound to substrate adaptor proteins more efficiently than Cul3WT. Cul3Δ9 also forms unstable dimers with Cul3WT, disrupting dimers of Cul3WT complexes that are required for efficient ubiquitination of some substrates. Indeed, coexpression of Cul3WT and Cul3Δ9 in HEK293T(Cul3KO) cells resulted in a decrease in the active form of Cul3WT. We conclude that Cul3Δ9-associated ubiquitin ligase activity toward RhoA is impaired and suggest that Cul3Δ9 mutations may act dominantly by sequestering substrate adaptors and disrupting Cul3WT complexes.
Collapse
Affiliation(s)
| | - Larry N Agbor
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Frederick W Quelle
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
66
|
Vasodilatory effect of a novel Rho-kinase inhibitor, DL0805-2, on the rat mesenteric artery and its potential mechanisms. Cardiovasc Drugs Ther 2015; 28:415-24. [PMID: 25086815 DOI: 10.1007/s10557-014-6544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE In the present study, we investigated the vasodilatory effect of a novel scaffold Rho-kinase inhibitor, DL0805-2, on isolated rat arterial rings including mesenteric, ventral tail, and renal arteries. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. METHODS A DMT multiwire myograph system was used to test the tension of isolated small arteries. Several drugs were employed to verify the underlying mechanisms. RESULTS DL0805-2 (10(-7)-10(-4) M) inhibited KCl (60 mM)-induced vasoconstriction in three types of small artery rings (pEC50: 5.84 ± 0.03, 5.39 ± 0.03, and 5.67 ± 0.02 for mesenteric, renal, and ventral tail artery rings, respectively). Pre-incubation with DL0805-2 (1, 3, or 10 μM) attenuated KCl (10-60 mM) and angiotensin II (AngII; 10(-6) M)-induced vasoconstriction in mesenteric artery rings. The relaxant effect on the rat mesenteric artery was partially endothelium-dependent (pEC50: 6.02 ± 0.05 for endothelium-intact and 5.72 ± 0.06 for endothelium-denuded). The influx and release of Ca(2+) were inhibited by DL0805-2. In addition, the increased phosphorylation levels of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by AngII were blocked by DL0805-2. However, DL0805-2 had little effect on K(+) channels. CONCLUSIONS The present results demonstrate that DL0805-2 has a vasorelaxant effect on isolated rat small arteries and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.
Collapse
|
67
|
Effects of various pharmacological agents on the function of norepinephrine transporter. J UOEH 2015; 37:33-42. [PMID: 25787100 DOI: 10.7888/juoeh.37.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The norepinephrine transporter is selectively expressed in noradrenergic nerve terminals, where it can exert spatial and temporal control over the action of norepinephrine. The norepinephrine transporter mediates the termination of neurotransmission via the reuptake of norepinephrine released into the extracellular milieu. In the present brief review, we report our recent studies about the effects of various pharmacological agents such as fasudil, nicotine, pentazocine, ketamine and genistein on norepinephrine transporter function.
Collapse
|
68
|
Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension. High Blood Press Cardiovasc Prev 2015; 22:215-23. [PMID: 25759028 DOI: 10.1007/s40292-015-0082-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 01/20/2023] Open
Abstract
Insights into the Angiotensin II (Ang II) signalling pathways have been provided by extensive studies using Bartter's/Gitelman's syndromes patients. These syndromes are characterized by activation of the renin-angiotensin-aldosterone system but do not develop hypertension and cardiovascular remodelling, therefore represent a mirror image of hypertension and clinically manifest themselves as the opposite of hypertension. The short and the long-term signalling of Ang II remain an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications, such as cardiovascular remodelling and atherogenesis. In particular the long-term signalling of Ang II is involved in the pathophysiology of cardiovascular-renal remodelling, inflammatory and hypertrophic responses in which the relationship between RhoA/Rho kinase pathway and NO system plays a crucial role. This review reports the results of our studies in Bartter's and Gitelman's syndromes to get better insight these processes and the role of Ang II signaling. The information obtained from the studies in Bartter's/Gitelman's patients can, in fact, clarify, confirm or be used to gather more general data on the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could contribute to identify additional potential significant targets of therapy.
Collapse
|
69
|
Löhn M, Plettenburg O, Kannt A, Kohlmann M, Hofmeister A, Kadereit D, Monecke P, Schiffer A, Schulte A, Ruetten H, Ivashchenko Y. End-organ protection in hypertension by the novel and selective Rho-kinase inhibitor, SAR407899. World J Cardiol 2015; 7:31-42. [PMID: 25632317 PMCID: PMC4306204 DOI: 10.4330/wjc.v7.i1.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/01/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare the therapeutic efficacy of SAR407899 with the current standard treatment for hypertension [an angiotensin converting enzyme (ACE)-inhibitor and a calcium channel blocker] and compare the frequency and severity of the hypertension-related end-organ damage.
METHODS: Long-term pharmacological characte-rization of SAR407899 has been performed in two animal models of hypertension, of which one is sensitive to ACE-inhibition (LNAME) and the other is insensitive [deoxycorticosterone acetate (DOCA)]. SAR407899 efficiently lowered high blood pressure and significantly reduced late-stage end organ damage as indicated by improved heart, kidney and endothelial function and reduced heart and kidney fibrosis in both models of chronic hypertension.
RESULTS: Long term treatment with SAR407899 has been well tolerated and dose-dependently reduced elevated blood pressure in both models with no signs of tachyphylaxia. Blood pressure lowering effects and protective effects on hypertension related end organ damage of SAR407899 were superior to ramipril and amlodipine in the DOCA rat. Typical end-organ damage was significantly reduced in the SAR407899-treated animals. Chronic administration of SAR407899 significantly reduced albuminuria in both models. The beneficial effect of SAR407899 was associated with a reduction in leukocyte/macrophage tissue infiltration. The overall protective effect of SAR407899 was superior or comparable to that of ACE-inhibition or calcium channel blockade. Chronic application of SAR407899 protects against hypertension and hypertension-induced end organ damage, regardless of the pathophysiological mechanism of hypertension.
CONCLUSION: Rho-kinases-inhibition by the SAR407899 represents a new therapeutic option for the treatment of hypertension and its complications.
Collapse
|
70
|
Toll-like receptor 2 mediates vascular contraction and activates RhoA signaling in vascular smooth muscle cells from STZ-induced type 1 diabetic rats. Pflugers Arch 2015; 467:2361-74. [PMID: 25600901 DOI: 10.1007/s00424-015-1688-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Increased vascular smooth muscle cell (VSMC) contraction is an early and critical contributor to the pathogenesis of vascular dysfunction in diabetes; however, knowledge regarding the underlying mechanisms is scarce. Toll-like receptor 2 (TLR2), a well-known component of the innate immunity, is expressed in VSMC and recently has been identified to be systemically activated in diabetes. Whether TLR2 is locally activated in the diabetic blood vessels and have effect on contraction is not known. In the current study, we examined the role of TLR2 in increased vascular contraction in diabetes. Utilizing rat model of type 1 diabetes (induced by streptozotocin (STZ)), we demonstrated that aortas from STZ-diabetic rats exhibit increased expression of TLR2 and its adaptor protein, myeloid differentiation primary response 88 (MyD88), as well as enhanced protein-protein interaction between TLR2 and MyD88, suggesting a TLR2 signaling activation. Blockade of TLR2 in intact aortas using anti-TLR2 antibody attenuated increased vascular contraction in STZ-diabetic rat as assessed by wire myograph. Activation of TLR2 by specific ligand in primary aortic VSMC cultures triggered activation of RhoA which was exacerbated in cells from STZ-diabetic rats than control rats. Activation of RhoA was accompanied by phosphorylation and therefore activation of its downstream targets myosin phosphatase target subunit I and myosin light chain (markers of VSMC contraction). Taken together, these results provide evidence for the role of TLR2 in increased contraction in diabetic blood vessels that involves RhoA signaling. Thus, targeting vascular TLR2 offers a promising drug target to treat vascular dysfunction in diabetes.
Collapse
|
71
|
Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2014; 63:466-82. [DOI: 10.1002/glia.22765] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ana I. Rodriguez-Perez
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Ana Borrajo
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jannette Rodriguez-Pallares
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Maria J. Guerra
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jose L. Labandeira-Garcia
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| |
Collapse
|
72
|
Ma S, Deng J, Li B, Li X, Yan Z, Zhu J, Chen G, Wang Z, Jiang H, Miao L, Li J. Development of Second-Generation Small-Molecule RhoA Inhibitors with Enhanced Water Solubility, Tissue Potency, and Significant in vivo Efficacy. ChemMedChem 2014; 10:193-206. [DOI: 10.1002/cmdc.201402386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/24/2022]
|
73
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
74
|
De Silva TM, Modrick ML, Ketsawatsomkron P, Lynch C, Chu Y, Pelham CJ, Sigmund CD, Faraci FM. Role of peroxisome proliferator-activated receptor-γ in vascular muscle in the cerebral circulation. Hypertension 2014; 64:1088-93. [PMID: 25185134 DOI: 10.1161/hypertensionaha.114.03935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although peroxisome proliferator-activated receptor-γ (PPARγ) is thought to play a protective role in the vasculature, its cell-specific effect, particularly in resistance vessels, is poorly defined. Nitric oxide (NO) plays a major role in vascular biology in the brain. We examined the hypothesis that selective interference with PPARγ in vascular muscle would impair NO-dependent responses and augment vasoconstrictor responses in the cerebral circulation. We studied mice expressing a dominant negative mutation in human PPARγ (P467L) under the control of the smooth muscle myosin heavy chain promoter (S-P467L). In S-P467L mice, dilator responses to exogenously applied or endogenously produced NO were greatly impaired in cerebral arteries in vitro and in small cerebral arterioles in vivo. Select NO-independent responses, including vasodilation to low concentrations of potassium, were also impaired in S-P467L mice. In contrast, increased expression of wild-type PPARγ in smooth muscle had little effect on vasomotor responses. Mechanisms underlying impairment of both NO-dependent and NO-independent vasodilator responses after interference with PPARγ involved Rho kinase with no apparent contribution by oxidative stress-related mechanisms. These findings support the concept that via effects on Rho kinase-dependent signaling, PPARγ in vascular muscle is a major determinant of vascular tone in resistance vessels and, in particular, NO-mediated signaling in cerebral arteries and brain microvessels. Considering the importance of NO and Rho kinase, these findings have implications for regulation of cerebral blood flow and the pathogenesis of large and small vessel disease in brain.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Mary L Modrick
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Pimonrat Ketsawatsomkron
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Cynthia Lynch
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Yi Chu
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Christopher J Pelham
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Department of Internal Medicine (T.M.D.S., M.L.M., C.L., Y.C., C.D.S., F.M.F.) and Department of Pharmacology (P.K., C.J.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| |
Collapse
|
75
|
Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Microglial TNF-α mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia 2014; 62:145-57. [PMID: 24272709 DOI: 10.1002/glia.22595] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/11/2022]
Abstract
In vitro and in vivo models of Parkinson's disease were used to investigate whether TNF-α plays a major role in the enhancement of the microglial response and dopaminergic degeneration induced by brain angiotensin hyperactivity. Treatment of primary mesencephalic cultures with low doses of the neurotoxin MPP(+) induced a significant loss of dopaminergic neurons, which was enhanced by cotreatment with angiotensin II and inhibited by TNF-α inhibitors. Treatment of primary cultures with angiotensin induced a marked increase in levels of TNF-α, which was inhibited by treatment with angiotensin type-1-receptor antagonists, NADPH-oxidase inhibitors and NFK-β inhibitors. However, TNF-α levels were not significantly affected by treatment with angiotensin in the absence of microglia. The microglial origin of the angiotensin-induced increase in TNF-α levels was confirmed using dopaminergic (MES 23.5) and microglial (N9) cell lines. Inhibition of the microglial Rho-kinase activity also blocked the AII-induced increase in TNF-α levels. Treatment of the dopaminergic cell line with TNF-α revealed that NFK-β activation mediates the deleterious effect of microglial TNF-α on dopaminergic neurons. Treatment of mice with MPTP also induced significant increases in striatal and nigral TNF-α levels, which were inhibited by angiotensin type-1-receptor antagonists or NFK-β inhibitors. The present results show that microglial TNF-α plays a major role in angiotensin-induced dopaminergic cell death and that the microglial release of TNF-α is mediated by activation of angiotensin type-1 receptors, NADPH-oxidase, Rho-kinase and NFK-β.
Collapse
Affiliation(s)
- Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | | | | | | | | |
Collapse
|
76
|
Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 2014; 85:1-8. [PMID: 24878243 DOI: 10.1016/j.neuropharm.2014.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 01/20/2023]
Abstract
Several recent studies have shown that activation of the RhoA/Rho-associated kinase (ROCK) pathway is involved in the MPTP-induced dopaminergic cell degeneration and possibly in Parkinson's disease. ROCK inhibitors have been suggested as candidate neuroprotective drugs for Parkinson's disease. However, the mechanism responsible for the increased survival of dopaminergic neurons after treatment with ROCK inhibitors is not clear. We exposed primary (neuron-glia) mesencephalic cultures, cultures of the MES 23.5 dopaminergic neuron cell line and primary mesencephalic cultures lacking microglial cells to the dopaminergic neurotoxin MPP+ and the ROCK inhibitor Y-27632 in order to study the effects of ROCK inhibition on dopaminergic cell loss and the length of neurites of surviving dopaminergic neurons. In primary (neuron-glia) cultures, simultaneous treatment with MPP+ and the ROCK inhibitor significantly reduced the loss of dopaminergic neurons. In the absence of microglia, treatment with the ROCK inhibitor did not induce a significant reduction in the dopaminergic cell loss. Treatment with the ROCK inhibitor induced a significant decrease in axonal retraction in primary cultures with and without microglia and in cultures of the MES 23.5 neuron cell line. In conclusion, inhibition of microglial ROCK is essential for the neuroprotective effects of ROCK inhibitors against cell death induced by the dopaminergic neurotoxin MPP+. In addition, ROCK inhibition induced a direct effect against axonal retraction in surviving neurons. However, the latter effect was not sufficient to cause a significant increase in the survival of dopaminergic neurons after treatment with MPP+.
Collapse
Affiliation(s)
- Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
77
|
Chacko S, Cortes E, Drake MJ, Fry CH. Does altered myogenic activity contribute to OAB symptoms from detrusor overactivity? ICI-RS 2013. Neurourol Urodyn 2014; 33:577-80. [DOI: 10.1002/nau.22599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sam Chacko
- Department of Pathobiology; Division of Urology; University of Pennsylvania; Philadelphia Pennsylvania
| | - Eduard Cortes
- Women's Health Academic Centre; King's College London; London United Kingdom
| | - Marcus J. Drake
- School of Clinical Sciences; University of Bristol; Bristol United Kingdom
| | - Christopher H. Fry
- Department of Biochemistry and Physiology; FHMS; University of Surrey; Guildford United Kingdom
| |
Collapse
|
78
|
Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS Genet 2014; 10:e1004146. [PMID: 24586188 PMCID: PMC3937211 DOI: 10.1371/journal.pgen.1004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s). In the current work we provide direct evidence that the enzyme, which complements CathA action towards ET-1 is a retinoid-inducible lysosomal serine carboxypeptidase 1 (Scpep1), a CathA homolog with previously unknown biological function. We generated a mouse strain devoid of both CathA and Scpep1 activities (DD mice) and found that in response to high-salt diet and systemic injections of ET-1 these animals showed significantly increased blood pressure as compared to wild type mice or those with single deficiencies of CathA or Scpep1. We also found that the reactivity of mesenteric arteries from DD mice towards ET-1 was significantly higher than that for all other groups of mice. The DD mice had a reduced degradation rate of ET-1 in the blood whereas their cultured arterial vascular smooth muscle cells showed increased ET-1-dependent phosphorylation of myosin light chain 2. Together, our results define the biological role of mammalian serine carboxypeptidase Scpep1 and suggest that Scpep1 and CathA together participate in the control of ET-1 regulation of vascular tone and hemodynamics.
Collapse
|
79
|
Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, Dostal JD, Jacob JC, Foster DM, Tong C, Glaser S, Gerilechaogetu F. Mechanosensing and Regulation of Cardiac Function. ACTA ACUST UNITED AC 2014; 5:314. [PMID: 25485172 PMCID: PMC4255974 DOI: 10.4172/2155-9880.1000314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological responses or pathological conditions. Emerging evidence from experimental studies indicate that β1-integrin and the angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction, growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane, mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.
Collapse
Affiliation(s)
- David E Dostal
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Hao Feng
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Damir Nizamutdinov
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Honey B Golden
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Syeda H Afroze
- Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Joseph D Dostal
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - John C Jacob
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Donald M Foster
- Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Carl Tong
- Systems Biology and Translational Medicine, the Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Shannon Glaser
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Fnu Gerilechaogetu
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| |
Collapse
|
80
|
Hutchinson CL, Lowe PN, McLaughlin SH, Mott HR, Owen D. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB. Biochemistry 2013; 52:7999-8011. [PMID: 24128008 DOI: 10.1021/bi401216w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.
Collapse
Affiliation(s)
- Catherine L Hutchinson
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | | | | | | | | |
Collapse
|
81
|
Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol Sin 2013; 34:1310-6. [PMID: 23974518 DOI: 10.1038/aps.2013.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/24/2013] [Indexed: 12/12/2022]
Abstract
AIM To test the hypothesis that neonatal hyperoxia induced pulmonary hypertension accompanied by increased Rho-kinase expression in rat lungs and that Rho-kinase inhibitor could attenuate right ventricular hypertrophy and pulmonary arterial remodeling. METHODS Newborn rats were exposed to >95% O2 in the first week after birth, then to 60% O2 in the following 2 weeks. Control pups were exposed to room air over the same periods. The pups were injected with either Rho-kinase inhibitor Y-27632 (10 mg·kg(-1)·d(-1), ip) or vehicle from postnatal d 14 to 20. Lung and heart tissues were collected on postnatal d 7 and 21. Rho-kinase activity in lungs was measured using Western blotting and immunohistochemistry. The right ventricular hypertrophy and arterial medial wall thickness (MWT) were assessed morphologically. RESULTS Rho-kinase activity in lungs was comparable between the hyperoxic and control pups on postnatal d 7, but it had a more than 2-fold increase in the hyperoxic pups on postnatal d 21. Moreover, the hyperoxic exposure induced structural features of pulmonary hypertension, as shown by the right ventricular hypertrophy and significantly increased arterial MWT. Administration with Y-27632 effectively blocked the hyperoxia-induced increase of Rho-kinase activity in lungs, and attenuated the right ventricular hypertrophy. CONCLUSION Rho-kinase inhibitor may be a novel therapy for attenuating the hyperoxia-induced structural changes in pulmonary hypertension.
Collapse
|
82
|
Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT, Fujii Y, Schwenke DO, Tsuchimochi H, Yoshimoto M, Umetani K, Kelly DJ, Shirai M. Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc Diabetol 2013; 12:111. [PMID: 24059472 PMCID: PMC3734116 DOI: 10.1186/1475-2840-12-111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes. METHODS Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6). Changes in vessel number and calibre during vasodilator stimulation before and after blockade of nitric oxide synthase and cyclooxygenase were compared between rats. Acute responses to ROCK inhibitor, fasudil (10 mg/kg iv) was evaluated. Further, perivascular and myocardial fibrosis, arterial intimal thickening were assessed by histology, and capillary density, nitrotyrosine and ROCK1/2 expressions were evaluated by immunohistochemical staining. RESULTS Diabetic rats had significantly elevated plasma glucose (P < 0.001 vs control), but did not differ in fibrotic scores, media to lumen ratio, capillary density or baseline visible vessel number or calibre. Responses to acetylcholine and sodium nitroprusside stimulation were similar between groups. However, in comparison to control rats the diabetic rats showed more segmental constrictions during blockade, which were not completely alleviated by acetylcholine, but were alleviated by fasudil. Further, second order vessel branches in diabetic rats were significantly more dilated relative to baseline (37% vs 12% increase, P < 0.05) after fasudil treatment compared to control rats, while visible vessel number increased in both groups. ROCK2 expression was borderline greater in diabetic rat hearts (P < 0.053). CONCLUSIONS We found that ahead of the reported decline in coronary endothelial vasodilator function in diabetic rats there was moderate elevation in ROCK expression, more widespread segmental constriction when nitric oxide and prostacyclin production were inhibited and notably, increased calibre in second and third order small arteries-arterioles following ROCK inhibition. Based on nitrotyrosine staining oxidative stress was not significantly elevated in early diabetic rats. We conclude that tonic ROCK mediated vasoconstriction contributes to coronary vasomotor tone in early diabetes.
Collapse
Affiliation(s)
- James T Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Melbourne, Australia
- Australian Synchrotron, Melbourne, Australia
| | - Mathew J Jenkins
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Amanda J Edgley
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Takashi Sonobe
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Mandar Joshi
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - Mark T Waddingham
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Yutaka Fujii
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Daryl O Schwenke
- Department of Physiology, Otago University, Dunedin, New Zealand
| | | | - Misa Yoshimoto
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Darren J Kelly
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Mikiyasu Shirai
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
83
|
WANG HAIYING, CHEN XIAOLONG. Effects of a Rho kinase inhibitor on the sequential expression of ICAM-1, HIF-1α, Bcl-2 and caspase-3 in the retina of rats with oxygen-induced retinopathy. Int J Mol Med 2013; 32:457-63. [DOI: 10.3892/ijmm.2013.1410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022] Open
|
84
|
Hou HW, Li XG, Yan M, Hu ZQ, Song YE. Increased leukocyte Rho-kinase activity in a population with acute coronary syndrome. Mol Med Rep 2013; 8:250-4. [PMID: 23660620 DOI: 10.3892/mmr.2013.1463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that Rho-associated kinase (ROCK) may be important in the pathogenesis of atherosclerosis and coronary vasospasm. In the present study, we investigated whether ROCK activity is increased in acute coronary syndrome (ACS) patients. Twenty-one patients with ACS (12 males, mean age 58.0±8.0 years) and 20 control subjects (10 males, mean age 55.0±6.0 years) were enrolled. Blood samples were obtained and demographics were recorded. Peripheral leukocyte ROCK activity was determined by the ratio of phospho-myosin‑binding subunit (P-MBS) on myosin light-chain phosphatase to total MBS. Compared with the control subjects, ROCK activity was significantly increased in ACS patients (0.69±0.07 vs. 0.45±0.04, P<0.001). There was no apparent correlation between the lipid levels (total cholesterol and low-density lipoprotein) and ROCK activity (r=0.17, P>0.05; r=0.08, P>0.05; respectively). However, ROCK activity correlated with mean arterial pressure (r=0.58; P<0.01). ROCK activity is increased in ACS patients indicating that this may be a novel serological marker of ACS.
Collapse
Affiliation(s)
- Hong-Wei Hou
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | |
Collapse
|
85
|
Bai X, Lenhart KC, Bird KE, Suen AA, Rojas M, Kakoki M, Li F, Smithies O, Mack CP, Taylor JM. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nat Commun 2013; 4:2910. [PMID: 24335996 PMCID: PMC4237314 DOI: 10.1038/ncomms3910] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Although hypertension is a worldwide health issue, an incomplete understanding of its aetiology has hindered our ability to treat this complex disease. Here we identify arhgap42 (also known as GRAF3) as a Rho-specific GAP expressed specifically in smooth muscle cells (SMCs) in mice and humans. We show that GRAF3-deficient mice exhibit significant hypertension and increased pressor responses to angiotensin II and endothelin-1; these effects are prevented by treatment with the Rho-kinase inhibitor, Y27632. RhoA activity and myosin light chain phosphorylation are elevated in GRAF3-depleted SMCs in vitro and in vivo, and isolated vessel segments from GRAF3-deficient mice show increased contractility. Taken together, our data indicate that GRAF3-mediated inhibition of RhoA activity in vascular SMCs is necessary for maintaining normal blood pressure homoeostasis. Moreover, these findings provide a potential mechanism for a hypertensive locus recently identified within arhgap42 and provide a foundation for the future development of innovative hypertension therapies.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin C. Lenhart
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kim E. Bird
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alisa A. Suen
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mauricio Rojas
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Feng Li
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
86
|
Balakumar P, Kathuria S. Submaximal PPARγ activation and endothelial dysfunction: new perspectives for the management of cardiovascular disorders. Br J Pharmacol 2012; 166:1981-92. [PMID: 22404217 DOI: 10.1111/j.1476-5381.2012.01938.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PPARγ activation plays an important role in glucose metabolism by enhancing insulin sensitization. PPARγ is a primary target for thiazolidinedione-structured insulin sensitizers like pioglitazone and rosiglitazone employed for the treatment of type 2 diabetes mellitus. Additionally, PPARγ activation inhibits adhesion cascades and detrimental vascular inflammatory events. Importantly, activation of PPARγ plays a distinctive role in regulating the physiology and expression of endothelial nitric oxide synthase (eNOS) in the endothelium, resulting in enhanced generation of vascular nitric oxide. The PPARγ activation-mediated vascular anti-inflammatory and direct endothelial functional regulatory actions could, therefore, be beneficial in improving the vascular function in patients with atherosclerosis and hypertension with or without diabetes mellitus. Despite the disappointing cardiac side effect profile of rosiglitazone-like PPARγ full agonists, the therapeutic potential of novel pharmacological agents targeting PPARγ submaximally cannot be ruled out. This review discusses the potential regulatory role of PPARγ on eNOS expression and activation in improving the function of vascular endothelium. We argue that partial/submaximal activation of PPARγ could be a major target for vascular endothelial functional improvement. Interestingly, newly synthesized partial agonists of PPARγ such as balaglitazone, MBX-102, MK-0533, PAR-1622, PAM-1616, KR-62776 and SPPARγM5 are devoid of or have a reduced tendency to cause the adverse effects associated with full agonists of PPARγ. We propose that the vascular protective properties of pharmacological agents, which submaximally activate PPARγ, should be investigated. Moreover, the therapeutic opportunities of agents that submaximally activate PPARγ in preventing vascular endothelial dysfunction (VED) and VED-associated cardiovascular disorders are discussed.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Cardiovascular Pharmacology Division, Department of Pharmacology, Institute of Pharmacy, Rajendra Institute of Technology and Sciences-RITS, Sirsa, India.
| | | |
Collapse
|
87
|
Zhang XH, Sun NX, Feng ZH, Wang C, Zhang Y, Wang JM. Interference of Y-27632 on the signal transduction of transforming growth factor beta type 1 in ocular Tenon capsule fibroblasts. Int J Ophthalmol 2012; 5:576-81. [PMID: 23166867 DOI: 10.3980/j.issn.2222-3959.2012.05.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023] Open
Abstract
AIM To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-β1 (TGF-β1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS After OTFS from passages 4 to 6 in vitro were induced by TGF-β1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the α-smooth muscular actin (α-SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the α-SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-β1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-β1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both α-SMA and CTGF, while to some extent inhibited that of collagen I. TGF-β1 significantly promoted the proteins expressions of α-SMA, CTGF and collagen I. After OTFS treated by both TGF-β1 and Y-27632, of α-SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the α-SMA, CTGF and collagen I mRNA in 30, 150, 750µmol/L Y-27632 group were statistically significant, compared with those in control group, respectively (α-SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I, P=0.003, 0.002, 0.000). CONCLUSION Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and α-SMA whatever OTFS induced by TGF-β1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Ophthalmology, the Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
88
|
Cullin-3 regulates vascular smooth muscle function and arterial blood pressure via PPARγ and RhoA/Rho-kinase. Cell Metab 2012; 16:462-72. [PMID: 23040068 PMCID: PMC3474846 DOI: 10.1016/j.cmet.2012.08.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/31/2012] [Accepted: 08/31/2012] [Indexed: 12/26/2022]
Abstract
Dominant-negative (DN) mutations in the nuclear hormone receptor peroxisome proliferator-activated receptor-γ (PPARγ) cause hypertension by an unknown mechanism. Hypertension and vascular dysfunction are recapitulated by expression of DN PPARγ specifically in vascular smooth muscle of transgenic mice. DN PPARγ increases RhoA and Rho-kinase activity, and inhibition of Rho-kinase restores normal reactivity and reduces arterial pressure. RhoBTB1, a component of the Cullin-3 RING E3 ubiquitin ligase complex, is a PPARγ target gene. Decreased RhoBTB1, Cullin-3, and neddylated Cullin-3 correlated with increased levels of the Cullin-3 substrate RhoA. Knockdown of Cullin-3 or inhibition of cullin-RING ligase activity in aortic smooth muscle cells increased RhoA. Cullin-RING ligase inhibition enhanced agonist-mediated contraction in aortic rings from normal mice by a Rho-kinase-dependent mechanism, and it increased arterial pressure in vivo. We conclude that Cullin-3 regulates vascular function and arterial pressure, thus providing a mechanistic link between mutations in Cullin-3 and hypertension in humans.
Collapse
|
89
|
Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, Townsend RR, Roman RJ, Garrett MR. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 2012; 60:1157-68. [PMID: 22987919 DOI: 10.1161/hypertensionaha.112.199240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.
Collapse
Affiliation(s)
- Jan M Williams
- University of Mississippi Medical Center, Department of Pharmacology and Toxicology, 2500 North State St, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis 2012; 47:268-79. [DOI: 10.1016/j.nbd.2012.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022] Open
|
91
|
Ortiz-Sanchez JM, Nichols SE, Sayyah J, Brown JH, McCammon JA, Grant BJ. Identification of potential small molecule binding pockets on Rho family GTPases. PLoS One 2012; 7:e40809. [PMID: 22815826 PMCID: PMC3397943 DOI: 10.1371/journal.pone.0040809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/13/2012] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Collapse
Affiliation(s)
- Juan Manuel Ortiz-Sanchez
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (JMO-S); (BJG)
| | - Sara E. Nichols
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Jacqueline Sayyah
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| | - Barry J. Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JMO-S); (BJG)
| |
Collapse
|
92
|
Borer KE, Bailey SR, Harris PA, Elliott J. Contractile responses of isolated equine digital arteries under hypoxic or hyperoxic conditions in vitro: role of reactive oxygen species and Rho kinase. J Vet Pharmacol Ther 2012; 36:267-74. [PMID: 22762272 DOI: 10.1111/j.1365-2885.2012.01423.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The underlying pathophysiological triggers for equine acute laminitis are unknown, although digital vasoconstriction, ischaemia, hypoxia and reperfusion injury may be involved. The contractile responses of isolated equine digital arteries (EDAs), harvested from the hindlimbs of normal horses postmortem at an abattoir, were studied acutely (up to 3 h) under hyperoxic (95% oxygen, 5% CO2 ) and hypoxic (95% nitrogen, 5% CO2 ) conditions in organ baths. Phenylephrine (PHE; 10(-6) m), 5-hydroxytryptamine (5-HT; 10(-7) m) and high potassium (K(+) ; 118 mm) caused contraction in EDAs which was significantly (P<0.0001) enhanced under hypoxic conditions. In contrast, contraction stimulated by 9,11-dideoxy-9α,11α-epoxymethanoprostaglandin F2α (U44069; 3 × 10(-8) m) was not significantly enhanced by hypoxia (P=0.75). Hypoxia-enhanced contraction in response to K(+) was greater (P<0.03) in vessels with a functional endothelium than in vessels in which the endothelium was removed by rubbing. Fasudil (10(-6) to 10(-5) m), a Rho kinase inhibitor, and apocynin (10(-3) to 3 × 10(-3) m), an NADPH oxidase inhibitor, significantly (P ≤ 0.05) inhibited hypoxia-enhanced contraction in response to PHE and 5-HT. In conclusion, hypoxia-enhanced contraction occurred in EDAs. This appears to be partially mediated by reactive oxygen species produced by NAPDH oxidase, which activate Rho kinase to increase calcium sensitisation and enhance smooth muscle contraction.
Collapse
Affiliation(s)
- K E Borer
- Royal Veterinary College, Hatfield, Herts, UK University of Melbourne, Melbourne, Vic., Australia.
| | | | | | | |
Collapse
|
93
|
Stimulation of norepinephrine transporter function by fasudil, a Rho kinase inhibitor, in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:921-31. [PMID: 22752240 DOI: 10.1007/s00210-012-0773-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
Norepinephrine transporter (NET) regulates noradrenergic synaptic transmission by controlling extracellular levels of norepinephrine (NE). The small GTPase, RhoA, and its downstream effector Rho kinase (ROCK) are involved in the regulation of actin cytoskeleton and focal adhesion/stress fiber formation, which may play an important role in various functions of the sympathetic nervous system. We report here the effect of fasudil, a ROCK inhibitor, on the functions of NET in cultured bovine adrenal medullary cells as a model of sympathetic neurons. Treatment of bovine adrenal medullary cells with fasudil caused an increase in [(3)H]NE uptake in time (8-120 h) and concentration (10-100 μM)-dependent manner. Another ROCK inhibitor, Y-27632 (10-100 μM, 1 day), also increased [(3)H]NE uptake by the cells. Kinetics analysis of the effect of fasudil on NE transport showed a significant increase in the V (max) of NE transport with little change in K (m). When both extracellular and intracellular Ca(2+) were removed by the deprivation of extracellular Ca(2+) and BAPTA-AM, a cell-permeable Ca(2+) chelator, [(3)H]NE uptake induced by fasudil was completely abolished. Nocodazole, an inhibitor of microtubule polymerization, but not cytochalasin D, an inhibitor of actin polymerization, suppressed the stimulatory effect of fasudil on [(3)H]NE uptake. The present findings suggest that the ROCK inhibitor fasudil up-regulates NET function in a Ca(2+)-dependent and/or nocodazole-sensitive pathway in adrenal medullary cells.
Collapse
|
94
|
Pankey EA, Byun RJ, Smith WB, Bhartiya M, Bueno FR, Badejo AM, Stasch JP, Murthy SN, Nossaman BD, Kadowitz PJ. The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat. Can J Physiol Pharmacol 2012; 90:825-35. [DOI: 10.1139/y2012-061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10–300 µg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.
Collapse
Affiliation(s)
- Edward A. Pankey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Ryuk J. Byun
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - William B. Smith
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Manish Bhartiya
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Franklin R. Bueno
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Adeleke M. Badejo
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Johannes-Peter Stasch
- Institute of Cardiovascular Research, Pharma Research Centre, Bayer AG, D-42096 Wuppertal, Germany
| | - Subramanyam N. Murthy
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| | - Bobby D. Nossaman
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
- Department of Anesthesiology, Critical Care Medicine Section, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, Louisiana 70121, USA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112-2699, USA
| |
Collapse
|
95
|
Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Weiss JW, Guo QY, Wang JY, Ji ES, Chu L. Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50:1874-82. [PMID: 22429817 DOI: 10.1016/j.fct.2012.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/26/2012] [Accepted: 03/03/2012] [Indexed: 01/02/2023]
Abstract
Inhibition of Rho kinase (ROCK) has been shown to improve diabetic-related disorders. In this study, the cardio-protective effects and potential mechanisms of fasudil, a selective ROCK inhibitor, on diabetic cardiomyopathy were investigated in a streptozotocin (STZ)-induced diabetic rat model. Eight weeks after diabetes was induced by a single tail vein injection of 60 mg/kg STZ, rats were administered long-term fasudil or captopril as a control over a four-week period. Similar to the effect of captopril, fasudil treatment significantly protected against STZ-induced hemodynamic, histopathologic changes and decreased serum lactate dehydrogenase and creatine phosphokinase. Moreover, fasudil significantly down-regulated ROCK I mRNA expression and ROCK activity, reduced cardiac collagen deposition, and decreased the incidence of apoptosis and ratio of Bax/Bcl-2 protein expression. Additionally, fasudil potently elevated superoxide dismutase activity and suppressed the extent of lipid peroxidation in sera and hearts of diabetic rats. Our findings indicated that long-term treatment with fasudil could improve cardiac dysfunction, attenuate myocardial injury and prevent pathological changes in a rat model of diabetic cardiomyopathy. These effects could be attributed to regulation of antioxidative activities, suppression of myocardial hypertrophy, apoptosis, fibrosis and subsequent cardiac remodeling. These results may help to expand the clinical application of fasudil for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sheng-jiang Guan
- Department of Pharmacology, School of Basic Medicine, Hebei Medical University, 326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Oh KS, Oh BK, Park CH, Mun J, Won SH, Lee BH. Baicalein Potently Inhibits Rho Kinase Activity and Suppresses Actin Stress Fiber Formation in Angiotensin II-Stimulated H9c2 Cells. Biol Pharm Bull 2012; 35:1281-6. [DOI: 10.1248/bpb.b12-00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Byung Koo Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Cheon Ho Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Jihye Mun
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Suk Hyun Won
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| |
Collapse
|
97
|
Seok YM, Kim HY, Garmaa O, Cha BY, Woo JT, Kim IK. Effects of magnolol on vascular contraction in rat aortic rings. Clin Exp Pharmacol Physiol 2011; 39:28-36. [DOI: 10.1111/j.1440-1681.2011.05629.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
98
|
Zhao Z. Endoplasmic reticulum stress in maternal diabetes-induced cardiac malformations during critical cardiogenesis period. ACTA ACUST UNITED AC 2011; 95:1-6. [PMID: 21922638 DOI: 10.1002/bdrb.20330] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/12/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cardiac abnormalities, including atrioventricular (AV) septal defects (AVSDs), are the most common birth defects in diabetic embryopathy. The AV septum is derived from the endocardial cushions, which undergo development and remodeling during septation. The impact of maternal diabetes on these processes needs to be identified. Maternal diabetes disturbs the function of the endoplasmic reticulum (ER). The role of ER stress in cardiac malformation remains to be delineated to gain information for developing therapy. METHODS Female mice were induced diabetic via intravenous injection of streptozotocin. Pregnant mice were made hyperglycemic at desired embryonic (E) days. AVSDs were examined histologically at E15.5. ER stress-associated factors were examined and quantified using immunohistochemical and immunoblot assays at E10.5. The role of ER stress in endocardial cell migration was investigated by treating endocardial cushion explants that were cultured in high glucose with an organic chaperone molecule, sodium 4-phenylbutyrate. RESULTS The rate of AVSDs in the embryos that were exposed to maternal hyperglycemia during the period of endocardial cushion development was significantly higher than that in those during endocardial cushion remodeling. ER stress was increased in the hearts. Amelioration of ER stress restored endocardial cell migration under hyperglycemic conditions. CONCLUSIONS The development, rather than remodeling, of the endocardial cushions is the cardiomorphogenic process that is susceptible to the insult of maternal hyperglycemia in the formation of AVSDs. Maternal diabetes increases ER stress in the developing heart. ER stress plays an essential role in mediating the effect of hyperglycemia on endocardial cell migration.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
99
|
Simulating EGFR-ERK signaling control by scaffold proteins KSR and MP1 reveals differential ligand-sensitivity co-regulated by Cbl-CIN85 and endophilin. PLoS One 2011; 6:e22933. [PMID: 21829671 PMCID: PMC3148240 DOI: 10.1371/journal.pone.0022933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
ERK activation is enhanced by the scaffolding proteins KSR and MP1, localized near the cell membrane and late endosomes respectively, but little is known about their dynamic interplay. We develop here a mathematical model with ordinary differential equations to describe the dynamic activation of EGFR-ERK signaling under a conventional pathway without scaffolds, a KSR-scaffolded pathway, and an MP1-scaffolded pathway, and their impacts were examined under the influence of the endosomal regulators, Cbl-CIN85 and Endophilin A1. This new integrated model, validated against experimental results and computational constraints, shows that changes of ERK activation and EGFR endocytosis in response to EGF concentrations (i.e ligand sensitivity) depend on these scaffold proteins and regulators. The KSR-scaffolded and the conventional pathways act synergistically and are sensitive to EGF stimulation. When the KSR level is high, the sensitivity of ERK activation from this combined pathway remains low when Cbl-CIN85 level is low. But, such sensitivity can be increased with increasing levels of Endophilin if Cbl-CIN85 level becomes high. However, reduced KSR levels already present high sensitivity independent of Endophilin levels. In contrast, ERK activation by MP1 is additive to that of KSR but it shows little ligand-sensitivity under high levels of EGF. This can be partly reversed by increasing level of Endophilin while keeping Cbl-CIN85 level low. Further analyses showed that high levels of KSR affect ligand-sensitivity of EGFR endocytosis whereas MP1 ensures the robustness of endosomal ERK activation. These simulations constitute a multi-dimensional exploration of how EGF-dependent EGFR endocytosis and ERK activation are dynamically affected by scaffolds KSR and MP1, co-regulated by Cbl-CIN85 and Endophilin A1. Together, these results provide a detailed and quantitative demonstration of how regulators and scaffolds can collaborate to fine-tune the ligand-dependent sensitivity of EGFR endocytosis and ERK activation which could underlie differences during normal physiology, disease states and drug responses.
Collapse
|
100
|
Seok YM, Cho HJ, Cha BY, Woo JT, Kim IK. Honokiol attenuates vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway in rat aortic rings. J Pharm Pharmacol 2011; 63:1244-51. [DOI: 10.1111/j.2042-7158.2011.01332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Honokiol is a small-molecule polyphenol isolated from the species Magnolia obovata. We hypothesized that honokiol attenuated vascular contractions through the inhibition of the RhoA/Rho-kinase signalling pathway.
Methods
Rat aortic rings were denuded of endothelium, mounted in organ baths, and subjected to contraction or relaxation. Phosphorylation of 20 kDa myosin light chains (MLC20), myosin phosphatase targeting subunit 1 (MYPT1) and protein kinase C (PKC)-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase (MLCP) of 17 kDa (CPI17) were examined by immunoblot. We also measured the amount of guanosine triphosphate RhoA as a marker for RhoA activation.
Key findings
Pretreatment with honokiol dose-dependently inhibited the concentration–response curves in response to sodium fluoride (NaF) or thromboxane A2 agonist U46619. Honokiol decreased the phosphorylation levels of MLC20, MYPT1Thr855 and CPI17Thr38 as well as the activation of RhoA induced by 8.0 mm NaF or 30 nm U46619.
Conclusions
These results demonstrated that honokiol attenuated vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway.
Collapse
Affiliation(s)
- Young Mi Seok
- Cardiovascular Research Institute, Republic of Korea
| | | | - Byung-Yoon Cha
- Department of Biological Chemistry and Research Institute for Biological Functions, Chubu University, Kasugai, Aichi, Japan
| | - Je-Tae Woo
- Department of Biological Chemistry and Research Institute for Biological Functions, Chubu University, Kasugai, Aichi, Japan
- Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - In Kyeom Kim
- Cardiovascular Research Institute, Republic of Korea
- Department of Pharmacology, Republic of Korea
- CMRI, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|