51
|
Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon 2011; 57:657-71. [PMID: 21255598 DOI: 10.1016/j.toxicon.2011.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist primarily of a moderate number of proteins and peptides that have been found to belong to just a handful of protein families. As these proteins and peptides are produced in dedicated glands, transcriptome sequencing has proven to be an effective approach to identifying the expressed toxin genes. We generated a venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) using Roche 454 sequencing technology. In the current work, we focus on transcripts encoding toxins. We identified 40 unique toxin transcripts, 30 of which have full-length coding sequences, and 10 have only partial coding sequences. These toxins account for 24% of the total sequencing reads. We found toxins from 11 previously described families of snake-venom toxins and have discovered two putative, previously undescribed toxin classes. The most diverse and highly expressed toxin classes in the C. adamanteus venom-gland transcriptome are the serine proteinases, metalloproteinases, and C-type lectins. The serine proteinases are the most abundant class, accounting for 35% of the toxin sequencing reads. Metalloproteinases are the most diverse; 11 different forms have been identified. Using our sequences and those available in public databases, we detected positive selection in seven of the eight toxin families for which sufficient sequences were available for the analysis. We find that the vast majority of the genes that contribute directly to this vertebrate trait show evidence for a role for positive selection in their evolutionary history.
Collapse
Affiliation(s)
- Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| | | | | | | | | |
Collapse
|
52
|
Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. J Proteomics 2010; 73:1758-76. [DOI: 10.1016/j.jprot.2010.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/03/2010] [Indexed: 01/14/2023]
|
53
|
Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Díaz M, Dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res 2010; 9:528-44. [PMID: 19863078 DOI: 10.1021/pr9008749] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Jaume Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom. Toxicon 2010; 55:1443-52. [PMID: 20206199 DOI: 10.1016/j.toxicon.2010.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Two major crotamine isoforms (III-4 and III-7) were obtained combining two chromatographic steps on molecular exclusion chromatography (Sephadex G-75) and ion-exchange column (Protein Pack SP 5PW) of the rattlesnake Crotalus durissus cumanensis venom. The "in vivo" myotoxic effect of the venom, its "in vitro" cytotoxicity in myoblasts and myotubes (C2C12) and the neurotoxic and edema-forming activity were characterized. The molecular masses of the crotamine isoforms were 4907.94 Da (III-4) and 4985.02 Da (III-7) and, as determined by mass spectrometry, both contained six Cys residues. Enzymatic hydrolysis followed by de novo sequencing through tandem mass spectrometry was used to determine the primary structure of both isoforms. III-4 and III-7 isoforms presented a 42-amino acid residues sequence and showed high molecular amino acid sequence identity with other crotamine-like proteins from Crotalus durissus terrificus. In vivo, both crotamine isoforms induced myotoxicty and a systemic interleukin-6 response upon intramuscular injection. These new crotamine isoforms induced low cytotoxicity in skeletal muscle myoblasts and myotubes (C2C12) and both induced a facilitatory effect on neuromuscular transmission in young chick biventer cervicis preparation. Edema-forming activity was also analyzed by injection of the crotamine isoforms into the right paw, since both crotamine isoforms exert a strong pro-inflammatory effect.
Collapse
|
55
|
Montagna E, Guerreiro JR, Torres BB. Biochemistry of the envenomation response-A generator theme for interdisciplinary integration. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 38:91-96. [PMID: 21567802 DOI: 10.1002/bmb.20376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The understanding of complex physiological processes requires information from many different areas of knowledge. To meet this interdisciplinary scenario, the ability of integrating and articulating information is demanded. The difficulty of such approach arises because, more often than not, information is fragmented through under graduation education in Health Sciences. Shifting from a fragmentary and deep view of many topics to joining them horizontally in a global view is not a trivial task for teachers to implement. To attain that objective we proposed a course herein described-Biochemistry of the envenomation response-aimed at integrating previous contents of Health Sciences courses, following international recommendations of interdisciplinary model. The contents were organized by modules with increasing topic complexity. The full understanding of the envenoming pathophysiology of each module would be attained by the integration of knowledge from different disciplines. Active-learning strategy was employed focusing concept map drawing. Evaluation was obtained by a 30-item Likert-type survey answered by ninety students; 84% of the students considered that the number of relations that they were able to establish as seen by concept maps increased throughout the course. Similarly, 98% considered that both the theme and the strategy adopted in the course contributed to develop an interdisciplinary view.
Collapse
Affiliation(s)
- Erik Montagna
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
56
|
Ahmed N, Pinkham M, Warrell DA. Symptom in search of a toxin: muscle spasms following bites by Old World tarantula spiders (Lampropelma nigerrimum, Pterinochilus murinus, Poecilotheria regalis) with review. QJM 2009; 102:851-7. [PMID: 19776152 DOI: 10.1093/qjmed/hcp128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tarantula spiders are widely kept and bred in captivity by both adults and children. Their bites are generally considered harmless. AIM To explore the effects of envenoming by Old World tarantulas. DESIGN AND METHODS Clinical studies and review of conventional literature and hobbyist web sites. RESULTS Two men bitten on their index fingers by pet Old World tarantula spiders, Lampropelma nigerrimum (Ornithoctoninae) and Pterinochilus murinus (Harpactirinae) in England, developed intense local pain, swelling and episodic, agonising, generalised muscle cramps. In one of them, cramps persisted for 7 days and serum creatine kinase concentration was mildly elevated. A third man bitten on a finger by Poecilotheria regalis (Poecilotheriinae), suffered persistent local cramps in the affected hand. Reports since 1803, including recent ones on hobbyist web-sites, have been largely overlooked. They mentioned muscle spasms after bites by these and other genera of Old World tarantulas, including Eumenophorus, Selenocosmia and Stromatopelma. The severe muscle spasms seen in two of our patients were a challenge to medical treatment and might, under some circumstances, have been life threatening. They demand a toxinological explanation. CONCLUSION Bites by several genera of African, Asian and Australasian tarantulas can cause systemic neurotoxic envenoming. In the absence of available antivenom, severe persistent muscle spasms, reminiscent of latrodectism, pose a serious therapeutic challenge. Discovery of the toxin responsible would be of scientific and potential clinical benefit. Tarantula keepers should be warned of the danger of handling these animals incautiously.
Collapse
Affiliation(s)
- N Ahmed
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
57
|
Oguiura N, Collares MA, Furtado MFD, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009; 446:35-40. [PMID: 19523505 DOI: 10.1016/j.gene.2009.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/12/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Crotamine is a small basic myotoxin peptide of Crotalus durissus venom, with beta-defensin scafold and variable concentration in individual venoms. The crotamine gene was mapped to the end of chromosome 2 and the signal intensity differed significantly between the two homologues. In contrast to crotamine, the paralogous crotasin gene is scarcely expressed in the venom glands. In this study, we analyzed the crotamine concentrations in the venoms of a total of 23 rattlesnakes from diverse Brazilian localities by ELISA as well as the copy number of both crotamine and crotasin genes by real-time PCR. Crotamine was found to constitute 5-29% of venom proteins varying greatly among individual animals. The crotamine gene exists from 1 to 32 copies per haploid genome, whereas the crotasin gene is present from 1 to 7 copies. Furthermore, we observed that the crotamine concentration and crotamine gene copy number are positively correlated (r(2)=0.68), implying the variation of crotamine in venom results from the variation of the gene copy number. Sequencing of 50 independent copies of crotamine and crotasin genes from four different rattlesnakes revealed the presence of six crotasin isoforms with a single amino acid difference from the original crotasin sequence, whereas only two additional crotamine isoforms were observed. Taken together, our results suggested that after duplication from a common ancestor gene, crotamine and crotasin may have diverged in such a way that the crotamine gene underwent repetitive duplication to increase its copy number, whereas the crotasin gene diversified its sequence.
Collapse
Affiliation(s)
- Nancy Oguiura
- Laboratório Especial de Ecologia e Evolução, Instituto Butantan, Av. Dr. Vital Brasil, 1500, CEP 05503-900, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
58
|
Whittington CM, Papenfuss AT, Kuchel PW, Belov K. Expression patterns of platypus defensin and related venom genes across a range of tissue types reveal the possibility of broader functions for OvDLPs than previously suspected. Toxicon 2008; 52:559-65. [PMID: 18662710 DOI: 10.1016/j.toxicon.2008.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/28/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
The platypus, as an egg-laying mammal, displays an unusual mixture of reptilian and mammalian characteristics. It is also venomous, and further investigations into its little-studied venom may lead to the development of novel pharmaceuticals and drug targets and provide insights into the origins of mammalian venom. Here we investigate the expression patterns of antimicrobial genes called defensins, and also the venom peptides called defensin-like peptides (OvDLPs). We show, in the first expression study on any platypus venom gene, that the OvDLPs are expressed in a greater range of tissues than would be expected for genes with specific venom function, and thus that they may have a wider role than previously suspected.
Collapse
Affiliation(s)
- Camilla M Whittington
- Faculty of Veterinary Science, RMC Gunn B19, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
59
|
Nonaka PN, Amorim CF, Paneque Peres AC, E Silva CAM, Zamuner SR, Ribeiro W, Cogo JC, Vieira RP, Dolhnikoff M, de Oliveira LVF. Pulmonary mechanic and lung histology injury induced by Crotalus durissus terrificus snake venom. Toxicon 2008; 51:1158-1166. [PMID: 18457854 DOI: 10.1016/j.toxicon.2008.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/24/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
In the present work we investigated the effects of Crotalus durissus terrificus venom (CdtV) on the pulmonary mechanic events [static and dynamic elastance, resistive (DeltaP1) and viscoelastic pressures (DeltaP2)] and histology after intramuscular injection of saline solution (control) or venom (0.6 microg/g). The static and dynamic elastance values were increased significantly after 3 h of venom inoculation, but were reduced at control values in the other periods studied. The DeltaP1 values that correspond to the resistive properties of lung tissue presented a significant increase after 6h of CdtV injection, reducing to basal levels 12h after the venom injection. In DeltaP2 analysis, correspondent to viscoelastic components, an increase occurred 12 h after the venom injection, returning to control values at 24 h. CdtV also caused an increase of leukocytes recruitment (3-24 h) to the airways wall as well as to the lung parenchyma. In conclusion, C. durissus terrificus rattlesnake venom leads to lung injury which is reverted, after 24 h of inoculation.
Collapse
Affiliation(s)
- Paula Naomi Nonaka
- Laboratory of Physiology and Pharmacodynamics, Institute of Research and Development-IP&D, University of Vale do Paraiba-UNIVAP, Sao Jose dos Campos, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
It is said that nature is the greatest innovator, yet molecular conservation can be equally powerful. One key requirement for the survival of any host is its ability to defend against infection, predation and competition. Recent discoveries, including the presence of a multidimensional structural signature, have revealed a previously unforeseen structural and functional congruence among host defence effector molecules spanning all kingdoms of life. Antimicrobial peptides, kinocidins, polypeptide venoms and other molecules that were once thought to be distinct in form and function now appear to be members of an ancient family of host defence effectors. These molecules probably descended from archetype predecessors that emerged during the beginning of life on earth. Understanding how nature has sustained these host defence molecules with a potent efficacy in the face of dynamic microbial evolution should provide new opportunities to prevent or treat life-threatening infections.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, LAC-Harbour UCLA Medical Center, Torrance, California 90509, USA.
| | | |
Collapse
|
61
|
Zhu S, Gao B. Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii. FEBS Lett 2006; 580:5979-87. [PMID: 17054952 DOI: 10.1016/j.febslet.2006.09.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
Toxins affecting sodium channels widely exist in the venoms of scorpions throughout the world. These molecules comprise an evolutionarily related peptide family with three shared features including conserved three-dimensional structure and gene organization, and similar function. Based on different pharmacological profiles and binding properties, scorpion sodium channel toxins are divided into alpha- and beta-groups. However, their evolutionary relationship is not yet established. Here, we report a gene isolated from the venom gland of scorpion Mesobuthus martensii which encodes a novel sodium channel toxin-like peptide of 64 amino acids, named Mesotoxin. The Mesotoxin gene is organized into three exons and two introns with the second intron location conserved across the family. This peptide is unusual in that it has only three disulfides and a long cysteine-free tail with loop size and structural characteristics close to beta-toxins. Evolutionary analysis favors its basal position in the origin of scorpion sodium channel toxins as a progenitor. The discovery of Mesotoxin will assist investigations into the key issue regarding the origin and evolution of scorpion toxins.
Collapse
Affiliation(s)
- S Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, No. 25 Beisihuan-Xi Road, Beijing 100080, PR China.
| | | |
Collapse
|