51
|
Zhu Y, Dong L, Wang J, Liu Q, Tong H, Li Y, Guan S. Semen Cuscutae-Fructus Lycii improves spermatogenic dysfunction by repairing the blood-testis barrier in rats according to in silico and in vitro methods. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114022. [PMID: 33741439 DOI: 10.1016/j.jep.2021.114022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae and Fructus Lycii (SC-FL) is a commonly used herbal pair for male infertility treatment. Studies have found that the mechanism of SC-FL treatment may be related to repairing the blood-testis barrier (BTB). The application of network pharmacology can be used to explore the correlation between medicines and diseases and predict the potential pharmacological mechanisms of SC-FL. AIM OF THE STUDY This study aimed to explore the specific effects and mechanisms of SC-FL in repairing the BTB and initially revealed the mechanism of Chinese medicine treating male infertility through network pharmacology and animal experiments. MATERIALS AND METHODS We searched databases using the network pharmacology method and performed mass spectrometry analysis. We analyzed and predicted the active ingredients, targets and key pathways of SC-FL in male infertility treatment. Then, we designed animal experiments to verify the results. Thirty-six Sprague-Dawley rats were randomly divided into the normal control group (NC group), spermatogenic dysfunction group (SD group) and SC-FL treatment group (SCFL group). Glucosides of Tripterygium wilfordii Hook. F (GTW) (40 mg/kg/d) was administered for 4 weeks to generate a spermatogenic dysfunction model. The rats in the SCFL group were given the SC-FL suspension (6 g/kg/d) daily. After 4 weeks of treatment, we detected the sperm quality of each group of rats and observed the cell morphology. Western blotting and qRT-PCR were used to detect the expression of BTB-related proteins in testicular tissues. RESULTS 213 chemical ingredients of SC and FL were retrieved from the TCMSP database, and 54 effective chemical ingredients were obtained. Mass spectrometry analysis showed the above results were credible. Then, we identified 44 potential targets for the treatment of male infertility, and we plotted a network diagram of the interaction network between the core targets and a diagram of herbal medicine-active ingredient-target-disease interactions. The target genes were enriched according to biological functions, and 22 biological processes, 49 cellular components, 1487 molecular functions, and 122 signaling pathways were obtained. The results of the animal experiments showed that the sperm concentration and motility of the SCFL group were significantly improved compared with those of the SD group. Compared with those in the SD group, the structure and morphology of the Sertoli cells and seminiferous tubules of rats in the SCFL group improved, and the number of spermatogenic cells increased significantly. Western blotting and qRT-PCR results showed that compared with that in the SD group, the expression of p38 MAPK decreased significantly, and the expression of c-Jun, Occludin, ZO-1 and connexin 43 increased significantly in the SCFL group. CONCLUSION We predicted that the active ingredients of SC-FL can treat male infertility by interacting with the core targets JUN, IL6, MAPK1, TP53, MYC, CCND1, AR, EGF, FOS, and MAPK8, and the possible mechanism is related to the MAPK signaling pathway. SC-FL can regulate the MAPK pathway and affect the expression of Occludin, ZO-1 and connexin 43 to repair damaged BTB and improve spermatogenic dysfunction induced by GTW, which may be one of the possible mechanisms.
Collapse
Affiliation(s)
- Yutian Zhu
- TCM Department, Peking University Third Hospital, Beijing, 100191, China.
| | - Lei Dong
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jingshang Wang
- TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Qiuning Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanfeng Li
- Urology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Siqi Guan
- TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
52
|
Tabara M, Shiraishi K, Takii R, Fujimoto M, Nakai A, Matsuyama H. Testicular localization of activating transcription factor 1 and its potential function during spermatogenesis. Biol Reprod 2021; 105:976-986. [PMID: 34007999 DOI: 10.1093/biolre/ioab099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Activating transcription factor 1 (ATF1), belonging to the CREB/ATF family of transcription factors, is highly expressed in the testes. However, its role in spermatogenesis has not yet been established. Here, we aimed to elucidate the impact of ATF1 in spermatogenesis by examining the expression pattern of ATF1 in mice and the effect of ATF1 knockdown in the mouse testes. We found that ATF1 is expressed in various organs, with very high levels in the testes. Immunohistochemical staining showed that ATF1 was localized in the nuclei of spermatogonia and co-localized with proliferating cell nuclear antigen. In ATF1-deficient mice, the seminiferous tubules of the testis contained cells at all developmental stages; however, the number of spermatocytes was decreased. Proliferating cell nuclear antigen expression was decreased and apoptotic cells were rare in the seminiferous tubules. These results indicate that ATF1 plays a role in male germ cell proliferation and sperm production.
Collapse
Affiliation(s)
- Masanori Tabara
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan.,Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Koji Shiraishi
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Hideyasu Matsuyama
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
53
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
54
|
Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021; 18:13. [PMID: 33740985 PMCID: PMC7980342 DOI: 10.1186/s12989-021-00405-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. METHODS We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 μg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 μg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. RESULTS Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. CONCLUSION Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
55
|
Mousavi SE, Delgado-Saborit JM, Godderis L. Exposure to per- and polyfluoroalkyl substances and premature skin aging. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124256. [PMID: 33129602 DOI: 10.1016/j.jhazmat.2020.124256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a ubiquitous group of persistent chemicals distributed globally in the environment. Skin aging is a notorious process that is prematurely induced by the interaction between endogenous and exogenous factors, including exposure to environmental chemicals. The existing evidence suggests that skin absorption of PFASs through dermal contact may be an important route of exposure to these chemicals in humans. On the other hand, PFASs intake by other routes may lead to PFASs bioaccumulation in the skin via tissue bio-distribution. Additionally, the presence of PFASs in consumer and cosmetic products combined with their daily close contact with the skin could render humans readily susceptible to dermal absorption. Therefore, chronic low-dose dermal exposure to PFASs can occur in the human population, representing another important route of exposure to these chemicals. Studies indicate that PFASs can threaten skin health and contribute to premature skin aging. Initiation of inflammatory-oxidative cascades, induction of DNA damage such as telomere shortening, dysregulation of genes engaged in dermal barrier integrity and its functions, signaling of the mitogen activated protein kinase (MAPK) pathway, and last but not least the down-regulation of extracellular matrix (ECM) components are among the most likely mechanisms by which PFASs can contribute to premature skin aging.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lode Godderis
- Laboratory for Occupational and Environmental Hygiene, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Interleuvenlaan 58, 3001 Heverlee, Belgium
| |
Collapse
|
56
|
The role of different compounds on the integrity of blood-testis barrier: A concise review based on in vitro and in vivo studies. Gene 2021; 780:145531. [PMID: 33631249 DOI: 10.1016/j.gene.2021.145531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Sertoli cells are "nurturing cells'' in the seminiferous tubules of the testis which have essential roles in the development, proliferation and differentiation of germ cells. These cells also divide the seminiferous epithelium into a basal and an adluminal compartment and establish the blood-testis barrier (BTB). BTB shields haploid germ cells from recognition by the innate immune system. Moreover, after translocation of germ cells into the adluminal compartment their nutritional source is separated from the circulatory system being only supplied by the Sertoli cells. The integrity of BTB is influenced by several organic/ organometallic, hormonal and inflammatory substances. Moreover, several environmental contaminants such as BPA have hazardous effects on the integrity of BTB. In the current review, we summarize the results of studies that assessed the impact of these agents on the integrity of BTB. These studies have implications in understanding the molecular mechanism of male infertility and also in the male contraception.
Collapse
|
57
|
Nie Y, Hui L, Guo M, Yang W, Huang R, Chen J, Wen X, Zhao M, Wu Y. Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood-Testis Barrier Hyperpermeability. Virol Sin 2021; 36:692-705. [PMID: 33534087 PMCID: PMC8379325 DOI: 10.1007/s12250-020-00343-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.
Collapse
Affiliation(s)
- Yiwen Nie
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Junsen Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinyue Wen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng Zhao
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
58
|
Gao S, Wu X, Wang L, Bu T, Perrotta A, Guaglianone G, Silvestrini B, Sun F, Cheng CY. Signaling Proteins That Regulate Spermatogenesis Are the Emerging Target of Toxicant-Induced Male Reproductive Dysfunction. Front Endocrinol (Lausanne) 2021; 12:800327. [PMID: 35002976 PMCID: PMC8739942 DOI: 10.3389/fendo.2021.800327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
There is emerging evidence that environmental toxicants, in particular endocrine disrupting chemicals (EDCs) such as cadmium and perfluorooctanesulfonate (PFOS), induce Sertoli cell and testis injury, thereby perturbing spermatogenesis in humans, rodents and also widelife. Recent studies have shown that cadmium (e.g., cadmium chloride, CdCl2) and PFOS exert their disruptive effects through putative signaling proteins and signaling cascade similar to other pharmaceuticals, such as the non-hormonal male contraceptive drug adjudin. More important, these signaling proteins were also shown to be involved in modulating testis function based on studies in rodents. Collectively, these findings suggest that toxicants are using similar mechanisms that used to support spermatogenesis under physiological conditions to perturb Sertoli and testis function. These observations are physiologically significant, since a manipulation on the expression of these signaling proteins can possibly be used to manage the toxicant-induced male reproductive dysfunction. In this review, we highlight some of these findings and critically evaluate the possibility of using this approach to manage toxicant-induced defects in spermatrogenesis based on recent studies in animal models.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Guaglianone
- Department of Hospital Pharmacy, “Azienda Sanitaria Locale (ASL) Roma 4”, Civitavecchia, Italy
| | - Bruno Silvestrini
- Institute of Pharmacology and Pharmacognosy, Sapienza University of Rome, Rome, Italy
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| |
Collapse
|
59
|
Perfluorooctane sulfonate (PFOS) disrupts testosterone biosynthesis via CREB/CRTC2/StAR signaling pathway in Leydig cells. Toxicology 2020; 449:152663. [PMID: 33359577 DOI: 10.1016/j.tox.2020.152663] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a stable end-product of perfluorinated compounds (PFCs), is associated with male reproductive disorders, but its underlying mechanisms are still unclear. We used in vivo and in vitro models to investigate the effects of PFOS on testosterone biosynthesis and related mechanisms. First, male ICR mice were orally administered PFOS (0-10 mg/kg/bw) for 4 weeks. Bodyweight, sperm count, reproductive hormones, mRNA expression of the genes related to testosterone biosynthesis, and the protein expression of protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), cAMP-response element binding protein (CREB), CREB regulated transcription coactivator 2 (CRTC2) and steroidogenic acute regulatory protein (StAR) were evaluated. Furthermore, mouse primary Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently decreased sperm count, testosterone level, CRTC2/StAR expression, and damaged testicular interstitium morphology, paralleled by increase in phosphorylated PKA, CREB and p38 in testes. Additionally, similar to the in vivo results, PFOS significantly decreased testosterone secretion, CRTC2/StAR expression, interaction between CREB and CRTC2 and binding of CREB/CRTC2 to StAR promoter region, paralleled by increase in phosphorylated-p38, PKA, and CREB expression. Meanwhile, inhibition of p38 by SB203580, or inhibition of PKA by H89 can significantly alleviate the above PFOS-induced effects. As such, the present study highlights a role of the CREB/CRTC2/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
|
60
|
Oseguera-López I, Pérez-Cerezales S, Ortiz-Sánchez PB, Mondragon-Payne O, Sánchez-Sánchez R, Jiménez-Morales I, Fierro R, González-Márquez H. Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) Alters Protein Phosphorylation, Increase ROS Levels and DNA Fragmentation during In Vitro Capacitation of Boar Spermatozoa. Animals (Basel) 2020; 10:ani10101934. [PMID: 33096732 PMCID: PMC7588980 DOI: 10.3390/ani10101934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Perfluorinated compounds are synthetic chemicals, with a wide variety of applications like firefighting foams, food packaging, additives in paper and fabrics to avoid dyes. Perfluorooctane sulfonate and perfluorohexane sulfonate are globally distributed, and contaminates air, water, food, and dust, have toxic effects and bioaccumulate. Significant levels of these compounds have found in blood serum, breast milk, and semen of occupationally exposed and unexposed people, as well as in blood serum and organs of the domestic, farm, and wild animals. The present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation, due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes. Abstract Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) are toxic and bioaccumulative, included in the Stockholm Convention’s list as persistent organic pollutants. Due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes, the present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation. The spermatozoa capacitation was performed in supplemented TALP-Hepes media and mean lethal concentration values of 460.55 μM for PFOS, and 1930.60 μM for PFHxS were obtained. Results by chlortetracycline staining showed that intracellular Ca2+ patterns bound to membrane proteins were scarcely affected by PFOS. The spontaneous acrosome reaction determined by FITC-PNA was significantly reduced by PFOS and slightly increased by PFHxS. Both toxic compounds significantly alter the normal capacitation process from 30 min of exposure. An increase in ROS production was observed by flow cytometry and considerable DNA fragmentation by the comet assay. The immunocytochemistry showed a decrease of tyrosine phosphorylation in proteins of the equatorial and acrosomal zone of the spermatozoa head. In conclusion, PFOS and PFHxS have toxic effects on the sperm, causing mortality and altering vital parameters for proper sperm capacitation.
Collapse
Affiliation(s)
- Iván Oseguera-López
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Paola Berenice Ortiz-Sánchez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Oscar Mondragon-Payne
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Raúl Sánchez-Sánchez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Irma Jiménez-Morales
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Reyna Fierro
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
- Correspondence: ; Tel.: +52-55-5804-6557
| |
Collapse
|
61
|
Yang W, Xu Y, Pan H, Tian F, Wang Y, Xia M, Hu J, Yang M, Tao S, Sun S, Kan H, Li R, Ying Z, Li W. Chronic exposure to diesel exhaust particulate matter impairs meiotic progression during spermatogenesis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110881. [PMID: 32574863 DOI: 10.1016/j.ecoenv.2020.110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient PM2.5 may correlate with the decline of semen quality, and the underlying biological mechanism has not been fully understood. In the present study, mice were intratracheally instilled with diesel exhaust PM2.5 (DEP), and its effects on the spermatogenic process as well as the alterations of testicular gene expression profile were assessed. Our results showed that chronic exposure to DEP impaired the fertility of male mice without influencing their libido. Compared with Vehicle-exposed group, the sperm count and motility from DEP-exposed mice were significantly decreased. In addition, immunohistological staining of γH2AX and DMC1, biomarkers for meiotic double strand breaks (DSBs), demonstrated that chronic exposure to DEP comprised the repair of meiotic DSBs, thus disrupting the spermatogenesis. Deep RNA sequencing test showed altered expressions of testicular genes including the GnRH signaling pathway. In summary, our research demonstrated that chronic exposure to DEP may disrupt spermatogenesis through targeting the meiotic recombination, providing a new perspective for the research on the male reproductive system damage caused by air pollution.
Collapse
Affiliation(s)
- Wei Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Hongjie Pan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Fang Tian
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Yuzhu Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Minjie Xia
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Jingying Hu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Mingjun Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Shimin Tao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Shenfei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Runsheng Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Weihua Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
62
|
Expression Levels of the Immune-Related p38 Mitogen-Activated Protein Kinase Transcript in Response to Environmental Pollutants on Macrophthalmus japonicus Crab. Genes (Basel) 2020; 11:genes11090958. [PMID: 32825142 PMCID: PMC7565651 DOI: 10.3390/genes11090958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution in the aquatic environment poses a threat to the immune system of benthic organisms. The Macrophthalmus japonicus crab, which inhabits tidal flat sediments, is a marine invertebrate that provides nutrient and organic matter cycling as a means of purification. Here, we characterized the M. japonicus p38 mitogen-activated protein kinase (MAPK) gene, which plays key roles in the regulation of cellular immune and apoptosis responses. M. japonicusp38 MAPK displayed the characteristics of the conserved MAPK family with Thr-Gly-Tyr (TGY) motif and substrate-binding site Ala-Thr-Arg-Trp (ATRW). The amino acid sequence of the M. japonicus p38 MAPK showed a close phylogenetic relationship to Eriocheir sinensis MAPK14 and Scylla paramamosainp38 MAPK. The phylogenetic tree displayed two origins of p38 MAPK: crustacean and insect. The tissue distribution patterns showed the highest expression in the gills and hepatopancreas of M. japonicus crab. In addition, p38 MAPK expression in M. japonicus gills and hepatopancreas was evaluated after exposure to environmental pollutants such as perfluorooctane sulfonate (PFOS), irgarol, di(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA). In the gills, p38 MAPK expression significantly increased after exposure to all concentrations of the chemicals on day 7. However, on day 1, there were increased p38 MAPK responses observed after PFOS and irgarol exposure, whereas decreased p38 MAPK responses were observed after DEHP and BPA exposure. The upregulation of p38 MAPK gene also significantly led to M. japonicus hepatopancreas being undertested in all environmental pollutants. The findings in this study supported that anti-stress responses against exposure to environmental pollutants were reflected in changes in expression levels in M. japonicusp38 MAPK signaling regulation as a cellular defense mechanism.
Collapse
|
63
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
64
|
Hui L, Nie Y, Li S, Guo M, Yang W, Huang R, Chen J, Liu Y, Lu X, Chen Z, Yang Q, Wu Y. Matrix metalloproteinase 9 facilitates Zika virus invasion of the testis by modulating the integrity of the blood-testis barrier. PLoS Pathog 2020; 16:e1008509. [PMID: 32302362 PMCID: PMC7190178 DOI: 10.1371/journal.ppat.1008509] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/29/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is a unique flavivirus with high tropism to the testes. ZIKV can persist in human semen for months and can cause testicular damage in male mice. However, the mechanisms through which ZIKV enters the testes remain unclear. In this study, we revealed that matrix metalloproteinase 9 (MMP9) was upregulated by ZIKV infection in cell culture and in A129 mice. Furthermore, using an in vitro Sertoli cell barrier model and MMP9-/- mice, we found that ZIKV infection directly affected the permeability of the blood-testis barrier (BTB), and knockout or inhibition of MMP9 reduced the effects of ZIKV on the Sertoli cell BTB, highlighting its role in ZIKV-induced disruption of the BTB. Interestingly, the protein levels of MMP9 were elevated by ZIKV nonstructural protein 1 (NS1) in primary mouse Sertoli cells (mSCs) and other cell lines. Moreover, the interaction between NS1 and MMP9 induced the K63-linked polyubiquitination of MMP9, which enhanced the stability of MMP9. The upregulated MMP9 level led to the degradation of essential proteins involved in the maintenance of the BTB, such as tight junction proteins (TJPs) and type Ⅳ collagens. Collectively, we concluded that ZIKV infection promoted the expression of MMP9 which was further stabilized by NS1 induced K63-linked polyubiquitination to affect the TJPs/ type Ⅳ collagen network, thereby disrupting the BTB and facilitating ZIKV entry into the testes. Zika virus (ZIKV) is a flavivirus that shows high tropism to the testes and can persist in human semen for a long period. However, the entry mechanism of ZIKV into the testes has remained unclear. Here, we explored the mechanisms underlying matrix metalloproteinase 9 (MMP9)-modulated ZIKV infection in mice. We showed that MMP9 was upregulated by ZIKV infection both in vivo and in vitro. ZIKV infection affected the permeability of the blood-testis barrier (BTB) through MMP9 mediated degradation of TJPs and type Ⅳ collagens that are critically involved in the maintenance of the BTB. Additionally, the interaction between MMP9 and ZIKV NS1 induced the K63-linked polyubiquitination of MMP9, which enhanced the stability and function of MMP9. Overall, our findings provided important insights into the mechanisms through which MMP9 disrupted the BTB and promoted ZIKV entry into the testes.
Collapse
Affiliation(s)
- Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yiwen Nie
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Junsen Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Chen
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qingyu Yang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
- * E-mail:
| |
Collapse
|
65
|
Yu Y, Wang C, Zhang X, Zhu J, Wang L, Ji M, Zhang Z, Ji XM, Wang SL. Perfluorooctane sulfonate disrupts the blood brain barrier through the crosstalk between endothelial cells and astrocytes in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113429. [PMID: 31706766 DOI: 10.1016/j.envpol.2019.113429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to accumulate in brain and induce neurotoxicity. However, little is known the route and mechanism of its entrance in brain. In the present study, ICR mice were treated with PFOS for 28 days, the cerebral PFOS were measured and the morphological and ultrastructural changes of blood-brain barrier (BBB) were observed. Also, the expression and localization of the proteins related to the cerebral damages, tight junctions (TJs) and p38 activation were detected. Additionally, U87 cells were used to explore the role of p38 in PFOS-induced damages of astrocytes. PFOS significantly decreased the expression of TJ-related proteins (ZO-1, Claudin-5, Claudin-11, Occludin) in endothelial cells and disrupted BBB, which subsequently led PFOS to astrocytes and increased the expression of the proteins related to astrocytic damages (Aquaporin 4 and S100β). These results aggravated BBB disruption and further increased the cerebral PFOS levels. Besides, phosphorylated p38 activation was involved into PFOS-induced astrocytic damages in vivo and in vitro. In conclusion, the crosstalk between endothelial cells and astrocytes facilitated the BBB disruption and increased the accumulation of PFOS in brain. Our findings provided a new insight into the toxicological and physiological profiles of PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Yongquan Yu
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xuhui Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xiao-Ming Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
66
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. CHEMOSPHERE 2019; 237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The profound influence of environmental chemicals on human health including inducing life-threatening gene mutation has been publicly recognized. Being a substitute for the extensively used endocrine-disrupting chemical BPA, Bisphenol AF (BPAF) has been known as teratogen with developmental toxicities and therefore potentially putting human into the risk of biological hazards. Herein, we deciphered the detrimental effects of BPAF on spermatogenesis and spermiotiliosis in sexual maturity of mice exposing to BPAF (5, 20, 50 mg/kg/d) for consecutive 28 days. BPAF exposure significantly compromises blood-testis barrier integrity and sperm quantity and quality in a dose-dependent manner. Sperms from BPAF exposure mice are featured by severe DNA damage, altered SUMOylation and ubiquitination dynamics and interfered epigenetic inheritance with hypermethylation of H3K27me3 presumably due to the aggregation of cellular reactive oxygen species (ROS). Furthermore, BPAF treatment (50 μM for 24 h) compromises cytoskeleton architecture and tight junction permeability in primary cultured Sertoli cells evidenced by dysfunction of actin regulatory proteins (e.g. Arp3 and Palladin) via activation of ERK signaling, thereby perturbing the privilege microenvironment created by Sertoli cells for spermatogenesis. Overall, our study determines BPAF is deleterious for male fertility, leading to a better appreciation of its toxicological features in our life.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Jie Huang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
67
|
Zhou Y, Chen Y, Hu X, Guo J, Shi H, Yu G, Tang Z. Icariin attenuate microcystin-LR-induced gap junction injury in Sertoli cells through suppression of Akt pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:328-337. [PMID: 31091496 DOI: 10.1016/j.envpol.2019.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorder. However, the underlying mechanism are not yet entirely elucidated. In this study, we aimed to investigated the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both in vivo and in vitro experiments revealed that MC-LR caused disruption of BTB and gap junctions between Sertoli cells respectively, which was paralleled by the alteration of connexin43 (Cx43). Our data demonstrated that MC-LR decreased gap junction intercellular communication (GJIC) and impaired Cx43 expression by activating the phosphatidylinositol 3-kinase/Akt cascades. In addition, a possible protective effect of Icariin (ICA), a flavonoid isolated from Chinese medicinal herb, against MC-LR toxicity was investigated. The ICA prevented the degradation of GJIC and impairment of Cx43 induced by MC-LR via suppressing the Akt pathway. Together, our results confirmed that the expression of Cx43 induced by MC-LR was regulated in vivo and in vitro, which was involved in the destruction of BTB. Additionally, ICA seems to be able to mitigate the MC-LR toxic effects.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yu Chen
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xueqin Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jun Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hao Shi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Guang Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
68
|
Qiu L, Chen M, Wang X, Qin X, Chen S, Qian Y, Liu Z, Cao Q, Ying Z. Exposure to Concentrated Ambient PM2.5 Compromises Spermatogenesis in a Mouse Model: Role of Suppression of Hypothalamus-Pituitary-Gonads Axis. Toxicol Sci 2019; 162:318-326. [PMID: 29165613 DOI: 10.1093/toxsci/kfx261] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Epidemiological studies link ambient fine particulate matter (PM2.5) pollution to abnormalities in the male reproductive system. However, few toxicological studies have investigated this potentially important adverse effect of PM2.5 pollution. Therefore, in the present study, we analyzed the effects of PM2.5 exposure on spermatogenesis and hypothalamic-pituitary-gonadal (HPG) axis in a murine model. Fourteen male C57BL/6J mice were subjected to a 4-month exposure to filtered air or concentrated ambient PM2.5 (CAP). Their sperm count, testicular histology, spermatogenic parameters, and the major components of HPG axis were assessed. Exposure to CAP significantly reduced sperm count in the epididymis. This was accompanied by Sertoli cell vacuolization, immature germ cell dislocation, and decreases in pachytene spermatocytes and round spermatids of stage VII seminiferous tubules, suggesting a marked impairment of spermatogenesis in these mice. This impairment of spermatogenesis appeared to be attributable to a suppression of HPG axis subsequent to CAP exposure-induced hypothalamic inflammation, as exposure to CAP significantly increased TNFα and IL1b mRNA levels and meanwhile decreased gonadotropin-releasing hormone mRNA expression in the hypothalamus. Moreover, CAP exposure significantly reduced circulating testosterone and follicle-stimulating hormone, testicular testosterone and mRNA expression of follicle-stimulating hormone target gene SHBG and luteinizing hormone target genes P450scc, 17βHSD, and StAR. The present data demonstrate that exposure to ambient PM2.5 impairs spermatogenesis in murine model, raising the concern over effects of ambient PM2.5 pollution on the male reproductive function.
Collapse
Affiliation(s)
- Lianglin Qiu
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Minjie Chen
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoke Wang
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Xiaobo Qin
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Sufang Chen
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingyun Qian
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Zhenzhen Liu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21210
| | - Zhekang Ying
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, Baltimore, Maryland 21210.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
69
|
Al-Sadi R, Youssef M, Rawat M, Guo S, Dokladny K, Haque M, Watterson MD, Ma TY. MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. Am J Physiol Gastrointest Liver Physiol 2019; 316:G278-G290. [PMID: 30543452 PMCID: PMC6397336 DOI: 10.1152/ajpgi.00126.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/31/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | - Moustafa Youssef
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Mohammad Haque
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | | | - Thomas Y Ma
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| |
Collapse
|
70
|
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L, González-Mariscal L. The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol 2018; 360:257-272. [PMID: 30291936 DOI: 10.1016/j.taap.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.
Collapse
Affiliation(s)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav, Irapuato 36824, Mexico; Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | | |
Collapse
|
71
|
Zhou X, Wang J, Sheng N, Cui R, Deng Y, Dai J. Subchronic reproductive effects of 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFAES), an alternative to PFOS, on adult male mice. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:256-264. [PMID: 29990813 DOI: 10.1016/j.jhazmat.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
With a similar structure to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFAES) has been widely used as a mist suppressant in the chromium plating industry in China since the 1970s. After being disregarded for the past 30 years, 6:2 Cl-PFAES has now been detected in environmental matrices and human sera, suggesting potential health concerns. We carried out a subchronic exposure study to investigate the reproductive toxicity of 6:2 Cl-PFAES exposure (0, 0.04, 0.2, and 1.0 mg/kg/d body weight, 56 d) in adult male BALB/c mice. Results showed that relative epididymis and testis weights decreased in the 1.0 mg/kg/d group compared with the control. However, no changes were observed in the serum levels of testosterone, estradiol, follicle-stimulating hormone (FSH), or luteinizing hormone (LH), nor in the histopathological structure of the epididymis and testis and sperm count. In addition, 56 d of consecutive gavage of 1.0 mg/kg/d of 6:2 Cl-PFAES did not affect male mouse fertility. RNA sequencing showed that no genes were significantly altered in the testes after 6:2 Cl-PFAES exposure. Several testicular genes, which are sensitive to PFOS exposure, were also detected using Western blotting, and included steroidogenic proteins, STAR, CYP11A1, CYP17A1, and 3β-HSD and cell junction proteins, occludin, β-catenin, and connexin 43; however, none were changed after 6:2 Cl-PFAES exposure. Except for a decrease in the relative epididymis and testis weights in the 1.0 mg/kg/d group, 6:2 Cl-PFAES exposure for 56 d exerted no significant effect on the serum levels of reproductive hormones or the testicular mRNA profilesin adult male mice, implying a relative weak reproductive injury potential compared with that of PFOS.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
72
|
Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, Caudle WM, Miller GW, Chan AWS, Easley CA. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med 2018; 64:225-239. [PMID: 29911897 DOI: 10.1080/19396368.2018.1481465] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. ABBREVIATIONS CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
Collapse
Affiliation(s)
- Alyse N Steves
- a Genetics and Molecular Biology Program , Laney Graduate School, Emory University , Atlanta , GA , USA
| | - Adam Turry
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - Brittany Gill
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | | | - Joshua M Bradner
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Ian Bachli
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - W Michael Caudle
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Gary W Miller
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Anthony W S Chan
- e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA.,f Department of Human Genetics , Emory University , Atlanta , GA , USA
| | - Charles A Easley
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA.,e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA
| |
Collapse
|
73
|
Qi L, Jiang J, Jin P, Kuang M, Wei Q, Shi F, Mao D. Expression patterns of claudin-5 and its related signals during luteal regression in pseudopregnant rats: The enhanced effect of additional PGF treatment. Acta Histochem 2018; 120:221-227. [PMID: 29449022 DOI: 10.1016/j.acthis.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
To study the expression patterns of claudin-5 and its related signals during luteal regression in rats, a sequential PMSG/hCG treatment paradigm was used to obtain a single, well-defined generation of corpus luteum (CL). A total of 35 rats were treated with one PGF or two PGF at an interval of 24 h from day 7 of pseudopregnancy to induce CL regression. Serum and ovaries were collected at 0, 2, 4, 8 or 24 h after one PGF injection (1 PGF), 2 or 24 h after two PGF injections (2 PGF). The serum progesterone level was detected by RIA; the ovarian expression of claudin-5, the phosphorylations of STAT3 (p-STAT3), Akt (p-Akt), ERK1/2 (p-ERK) and p38 MAPK (p-p38) were detected by western blot, real-time PCR and IHC. Results showed that serum progesterone (P4) decreased after PGF treatment. Claudin-5 mRNA decreased at 4 h and 8 h after 1 PGF and 2 h after 2 PGF, and claudin-5 protein decreased at 4 h after 1 PGF. p-STAT3 increased at 4 h after 1 PGF and 2 h after 2 PGF. p-ERK increased at 2 h after 2 PGF. The level of p-Akt decreased at 4 h after 1 PGF. PGF treatment did not alter the phosphorylation of p38 MAPK at any time points in this study. IHC results revealed that claudin-5 was expressed in the nuclei and cytoplasm of steroidogenic cells and in the vessels, while PGF induced-p-STAT3 was expressed uniformly in the cytoplasm of luteal steroidogenic cells. In conclusion, PGF treatment decreased the expression of claudin-5 and the additional PGF treatment enhanced the decrease in claudin-5 mRNA expression and the increases in ERK1/2 and STAT3 phosphorylation in the corpus luteum of pseudopregnant rats, which will contribute new information to the further study of molecular mechanism of luteal regression.
Collapse
|
74
|
Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem Toxicol 2018; 112:290-298. [PMID: 29307602 DOI: 10.1016/j.fct.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin. However, the underlying pathways of MCLR-induced reproductive system toxicity have not been well elucidated. The blood-testis barrier is mainly constituted by tight junctions (TJs) between adjacent Sertoli cells in the seminiferous epithelium near the basement membrane. The present study was designed to investigate changes in TJs and the underlying pathway in MC-LR-induced TJs toxicity in Sertoli cell. In our study, the transepithelial electrical resistance (TER) value was decreased in a dose dependent manner due to the markers of TJs occludin, claudin and zonula occludens-1 (ZO-1) expression decline. MC-LR is shown to induce cytotoxicity by inhibiting protein phosphatase 2A (PP2A) activity. Our results also showed that the PP2A activity presented a dose-dependent decline. Moreover, MC-LR stimulated protein expression of snail by Akt/GSK-3β activation. The activated Akt/GSK-3β and snail signaling pathway largely accounted for MC-LRinduced TJs toxicity, which could be partially reversed by snail siRNA interference or AKT chemical inhibitor in TM4 cells. These findings indicated that MC-LR inhibit the protein expression of TJs, and the activation of Akt/Snail signaling pathways due to PP2A inhibition is proposed to participate in this process.
Collapse
|
75
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang JY, Chen F, Wang YS, Li X, Huo LJ. Olaquindox disrupts tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017; 8:88630-88644. [PMID: 29179463 PMCID: PMC5687633 DOI: 10.18632/oncotarget.20289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells, by creating an immune-privileged and nutrition supporting environment, maintain mammalian spermatogenesis and thereby holds the heart of male fertility. Olaquindox, an effective feed additive in livestock industry, could potentially expose human into the risk of biological hazards due to its genotoxicity and cytotoxicity, highlighting the significance of determining its bio-safety regarding human reproduction. Herein, we deciphered the detrimental effects of olaquindox on male fertility by mechanistically unraveling how olaquindox intervenes blood-testis barrier in mouse. Olaquindox (400 μg/ml) exposure significantly compromised tight junction permeability function, decreased or dislocated the junction proteins (e.g., ZO-1, occludin and N-cadherin) and attenuated mTORC2 signaling pathway in primary Sertoli cells. Furthermore, olaquindox disrupted F-actin architecture through interfering with the expression of actin branching protein complex (CDC42-N-WASP-Arp3) and actin bunding protein palladin. Olaquindox also triggered severely DNA damage and apoptosis while inhibiting autophagic flux in Sertoli cell presumably due to the exacerbated generation of reactive oxygen species (ROS). Pre-treatment with antioxidant N-acetylcysteine effectively ameliorated olaquindox-induced exhaustion of ZO-1 and N-Cadherin proteins, DNA damage and apoptosis. More significantly, olaquindox disrupted the epigenetic status in Sertoli cells with hypermethylation and concomitantly hypoacetylation of H3K9 and H3K27. Overall, our study determines olaquindox targets Sertoli cells to affect BTB function through tight junction proteins and F-actin orgnization, which might disrupt the process of spermatogenesis.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| |
Collapse
|
76
|
Chang L, Wang J, She R, Ma L, Wu Q. In vitro toxicity evaluation of melamine on mouse TM4 Sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:111-118. [PMID: 28171822 DOI: 10.1016/j.etap.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
The male reproductive toxicity of melamine (MA) has been recognized in recent years excepted for its renal toxicity. Our previous in vivo studies revealed that the damages of Sertoli cell barrier played a critical role in MA-induced testicular toxicity in mice. Herein, we performed an in vitro study to comprehensively evaluate the toxicity of MA on Sertoli cell by examining the influences of MA on the viability, morphology, mortality and intercellular junctions of mouse TM4 Sertoli cells (TM4 cells). The results showed that MA suppressed cell viability, induced obvious ultrastructural changes and cell apoptosis in concentration-dependent manner. Moreover, MA down-regulated the expressions of junction-associated proteins including occludin, N-cadherin, and vimentin, suggesting that MA disrupted the integrity of Sertoli cell barrier. Thus, these results indicated that Sertoli cell might be an important cellular target for MA-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China; Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Jingyuan Wang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China.
| | - Longhuan Ma
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| | - Qiaoxing Wu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, PR China
| |
Collapse
|