51
|
Wang T, Liao Y, Sun Q, Tang H, Wang G, Zhao F, Jin Y. Upregulation of Matrix Metalloproteinase-9 in Primary Cultured Rat Astrocytes Induced by 2-Chloroethanol Via MAPK Signal Pathways. Front Cell Neurosci 2017; 11:218. [PMID: 28769771 PMCID: PMC5516094 DOI: 10.3389/fncel.2017.00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/06/2017] [Indexed: 01/25/2023] Open
Abstract
2-Chloroethanol (2-CE) is one of the reactive metabolites of 1,2-DCE in vivo, which might contribute to brain edema formation induced by 1,2-dichloroethane (1,2-DCE) poisoning. Thus, the purpose of this study was to explore the roles of mitogen-activated protein kinase (MAPK) signal pathways in upregulation of matrix metalloproteinase-9 (MMP-9) in 2-CE exposed rat astrocytes. Expression of p38 MAPK (p38), extracellular signal regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and MMP-9 at both protein and gene levels in rat astrocytes were determined using western blot and real-time RT-PCR methods. The results showed that both protein and mRNA levels of MMP-9 in 2-CE exposed astrocytes significantly increased. Meanwhile, protein levels of phosphorylated p38 (p-p38), ERK1/2 (p-ERK1/2) and JNK1/2 (p-JNK1/2) in 2-CE exposed astrocytes also significantly increased. In addition, both protein and mRNA levels of MMP-9 significantly decreased in response to reduced protein levels of p-p38, p-ERK1/2 and p-JNK1/2 achieved by supplement with their specific inhibitors, indicating that activation of MAPK signal pathways might play an important role in upregulation of MMP-9 expression at the transcriptional level in 2-CE exposed astrocytes. Furthermore, since pretreatment of n-acetyl-l-cysteine (NAC), a powerful antioxidant amino acid, could attenuate the elevated levels of MMP-9, p-p38, p-ERK2 and p-JNK1/2 in 2-CE exposed astrocytes, activation of MAPK signal pathways in 2-CE exposed astrocytes could be mediated partially by reactive oxygen species (ROS), which was most likely generated in the metabolism of 2-CE.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yingjun Liao
- Department of Physiology, China Medical UniversityShenyang, China
| | - Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Hongge Tang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| |
Collapse
|
52
|
Abstract
OBJECTIVES The origin of systemic inflammatory response syndrome and multiple organ dysfunction syndrome is poorly understood but remains a fundamental concern in the ICU. This paper provides a critical appraisal on whether bone failure may represent an unrecognized component of systemic inflammatory response syndrome/multiple organ dysfunction syndrome. DATA SOURCES, DATA SELECTION, AND DATA EXTRACTION Search of the PubMed database and manual review of selected articles investigating bone pathophysiology in critical illness. DATA SYNTHESIS Bone hyperresorption is highly prevalent among critically ill patients. Bone breakdown releases numerous systemically active cytokines and bone-sequestered toxins, with the capacity to fuel inflammatory hypercytokinaemia and metabolic toxaemia. Anti-resorptive medication inhibits bone break down and preadmission anti-resorptive use is associated with superior survival among critically ill patients. CONCLUSIONS We propose that hyperresorptive bone failure is an unrecognised component of systemic inflammatory response syndrome/multiple organ dysfunction syndrome that is causal to critical illness progression. If this hypothesis is valid, bone preservative strategies could reduce the risk of osteoporosis/fractures among ICU survivors, as well as decreasing critical illness mortality.
Collapse
|
53
|
Gu C, Wang F, Zhao Z, Wang H, Cong X, Chen X. Lysophosphatidic Acid Is Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix Metalloproteinase-9 Expression via LPA 2 in Macrophages. Front Physiol 2017; 8:266. [PMID: 28496416 PMCID: PMC5406459 DOI: 10.3389/fphys.2017.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Lysophosphatidic acid (LPA), one of the simplest phospholipid signaling molecules, participates in formation and disruption of atherosclerotic plaque. Matrix metalloproteinases (MMPs) contribute to atherosclerotic plaque rupture by involving in extracellular matrix (ECM) degradation and then thinning fibrous cap. Our previous study demonstrated that macrophage-derived MMP-9 was associated with coronary plaque instability, but the relationship between LPA and MMP-9 remains unclear. The present work therefore aimed at elucidating association between LPA and MMP-9 and the regulation mechanism of LPA on MMP-9 in macrophages. We found that plasma LPA and MMP-9 levels were correlated positively (r = 0.31, P < 0.05) and both elevated significantly in patients with acute myocardial infarct (AMI). Consistent with peripheral blood levels, histochemical staining indicated that autotaxin (ATX), LPA-producing ectoenzyme, and MMP-9 were expressed frequently in the necrotic core and fibrous cap of human unstable plaques, which might increase the instability of plaque. Experiments in vitro were done with THP-1-derived macrophages and showed that LPA enhanced the expression, secretion and activity of MMP-9 in a time- and dose-dependent manner. Induction of LPA on pro-MMP-9 and active-MMP-9 was confirmed in human peripheral blood monocyte-derived macrophages. PDTC, NF-κB inhibitor, but not inhibitor of AP-1 and PPARγ, effectively prevented LPA-induced MMP-9 expression and NF-κB p65 siRNA decreased MMP-9 transcription, confirming that LPA might induce MMP-9 elevation by activating NF-κB pathway. In addition, knockdown of LPA2 attenuated LPA-induced MMP-9 expression and nucleus p65 levels. These findings revealed that LPA upregulated the expression of MMP-9 through activating NF-κB pathway in the LPA2 dependent manner, hence blocking LPA receptors signaling may provide therapeutic strategy to target plaque destabilization.
Collapse
Affiliation(s)
- Chun Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of ScienceBeijing, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
54
|
Lian S, Xia Y, Nguyen TT, Ung TT, Yoon HJ, Kim NH, Kim KK, Jung YD. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells. PLoS One 2016; 11:e0163395. [PMID: 27654969 PMCID: PMC5031411 DOI: 10.1371/journal.pone.0163395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The overexpression of urokinase-type plasminogen activator receptor (uPAR) is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA) has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells.
Collapse
Affiliation(s)
- Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Thi Thinh Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Nam Ho Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| |
Collapse
|
55
|
Lian S, Xia Y, Ung TT, Khoi PN, Yoon HJ, Kim NH, Kim KK, Jung YD. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells. Toxicology 2016; 361-362:24-38. [DOI: 10.1016/j.tox.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022]
|
56
|
Yang CC, Hsiao LD, Yang CM, Lin CC. Thrombin Enhanced Matrix Metalloproteinase-9 Expression and Migration of SK-N-SH Cells via PAR-1, c-Src, PYK2, EGFR, Erk1/2 and AP-1. Mol Neurobiol 2016; 54:3476-3491. [PMID: 27181591 DOI: 10.1007/s12035-016-9916-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders in the central nerve system (CNS). Thrombin has been known as one of the factors in pathological processes including migration, blood-brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. Thrombin has been shown to be a regulator of matrix metalloproteinase (MMPs) expression leading to cell migration. Among MMPs, the elevated expression of MMP-9 has been observed in patients with brain diseases, which may contribute to the pathology of neuroinflammatory and neurodegenerative diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells were not completely understood. Here, we used gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay to demonstrate that thrombin induced the expression of pro-form MMP-9 protein and messenger RNA (mRNA), and promoter activity in SK-N-SH cells, which were attenuated by pretreatment with the pharmacological inhibitor of protease-activated receptor-1 (PAR-1, SCH79797), Gi-coupled receptor (GPA2), c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), or AP-1 (TanshinoneIIA) and transfection with small interfering RNA (siRNA) of PAR-1, Gi, c-Src, Pyk2, EGFR, Akt, p44, p42, or c-Jun. Moreover, thrombin-stimulated c-Src, Pyk2, EGFR, Akt, p42/p44 MAPK, or c-Jun phosphorylation was attenuated by their respective inhibitor of PP1, PF431396, AG1478, SH-5, U0126, or TanshinoneIIA. Finally, pretreatment with these inhibitors also blocked thrombin-induced SK-N-SH cell migration. Our results concluded that thrombin binding to PAR-1 receptor activated Gi-protein/c-Src/Pyk2/EGFR/PI3K/Akt/p42/p44 MAPK cascade, which in turn elicited AP-1 activation and ultimately evoked MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou, 5 Fu-Hsin Street, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
57
|
A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis. Mol Immunol 2016; 72:19-27. [DOI: 10.1016/j.molimm.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 01/24/2023]
|