51
|
Biancolella M, Testa B, Baghernajad Salehi L, D'Apice MR, Novelli G. Genetics and Genomics of Breast Cancer: update and translational perspectives. Semin Cancer Biol 2020; 72:27-35. [PMID: 32259642 DOI: 10.1016/j.semcancer.2020.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
In the recent years the rapid scientific innovation in the evaluation of the individual's genome have allowed the identification of variants associated with the onset, treatment and prognosis of various pathologies including cancer, and with a potential impact in the assessment of therapy responses. Despite the analysis and interpretation of genomic information is considered incomplete, in many cases the identification of specific genomic profile has allowed the stratification of subgroups of patients characterized by a better response to drug therapies. Individual genome analysis has changed profoundly the diagnostic and therapeutic approach of breast cancer in the last 15 years by identifying selective molecular lesions that drive the development of neoplasms, showing that each tumor has its own genomic signature, with some specific features and some features common to several sub-types. Several personalized therapies have been (and still are being) developed showing a remarkable efficacy in the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Barbara Testa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | | | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy; Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
52
|
Liang G, Ling Y, Mehrpour M, Saw PE, Liu Z, Tan W, Tian Z, Zhong W, Lin W, Luo Q, Lin Q, Li Q, Zhou Y, Hamai A, Codogno P, Li J, Song E, Gong C. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Mol Cancer 2020; 19:65. [PMID: 32213200 PMCID: PMC7093993 DOI: 10.1186/s12943-020-01152-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although both circular RNAs (circRNAs) and autophagy are associated with the function of breast cancer (BC), whether circRNAs regulate BC progression via autophagy remains unknown. In this study, we aim to explore the regulatory mechanisms and the clinical significance of autophagy-associated circRNAs in BC. METHODS Autophagy associated circRNAs were screened by circRNAs deep sequencing and validated by qRT-PCR in BC tissues with high- and low- autophagic level. The biological function of autophagy associated circRNAs were assessed by plate colony formation, cell viability, transwells, flow cytometry and orthotopic animal models. For mechanistic study, RNA immunoprecipitation, circRNAs pull-down, Dual luciferase report assay, Western Blot, Immunofluorescence and Immunohistochemical staining were performed. RESULTS An autophagy associated circRNA circCDYL was elevated by 3.2 folds in BC tissues as compared with the adjacent non-cancerous tissues, and circCDYL promoted autophagic level in BC cells via the miR-1275-ATG7/ULK1 axis; Moreover, circCDYL enhanced the malignant progression of BC cells in vitro and in vivo. Clinically, increased circCDYL in the tumor tissues and serum of BC patients was associated with higher tumor burden, shorter survival and poorer clinical response to therapy. CONCLUSIONS circCDYL promotes BC progression via the miR-1275-ATG7/ULK1-autophagic axis and circCDYL could act as a potential prognostic and predictive molecule for breast cancer patients.
Collapse
Affiliation(s)
- Gehao Liang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yun Ling
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75993, Paris, France
| | - Phei Er Saw
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zihao Liu
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Weige Tan
- Department of Breast Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhenluan Tian
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenjing Zhong
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wanyi Lin
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qing Luo
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qun Lin
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiufang Li
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Ahmed Hamai
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75993, Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75993, Paris, France
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Erwei Song
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Chang Gong
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
53
|
Khanna KK, Duijf PHG. Complexities of pharmacogenomic interactions in cancer. Mol Cell Oncol 2020; 7:1735910. [PMID: 32391427 PMCID: PMC7199761 DOI: 10.1080/23723556.2020.1735910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Genetic and genomic alterations drive cancer development. However, they may also constitute vulnerabilities, including increased drug sensitivity, which could be harnessed for precision medicine purposes. We discuss the highly complex pharmacogenomic interactions that are beginning to be disentangled and hurdles that may need to be overcome before cancer patients could benefit.
Collapse
Affiliation(s)
- Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Australia
| |
Collapse
|
54
|
Sun K, Yu W, Ji B, Chen C, Yang H, Du Y, Song M, Cai H, Yan F, Su R. Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. APPLIED MATERIALS TODAY 2020; 18:100505. [DOI: 10.1016/j.apmt.2019.100505] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
|
55
|
Wang C, Zhao N, Yuan L, Liu X. Computational Detection of Breast Cancer Invasiveness with DNA Methylation Biomarkers. Cells 2020; 9:E326. [PMID: 32019269 PMCID: PMC7072524 DOI: 10.3390/cells9020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most common female malignancy. It has high mortality, primarily due to metastasis and recurrence. Patients with invasive and noninvasive breast cancer require different treatments, so there is an urgent need for predictive tools to guide clinical decision making and avoid overtreatment of noninvasive breast cancer and undertreatment of invasive cases. Here, we divided the sample set based on the genome-wide methylation distance to make full use of metastatic cancer data. Specifically, we implemented two differential methylation analysis methods to identify specific CpG sites. After effective dimensionality reduction, we constructed a methylation-based classifier using the Random Forest algorithm to categorize the primary breast cancer. We took advantage of breast cancer (BRCA) HM450 DNA methylation data and accompanying clinical data from The Cancer Genome Atlas (TCGA) database to validate the performance of the classifier. Overall, this study demonstrates DNA methylation as a potential biomarker to predict breast tumor invasiveness and as a possible parameter that could be included in the studies aiming to predict breast cancer aggressiveness. However, more comparative studies are needed to assess its usability in the clinic. Towards this, we developed a website based on these algorithms to facilitate its use in studies and predictions of breast cancer invasiveness.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Linlin Yuan
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
56
|
Li W, Yang X, Shi C, Zhou Z. Hsa_circ_002178 Promotes the Growth and Migration of Breast Cancer Cells and Maintains Cancer Stem-like Cell Properties Through Regulating miR-1258/KDM7A Axis. Cell Transplant 2020; 29:963689720960174. [PMID: 32951449 PMCID: PMC7784609 DOI: 10.1177/0963689720960174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women. Accumulating evidence demonstrated that abnormal circRNA expression is associated with the occurrence and progression of tumors. We analyzed the GSE101123 data and found that the expression of hsa_circ_002178 (circ_002178) was significantly increased in BrCa tissues. However, the role and possible underlying mechanisms of circ_002178 in BrCa still remain unrevealed. In this investigation, the expression levels of circ_002178 in cancer tissues or BrCa cells were significantly upregulated compared with those in paracancer tissues or normal cells. High expression of circ_002178 was correlated with the low survival rate, clinical tumor size, lymph node metastasis, and tumor, nodes, and metastases grade. After microsphere culture, the expression of circ_002178 in SUM149PT and MDA-MB-231 cells was significantly increased. Further investigation exhibited that overexpression of circ_002178 contributed to the formation of microspheres, the elevated protein levels of stemness marker, and the increased activity of ALDH1 in SUM149PT cells. Besides, the overexpression of circ_002178 also significantly promoted the growth, invasion, and migration of BrCa cells. Correspondingly, the knockdown of circ_002178 showed the opposite result in MDA-MB-231 cells. Hsa_circ_002178 was further proved to downregulate the level of miR-1258 and reduce the inhibitory effect of miR-1258 on KDM7A, thus regulating the stem-like characteristics of BrCa cells and promoting the growth and migration of BrCa cells. Taken together, targeting the circ_002178/miR-1258/KDM7A axis may be a prospective strategy for the diagnosis and therapies of BrCa in the future.
Collapse
Affiliation(s)
- Wangyong Li
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Xiaoyan Yang
- Department of Rehabilitation, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Chengfei Shi
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Zhengbo Zhou
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong Province, P. R. China
| |
Collapse
|
57
|
Yi M, Dong B, Qin S, Chu Q, Wu K, Luo S. Advances and perspectives of PARP inhibitors. Exp Hematol Oncol 2019; 8:29. [PMID: 31737426 PMCID: PMC6849303 DOI: 10.1186/s40164-019-0154-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage repair deficiency leads to the increased risk of genome instability and oncogenic transformation. In the meanwhile, this deficiency could be exploited for cancer treatment by inducing excessive genome instability and catastrophic DNA damage. Continuous DNA replication in cancer cells leads to higher demand of DNA repair components. Due to the oncogenic loss of some DNA repair effectors (e.g. BRCA) and incomplete DNA repair repertoire, some cancer cells are addicted to certain DNA repair pathways such as Poly (ADP-ribose) polymerase (PARP)-related single-strand break repair pathway. The interaction between BRCA and PARP is a form of synthetic lethal effect which means the simultaneously functional loss of two genes lead to cell death, while defect in any single gene has a slight effect on cell viability. Based on synthetic lethal theory, Poly (ADP-ribose) polymerase inhibitor (PARPi) was developed aiming to selectively target cancer cells harboring BRCA1/2 mutations. Recently, a growing body of evidence indicated that a broader population of patients could benefit from PARPi therapy far beyond those with germline BRCA1/2 mutated tumors. Numerous biomarkers including homologous recombination deficiency and high level of replication pressure also herald high sensitivity to PARPi treatment. Besides, a series of studies indicated that PARPi-involved combination therapy such as PARPi with additional chemotherapy therapy, immune checkpoint inhibitor, as well as targeted agent had a great advantage in overcoming PARPi resistance and enhancing PARPi efficacy. In this review, we summarized the advances of PARPi in clinical application. Besides, we highlighted multiple promising PARPi-based combination strategies in preclinical and clinical studies.
Collapse
Affiliation(s)
- Ming Yi
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Bing Dong
- 2Department of Molecular Pathology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Shuang Qin
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qian Chu
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Kongming Wu
- 1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China.,3Department of Medical Oncology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Suxia Luo
- 3Department of Medical Oncology, The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
58
|
Yandım C, Karakülah G. Dysregulated expression of repetitive DNA in ER+/HER2- breast cancer. Cancer Genet 2019; 239:36-45. [PMID: 31536958 DOI: 10.1016/j.cancergen.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Limited studies on breast cancer indicated pathogenic changes in the expressions of some repeat elements. A global analysis was much needed within this context to distinguish the most significant repeats from more than a thousand repeat motifs. Utilising a previously presented RNA-seq dataset, we studied expression changes of all repeats in ER+/HER2- human breast tumour samples obtained from 22 patients in comparison to matched normal tissues. Fifty six (56) repeat subtypes including satellites and transposons were found to be differentially expressed and most of them were novel for breast cancer. HERVKC4-int and HERV1_LTRc, whose expressions correlated well with that of the estrogen receptor gene ESR1, were upregulated at the highest level. REP522 and D20S16 satellites were also significantly upregulated along with insignificant increases in the expressions of other satellites including HSATI and BSR/beta. Interestingly, expressions of REP522 and D20S16 correlated with many key breast cancer pathway (e.g. BRCA1, BRCA2, AKT1, MTOR, KRAS) and survival genes; possibly highlighting their importance in the carcinogenesis of breast. Additional differentially expressed elements such as L1P and various MER transposons also exhibited a similar pattern. Finally, our repeat enrichment analysis on the promoters of differentially expressed genes revealed further links between additional repeats and nearby genes.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey; İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey; İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
59
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
60
|
Biermann J, Nemes S, Parris TZ, Engqvist H, Werner Rönnerman E, Kovács A, Karlsson P, Helou K. A 17-marker panel for global genomic instability in breast cancer. Genomics 2019; 112:1151-1161. [PMID: 31260745 DOI: 10.1016/j.ygeno.2019.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022]
Abstract
Genomic instability is a hallmark of cancer that plays a pivotal role in breast cancer development and evolution. A number of existing prognostic gene expression signatures for breast cancer are based on proliferation-related genes. Here, we identified a 17-marker panel associated with genome stability. A total of 136 primary breast carcinomas were stratified by genome stability. Matched gene expression profiles showed an innate segregation based on genome stability. We identified a 17-marker panel stratifying the training and validation cohorts into high- and low-risk patients. The 17 genes associated with genomic instability strongly impacted clinical outcome in breast cancer. Pathway analyses determined chromosome organisation, cell cycle regulation, and RNA processing as the underlying biological processes, thereby offering options for drug development and treatment tailoring. Our work supports the applicability of the 17-marker panel to improve clinical outcome prediction for breast cancer patients based on a signature accounting for genomic instability.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
61
|
Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019; 12:38. [PMID: 30975222 PMCID: PMC6460547 DOI: 10.1186/s13045-019-0725-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women all over the world. Genetic background of women contributes to her risk of having breast cancer. Certain inherited DNA mutations can dramatically increase the risk of developing certain cancers and are responsible for many of the cancers that run in some families. Regarding the widespread multigene panels, whole exome sequencing is capable of providing the evaluation of genetic function mutations for development novel strategy in clinical trials. Targeting the mutant proteins involved in breast cancer can be an effective therapeutic approach for developing novel drugs. This systematic review discusses gene mutations linked to breast cancer, focusing on signaling pathways that are being targeted with investigational therapeutic strategies, where clinical trials could be potentially initiated in the future are being highlighted.
Collapse
Affiliation(s)
- Zeinab Safarpour Lima
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mostafa Ghadamzadeh
- Departement of Radiology, Hasheminejad Kidney Centre (HKC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Ghazaleh Amjad
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Ebadi
- Shohadaye Haft-e-tir Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ladan Younesi
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|