51
|
Wang X, Chen Y, Zuo X, Ding N, Zeng H, Zou X, Han X. Microcystin (-LR) induced testicular cell apoptosis via up-regulating apoptosis-related genes in vivo. Food Chem Toxicol 2013; 60:309-17. [DOI: 10.1016/j.fct.2013.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/26/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
52
|
Roegner AF, Brena B, González-Sapienza G, Puschner B. Microcystins in potable surface waters: toxic effects and removal strategies. J Appl Toxicol 2013; 34:441-57. [PMID: 24038121 DOI: 10.1002/jat.2920] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/01/2023]
Abstract
In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
53
|
Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food Chem Toxicol 2013; 59:386-94. [DOI: 10.1016/j.fct.2013.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 01/07/2023]
|
54
|
Alja Š, Filipič M, Novak M, Žegura B. Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells. Mar Drugs 2013; 11:3077-90. [PMID: 23966038 PMCID: PMC3766883 DOI: 10.3390/md11083077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/31/2013] [Indexed: 01/03/2023] Open
Abstract
The newly emerging cyanobacterial cytotoxin cylindrospermopsin (CYN) is increasingly found in surface freshwaters, worldwide. It poses a potential threat to humans after chronic exposure as it was shown to be genotoxic in a range of test systems and is potentially carcinogenic. However, the mechanisms of CYN toxicity and genotoxicity are not well understood. In the present study CYN induced formation of DNA double strand breaks (DSBs), after prolonged exposure (72 h), in human hepatoma cells, HepG2. CYN (0.1–0.5 µg/mL, 24–96 h) induced morphological changes and reduced cell viability in a dose and time dependent manner. No significant increase in lactate dehydrogenase (LDH) leakage could be observed after CYN exposure, indicating that the reduction in cell number was due to decreased cell proliferation and not due to cytotoxicity. This was confirmed by imunocytochemical analysis of the cell-proliferation marker Ki67. Analysis of the cell-cycle using flow-cytometry showed that CYN has an impact on the cell cycle, indicating G0/G1 arrest after 24 h and S-phase arrest after longer exposure (72 and 96 h). Our results provide new evidence that CYN is a direct acting genotoxin, causing DSBs, and these facts need to be considered in the human health risk assessment.
Collapse
Affiliation(s)
- Štraser Alja
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia.
| | | | | | | |
Collapse
|
55
|
Xu P, Zhang XX, Miao C, Fu Z, Li Z, Zhang G, Zheng M, Liu Y, Yang L, Wang T. Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8801-8808. [PMID: 23802678 DOI: 10.1021/es4007228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, we have indicated that microcystin-LR, a cyanobacterial toxin produced in eutrophic lakes or reservoirs, can increase invasive ability of melanoma MDA-MB-435 cells; however, the stimulatory effect needs identification by in vivo experiment and the related molecular mechanism is poorly understood. In this study, in vitro and in vivo experiments were conducted to investigate the effect of microcystin-LR on invasion and metastasis of human melanoma cells, and the underlying molecular mechanism was also explored. MDA-MB-435 xenograft model assay showed that oral administration of nude mice with microcystin-LR at 0.001-0.1 mg/kg/d posed no significant effect on tumor weight. Histological examination demonstrated that microcystin-LR could promote lung metastasis, which is confirmed by Matrigel chamber assay suggesting that microcystin-LR treatment at 25 nM can increase the invasiveness of MDA-MB-435 cells. In vitro and in vivo experiments consistently showed that microcystin-LR exposure increased mRNA and protein levels of matrix metalloproteinases (MMP-2/-9) by activating phosphatidylinositol 3-kinase (PI3-K)/AKT. Additionally, microcystin-LR treatment at low doses (≤25 nM) decreased lipid phosphatase PTEN expression, and the microcystin-induced invasiveness enhancement and MMP-2/-9 overexpression were reversed by the PI3-K/AKT chemical inhibitor LY294002 and AKT siRNA, indicating that microcystin-LR promotes invasion and metastasis of MDA-MB-435 cells via the PI3-K/AKT pathway.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University , Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Vareli K, Jaeger W, Touka A, Frillingos S, Briasoulis E, Sainis I. Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean? Mar Drugs 2013; 11:2751-68. [PMID: 23921721 PMCID: PMC3766863 DOI: 10.3390/md11082751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/11/2023] Open
Abstract
Cyanobacterial blooms are a major and growing problem for freshwater ecosystems worldwide that increasingly concerns public health, with an average of 60% of blooms known to be toxic. The most studied cyanobacterial toxins belong to a family of cyclic heptapeptide hepatotoxins, called microcystins. The microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cell damage following cellular uptake via organic anion-transporting proteins (OATP). Their intracellular biologic effects presumably involve inhibition of catalytic subunits of protein phosphatases (PP1 and PP2A) and glutathione depletion. The microcystins produced by cyanobacteria pose a serious problem to human health, if they contaminate drinking water or food. These toxins are collectively responsible for human fatalities, as well as continued and widespread poisoning of wild and domestic animals. Although intoxications of aquatic organisms by microcystins have been widely documented for freshwater ecosystems, such poisonings in marine environments have only occasionally been reported. Moreover, these poisonings have been attributed to freshwater cyanobacterial species invading seas of lower salinity (e.g., the Baltic) or to the discharge of freshwater microcystins into the ocean. However, recent data suggest that microcystins are also being produced in the oceans by a number of cosmopolitan marine species, so that Hepatotoxic Seafood Poisoning (HSP) is increasingly recognized as a major health risk that follows consumption of contaminated seafood.
Collapse
Affiliation(s)
- Katerina Vareli
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria; E-Mail:
| | - Anastasia Touka
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
| | - Evangelos Briasoulis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Ioannis Sainis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-26-510-075-57; Fax: +30-26-510-070-64
| |
Collapse
|
57
|
Zhang H, Cai C, Wu Y, Shao D, Ye B, Zhang Y, Liu J, Wang J, Jia X. Mitochondrial and endoplasmic reticulum pathways involved in microcystin-LR-induced apoptosis of the testes of male frog (Rana nigromaculata) in vivo. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:382-389. [PMID: 23548922 DOI: 10.1016/j.jhazmat.2013.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have shown that toxins produced by toxic cyanobacterial blooms are hazardous materials. In the present study, 1 μg/L microcystin-LR (MC-LR) was observed to induce apoptosis in the testes of male Rana nigromaculata via the mitochondrial and endoplasmic reticulum (ER) pathways at exposure times ranging from 7 d to 14 d. The results showed that reactive oxygen species production and malondialdehyde content were positively correlated with exposure time. Antioxidant enzyme contents, such as reduced glutathione and glutathione peroxidase rapidly decreased, implying that the defense system of the testes induces oxidative damage. MC-LR significantly stimulated the release of cytochrome c in the testes, thereby improving the protein expressions of Bax and caspases-3, 8, and 9 (p<0.01) and inhibiting the protein expression of Bcl-2 with prolonged exposure (p<0.01). Ultrastructural observations showed distention of the mitochondria and endoplasmic reticulum and deformation of the nucleolus. Moreover, prolonged exposure times strengthened and weakened the relative expression levels of C/EBP homologous protein and GRP78, respectively. These results indicate that MC-LR-induced apoptosis of the testes in male frogs in vivo may occur through the mitochondrial and ER pathways. It also further proves our previous findings that MC-LR can induce toxicity in the male reproductive system of R. nigromaculata in vitro. The findings show that MC-LR is highly hazardous to frogs and that the accepted drinking water limit of 1 μg/L MC-LR exerts significant toxicity to amphibians.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Christen V, Meili N, Fent K. Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFκB, interferon-alpha, and tumor necrosis factor-alpha. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3378-3385. [PMID: 23431999 DOI: 10.1021/es304886y] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microcystins (MCs) are hepatotoxins produced by cyanobacteria responsible for toxicity in humans and animals. Here, we investigate unexplored molecular pathways by which microcystin-LR (MC-LR) acts on hepatocytes to elucidate unknown modes of action. We focus on the endoplasmatic reticulum (ER) stress response or unfolded protein response (UPR), and on mechanisms that may contribute to the tumor-promoting effect of MCs in animals, including the activation of NFκB, the expression of interferon alpha (IFN-α) and the induction of interferon stimulated genes (ISGs), as well as the expression of tumor necrosis factor alpha (TNF-α). To this end, we exposed human hepatoma cells (Huh7) to 0.5 μM (nontoxic concentration), 5 μM (EC50 concentration), 25 μM and 50 μM (cytotoxic concentrations) MC-LR for 6, 24, 48, and 72 h. The expression of phosphatase 2A (PP2A) mRNA and protein was induced at 5 μM MC-LR. Phosphorylated P-CREB, a transcription factor for PP2A, leads to elevated expression of PP2A. Furthermore, all of the three ER stress pathways, the UPR and the endoplasmic reticulum-associated degradation were activated after exposure to 5, 25, and 50 μM MC-LR. Additionally, the expression of NFκB, IFN-α, and several INF-α-stimulated genes was strongly activated. The proinflammatory cytokine TNF-α was also induced. Our data demonstrate that MC-LR induces all ER stress response pathways. Consequently NFκB is activated, which in turn induces the expression of IFN-α and TNF-α. All of these activated pathways, which are analyzed here for the first time in detail, may contribute to the hepatotoxic, inflammatory, and tumorigenic action of MC-LR.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
59
|
Svirčev Z, Drobac D, Tokodi N, Vidović M, Simeunović J, Miladinov-Mikov M, Baltić V. Epidemiology of primary liver cancer in Serbia and possible connection with cyanobacterial blooms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:181-200. [PMID: 24024518 DOI: 10.1080/10590501.2013.824187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Today, the occurrence of harmful cyanobacterial blooms is a common phenomenon and a potential global health problem. Cyanobacteria can produce metabolites highly toxic to humans. More than 80% of reservoirs used for water supply in Central Serbia have bloomed over the past 80 years. A 10-year epidemiological study showed a significant increase in the incidence of primary liver cancer (PLC) in the regions where water from the blooming reservoirs was used for human consumption. At the same time, no correlation was found between the incidence of PLC and other risk factors, such as cirrhosis and hepatitis viruses. Given the strong association with PLC induction and various known possible mechanisms of carcinogenic action, it is highly possible that, cyanotoxins--acting as initiator and promoter--may be the major risk factor that acts synergistically with other risk factors to cause increased incidence of PLC. However, at present, it is still not certain whether cyanotoxins alone were sufficient to induce PLC. Therefore, additional assessment of the health risks that may arise from human exposure to cyanotoxins is advisable.
Collapse
Affiliation(s)
- Zorica Svirčev
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | | | | | | | | | | | | |
Collapse
|
60
|
Zhang XX, Fu Z, Zhang Z, Miao C, Xu P, Wang T, Yang L, Cheng S. Microcystin-LR promotes melanoma cell invasion and enhances matrix metalloproteinase-2/-9 expression mediated by NF-κB activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11319-11326. [PMID: 22992115 DOI: 10.1021/es3024989] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study aimed to explore the molecular mechanisms behind the stimulation effects of microcystin-LR (a well-known cyanobacterial toxin produced in eutrophic lakes or reservoirs) on cancer cell invasion and matrix metalloproteinases (MMPs) expression. Boyden chamber assay showed that microcystin-LR exposure (>12.5 nM) evidently enhanced the invasion ability of the melanoma cells (MDA-MB-435). Tumor Metastasis PCR Array demonstrated that 24 h microcystin-LR treatment (25 nM) caused overexpression of eight genes involved in tumor metastasis, including MMP-2, MMP-9, and MMP-13. Quantitative real-time PCR, Western blotting and gelatin zymography consistently demonstrated that mRNA and protein levels of MMP-2/-9 were increased in the cells after microcystin-LR exposure (P < 0.05 each). Immunofluorescence assay and electrophoretic mobility shift assay revealed that microcystin-LR could activate nuclear factor kappaB (NF-κB) by accelerating NF-κB translocation into the nucleus and enhancing NF-κB binding ability. Furthermore, addition of NF-κB inhibitor in culture medium could suppress the invasiveness enhancement and MMP-2/-9 overexpression. This study indicates that microcystin-LR can act as a NF-κB activator to promote MMP-2/-9 expression and melanoma cell invasion, which deserves more environmental health concerns.
Collapse
Affiliation(s)
- Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Brzuzan P, Woźny M, Wolińska L, Piasecka A. Expression profiling in vivo demonstrates rapid changes in liver microRNA levels of whitefish (Coregonus lavaretus) following microcystin-LR exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:188-196. [PMID: 22819808 DOI: 10.1016/j.aquatox.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/04/2012] [Accepted: 07/02/2012] [Indexed: 06/01/2023]
Abstract
At present, little is known about the role of miRNAs in liver response of fish to the cyanobacterial hepatotoxin microcystin-LR (MC-LR) treatment, despite the fact that the exposure is thought to underlie multiple acute and chronic effects. To address this question, we used the Real-Time PCR method to examine the differential expression of 6 miRNAs putatively playing roles in signal transduction (let-7c, miR-9b), apoptosis and cell cycle (miR-16a, miR-21a, miR-34a) and fatty acid metabolism (miR-122) in whitefish (Coregonus lavaretus) liver, during the first 48h after intraperitoneal injection of MC-LR (100 μg/kg body weight). In addition, we analyzed expression levels of 8 mRNAs and p53 protein, known to be involved in the cell response on the exposure to environmental stressors. Following the challenge we observed a rapid and transient increase in the mean (n=5) levels of individual miRNA expression (from 2.7-fold for miR-122 to 6.8-fold for let-7c), compared to the respective levels in control fish, which mostly peaked at 24h of the experiment. This increase was correlated with a reduction in the expression of mRNAs of genes coding for ferritin H (frih) and HNK Ras -like protein (p-ras) and an overexpression of mRNAs of genes coding for bcl2-associated X protein (bax), cyclin dependent kinase inhibitor 1a (cdkn1a), dicer (dcr), histone 2A (h2a) and p53. Expression of the remaining caspase 6 (cas6) mRNA did not change over 48 h of the treatment. Moreover, exposure to MC-LR did not alter whitefish p53 protein levels. Bearing in mind a variety of likely silencing targets for, and the onset of, the aberrant miRNA expression it may be concluded that they are involved in molecular pathways, such as liver cell metabolism, cell cycle regulation and apoptosis, and may contribute to the early phase of MC-LR induced hepatotoxicity.
Collapse
Affiliation(s)
- P Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | | | | | | |
Collapse
|
62
|
Zeller P, Quenault H, Huguet A, Blanchard Y, Fessard V. Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 82:13-21. [PMID: 22721844 DOI: 10.1016/j.ecoenv.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) giving rise to more than 90 MC variants, however most of the studies to date have focused on the most toxic variant: microcystin LR (MC-LR). Ingestion is the major route of human exposure to MCs and several in vivo studies have demonstrated macroscopic effects on the gastro-intestinal tract. However, little information exists concerning the pathways affected by MC variants on intestinal cells. In the current study, we have investigated the effects of MC-RR and MC-LR on the human intestinal cell line Caco-2 using a non-selective method and compared their response at the pangenomic scale. The cells were incubated for 4h or 24h with a range of non-toxic concentrations of MC-RR or MC-LR. Minimal effects were observed after short term exposures (4h) to either MC variant. In contrast, dose dependent modulations of gene transcription levels were observed with MC-RR and MC-LR after 24h. The transcriptomic profiles induced by MC-RR were quite similar to those induced by MC-LR, suggestive of a largely common mechanism of toxicity. However, changes in total gene expression were more pronounced following exposure to MC-LR compared to MC-RR, as revealed by functional annotation. MC-LR affected two principal pathways, the oxidative stress response and cell cycle regulation, which did not elicit significant alteration following MC-RR exposure. This work is the first comparative description of the effects of MC-LR and MC-RR in a human intestinal cell model at the pangenomic scale. It has allowed us to propose differences in the mechanism of toxicity for MC-RR and MC-LR. These results illustrate that taking into account the toxicity of MC variants remains a key point for risk assessment.
Collapse
Affiliation(s)
- Perrine Zeller
- Anses, Fougères laboratory, Contaminant Toxicology Unit, La Haute Marche, BP 90203, 35302 Fougères Cedex, France
| | | | | | | | | |
Collapse
|
63
|
Yang Z, Wu H, Li Y. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge. ENVIRONMENTAL TOXICOLOGY 2012; 27:393-403. [PMID: 20957730 DOI: 10.1002/tox.20652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
Microcystins are a family of potent hepatotoxins produced by freshwater cyanobacteria and can cause animal intoxications and human diseases. In this study, the effect of microcystin-LR (MC-LR) on the tissues of freshwater pearl mussel (Hyriopsis cumingii) was evaluated and differentially expressed genes in the hepatopancreas of the mussel exposed to MC-LR were identified. HPLC analysis of cell extracts from various tissues of the mussel indicated that the hepatopancreas had the highest MC-LR levels (55.78 ± 6.73 μg g⁻¹ DW) after 15-day exposure. The MC-LR concentration in gill or muscle was an order of magnitude less than in hepatopancreas or gonad. Subtractive cDNA library was constructed by suppression subtractive hybridization (SSH), and ∼400 positive clones were sequenced, from which 98 high quality sequences were obtained by BLAST analysis. The screening identified numerous genes involved in apoptosis, signal transduction, cytoskeletal remodel, innate immunity, material and energy metabolism, translation and transcription which were extensively discussed. The results of this study add large amount of information to the mussel genome data, and for the first time present the basic data on toxicity effect of MC-LR on mussel.
Collapse
Affiliation(s)
- Ziyan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | | | | |
Collapse
|
64
|
Sharma VK, Triantis TM, Antoniou MG, He X, Pelaez M, Han C, Song W, O’Shea KE, de la Cruz AA, Kaloudis T, Hiskia A, Dionysiou DD. Destruction of microcystins by conventional and advanced oxidation processes: A review. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.02.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
65
|
Wang SC, Geng ZZ, Wang Y, Tong ZH, Yu HQ. Essential roles of p53 and MAPK cascades in microcystin-LR-induced germline apoptosis in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3442-3448. [PMID: 22353034 DOI: 10.1021/es203675y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hepatotoxin microcystin-LR (MC-LR) can induce apoptosis in a variety of cells. However, the underlying pathways of MC-LR-induced apoptosis have not been well elucidated yet. To find out the roles of underlying pathways in apoptosis signaling in response to MC-LR, germ cell corpses were scored in Caenorhabditis elegans N2 wild type and strains carrying mutated alleles homologous to their mammalian counterparts. We found that exposure to MC-LR at 1.0 μg/L significantly increased germline apoptosis in N2. Germline apoptosis was absent at all doses in ced-3 and ced-4 loss-of-function strains. MC-LR-induced apoptosis was blocked in Bcl-2 gain-of-function strain ced-9(n1950), whereas it showed a slight increase in BH3-only protein EGL-1 mutated strain. The null mutation of cep-1, which is the homologue of p53 tumor suppressor gene, significantly inhibited MC-LR-induced cell death, and checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects. Apoptosis in loss-of-function members of ERK, JNK, and p38 MAPK signaling pathways reduced significantly under MC-LR exposure, and members of MAPKK subgroup JKK-1, MEK-1, and SEK-1 worked cooperatively. Our results show that the caspase protein CED-3 and Apaf-1 protein CED-4 were absolutely required for the apoptotic processes, and that the p53/CEP-1 and MAPKs cascades played essential roles in modulating MC-LR-induced germline apoptosis in C. elegans.
Collapse
Affiliation(s)
- Shun-Chang Wang
- Department of Life Science, Huainan Normal University, Huainan 232001, China
| | | | | | | | | |
Collapse
|
66
|
Pavagadhi S, Gong Z, Hande MP, Dionysiou DD, de la Cruz AA, Balasubramanian R. Biochemical response of diverse organs in adult Danio rerio (zebrafish) exposed to sub-lethal concentrations of microcystin-LR and microcystin-RR: a balneation study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:1-10. [PMID: 22207040 DOI: 10.1016/j.aquatox.2011.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/10/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
The present study was carried out to examine the dose-response of microcystin-LR (MC-LR) and microcystin-RR (MC-RR) toxicity in adult Danio rerio (zebrafish) under balneation conditions at various time points. The differential responses of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) as biomarkers were assessed for oxygen mediated toxicity in liver, gills, intestine and brain tissues of zebrafish exposed to dissolved MC-LR and MC-RR (0.1-10.0 μgl(-1)). To investigate the time related response of biomarkers, fish were sampled after 4, 7 and 15 days of exposure. Responses varied (i) between MC-LR and MC-RR (for certain groups), (ii) for different enzymes at all time points, and (iii) for different tissues. In general, most of the enzymes followed a bell shaped curve, with an abrupt increase in activity at a particular concentration. It was observed that upon exposure to MC-LR and MC-RR, some enzymes showed an adaptive response after the first time point wherein the enzyme activity increased in some tissues. The increase in enzyme activity is suggestive of their cellular and metabolic adaptations to the continued stress and toxin exposure. Enzyme activities in general increased at lower concentrations (≤ 5.0 μgl(-1)) and decreased at higher concentrations (≥ 5.0 μgl(-1)). An abrupt change in enzyme activities was observed at a particular concentration in all the tissue enzymes. For GPx and GR, there was a differential response in the case of fish exposed to MC-LR and MC-RR, which could be due to the difference in toxicity potentials of these cyanotoxins. In general, initial stress conditions were observed in most of the tissue enzymes following the exposure to microcystins (MCs). This observation suggests that MCs found in trace levels are likely to have deleterious effects on aquatic organisms and can trigger a variety of biochemical responses depending on their specific toxicity.
Collapse
Affiliation(s)
- Shruti Pavagadhi
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore
| | | | | | | | | | | |
Collapse
|
67
|
Li Y, Han X. Microcystin-LR causes cytotoxicity effects in rat testicular Sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:318-326. [PMID: 22301162 DOI: 10.1016/j.etap.2011.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/01/2011] [Accepted: 12/17/2011] [Indexed: 05/31/2023]
Abstract
Microcystins (MCs) are produced by cyanobacteria. The most toxic and widely distributed MC is microcystin-LR (MC-LR). The aim of this study was to investigate whether exposure to MC-LR could induce oxidative stress, leading the further toxicity effects on Sertoli cells in vitro. Sertoli cells obtained from rats were cultured with a medium containing 0, 0.5, 5, 50 or 500 nM/l MC-LR. We examined the decrease of mitochondrial membrane potential (MMP), the increase of reactive oxygen species (ROS) production, the increase of lipid peroxidation and decrease of superoxide dismutase (SOD) activity in Sertoli cells after treatment with MC-LR in vitro, and higher expression of caspase-9 and caspase-3, the increase of apoptosis rate. Therefore, we deduced that direct exposure to microcystin-LR could induce oxidative stress generation in Sertoli cells, and subsequently depressed cellular viability and caused cells to undergo apoptosis, resulting in the reproductive toxicity in male rats.
Collapse
Affiliation(s)
- Yan Li
- Life Science School, Nanjing University, Nanjing, Jiangsu 210093, PR China.
| | | |
Collapse
|
68
|
Zhao Y, Xie P, Fan H. Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:34-41. [PMID: 21882851 DOI: 10.1021/es201514h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Studies have demonstrated that microcystins (MCs) can act as potential carcinogens and have caused serious risk to public environmental health. The molecular mechanisms of MC-induced susceptibility to carcinogenesis are largely unknown. In this study, we performed for the first time a comprehensive analysis of changes in microRNAs (miRNAs) and proteins expression in livers of mice treated with MC-LR. Utilizing microarray and two-dimensional gel electrophoresis (2-DE) analysis, we identified 37 miRNAs and 42 proteins significantly altered. Many aberrantly expressed miRNAs were related to various cancers (e.g., miR-125b, hepatocellular carcinoma; miR-21, leukemia; miR-16, chronic lymphocytic leukemia; miR-192, pituitary adenomas; miR-199a-3p, ovarian cancer; miR-34a, pancreatic cancer). Several miRNAs (e.g., miR-34a, miR-21) and proteins (e.g., TGM2, NDRG2) that play crucial roles in liver tumorigenesis were first found to be affected by MC-LR in mouse liver. MC-LR also altered the expression of a number of miRNAs and proteins involved in several pathways related to tumorigenesis, such as glutathione metabolism, VEGF signaling, and MAPK signaling pathway. Integration of post-transcriptomics, proteomics, and transcriptomics reveals that the networks miRNAs and their potential target genes and proteins involved in had a close association with carcinogenesis. These results provide an early molecular mechanism for liver tumorigenesis induced by MCs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
69
|
Molecular effects of chemotherapeutic drugs and their modulation by antioxidants in the testis. Eur J Pharmacol 2012; 674:207-16. [DOI: 10.1016/j.ejphar.2011.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 11/23/2022]
|
70
|
Zegura B, Gajski G, Straser A, Garaj-Vrhovac V, Filipič M. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutat Res 2011; 726:116-122. [PMID: 22001196 DOI: 10.1016/j.mrgentox.2011.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/07/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.
Collapse
Affiliation(s)
- B Zegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
71
|
Zhang X, Xie P, Li D, Shi Z, Wang J, Yuan G, Zhao Y, Tang R. Anemia induced by repeated exposure to cyanobacterial extracts with explorations of underlying mechanisms. ENVIRONMENTAL TOXICOLOGY 2011; 26:472-479. [PMID: 21910206 DOI: 10.1002/tox.20583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 05/31/2023]
Abstract
Hematological abnormalities or derangements have been demonstrated in patients suffering form microcystins (MCs) in hemodialysis unit in Caruaru, Brazil, 1996. While experimental study on hematological effect of microcystins has been rare and the underlying mechanisms are still puzzling. In the present study, microcystins were repeatedly intraperitoneally injected with a dose of 6 μg/kg/day in rabbits (Oryctolagus cuniculus) for 14 days, and the prolonged effects of extracted microcystins on hematotoxicology were investigated. Significant decreases were observed in the hematological indices red blood cell counts, hematocrit, hemoglobin, and platelet count, while an obvious anemia occurred in rabbits after 14-day exposure. Moreover, red blood cell volume distribution width, mean corpuscular volume, and mean corpuscular hemoglobin did not vary significantly, indicating that rabbits suffered from normocytic anemia. In bone marrow, on the 14th day after toxin exposure, the frequency of micronucleus increased significantly, and the viability of bone marrow cells decreased markedly compared with the control. Serum erythropoietin levels declined on the 7th and 14th day, which suggested that the ability to regulate differentiation and maturation of erythrocytes was impaired. These results indicate that repeated exposure of microcystins can result in normocyte anemia, and the bone marrow injures and the sharp decreases of erythropoietin levels were responsible for the anemia.
Collapse
Affiliation(s)
- Xuezhen Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Fisheries College of Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Štraser A, Filipič M, Žegura B. Genotoxic effects of the cyanobacterial hepatotoxin cylindrospermopsin in the HepG2 cell line. Arch Toxicol 2011; 85:1617-26. [DOI: 10.1007/s00204-011-0716-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
73
|
Song C, Gao HW, Wu LL. Transmembrane transport of microcystin to Danio rerio zygotes: insights into the developmental toxicity of environmental contaminants. Toxicol Sci 2011; 122:395-405. [PMID: 21602189 DOI: 10.1093/toxsci/kfr131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microcystins (MCs) produced by cyanobacteria and their continuing "blooms" are a worldwide problem owing to the toxicity of microcystin-LR (MC-LR) to plants and animals. In the present study, we investigated membrane transport of MC-LR and its toxic effects on zebrafish embryos using fragmentation of embryos, scanning electron microscope (SEM), fluorescence microscopy, and toxic exposure tests. At a concentration < 0.04 mmol/l, MC-LR was predominantly adsorbed on outer membrane surface of embryos according to Langmuir isotherm. The absorption characteristics of MC-LR within the range from 0.05 to 0.4 mmol/l conformed to Freundlich isotherm model. At concentrations > 0.50 mmol/l MC-LR directly entered the cytoplasm via partition. Thinning and disruption of membranes was confirmed using SEM and fluorescence morphological observations. Exposure to different concentrations of MC-LR resulted in differences in membrane transport and toxicity characteristics. At low concentrations, more than 75% of the adsorbed MC-LR accumulated on the outer membrane surface and resulted in axial malformation, tail curving, and tail twisting. Increasing the concentration of MC-LR to between 0.05 and 0.4 mmol/l improved membrane transport and it was evident in cytoplasm of embryos, resulting in serious pericardial edema, hatching gland edema, hemagglutination, hemorrhage, and vacuolization. At > 0.50 mmol/l, more than 70% of the adsorbed MC-LR entered the cytoplasm and this was lethal to the embryos. The current research outlines a new method and mechanism for the transmembrane transport of large molecular weight organic compounds and could be important for studies concerning molecular toxicology.
Collapse
Affiliation(s)
- Chao Song
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | | | | |
Collapse
|
74
|
Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T. Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. ENVIRONMENTAL TOXICOLOGY 2011; 26:111-117. [PMID: 19760617 DOI: 10.1002/tox.20532] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It has been reported that microcystins (MCs) could accumulate in the gonads of mammals and MCs exposure exerts obvious toxic effects on male reproductive system of mammals. We have comfirmedthat MCs could accumulate and induce apoptosis in rat testis. The p53, Bax, and Bcl-2 protein play important roles in mitochondria-dependent apoptotic pathway, and this study aimed to investigate whether the p53, Bax, and Bcl-2 pathway is involved in microcystins-induced apoptosis in rat testis and discussed the possible mechanisms. Our results show that MCs led to persistent increase of transcriptional and protein level of P53 and Bax expression but led to decrease of Bcl-2 expression, resulting in an increased ratio of Bax to Bcl-2, which might contribute to apoptotic cell death of rat testis following MCs treatment. The increased ratio of expression of Bax to that of Bcl-2 induced by MCs suggests their important role in MCs-induced apoptosis in rat testis tissue.
Collapse
Affiliation(s)
- Guang-Yu Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
75
|
Žegura B, Štraser A, Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:16-41. [DOI: 10.1016/j.mrrev.2011.01.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 01/10/2023]
|
76
|
Zhang XX, Zhang Z, Fu Z, Wang T, Qin W, Xu L, Cheng S, Yang L. Stimulation effect of microcystin-LR on matrix metalloproteinase-2/-9 expression in mouse liver. Toxicol Lett 2010; 199:377-82. [DOI: 10.1016/j.toxlet.2010.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 12/12/2022]
|
77
|
PetkoviĆ J, Žegura B, StevanoviĆ M, Drnovšek N, UskokoviĆ D, Novak S, FilipiČ M. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2010; 5:341-53. [DOI: 10.3109/17435390.2010.507316] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
78
|
Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression. Radiol Oncol 2010; 44:42-51. [PMID: 22933890 PMCID: PMC3423669 DOI: 10.2478/v10019-010-0010-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/28/2010] [Indexed: 02/07/2023] Open
Abstract
Background Human exposure to genotoxic agents in the environment and everyday life represents a serious health threat. Fast and reliable assessment of genotoxicity of chemicals is of main importance in the fields of new chemicals and drug development as well as in environmental monitoring. The tumor suppressor gene p21, the major downstream target gene of activated p53 which is responsible for cell cycle arrest following DNA damage, has been shown to be specifically up-regulated by genotoxic carcinogens. The aim of our study was to develop a human cell-based biosensor system for simple and fast detection of genotoxic agents. Methods Metabolically active HepG2 human hepatoma cells were transfected with plasmid encoding Enhanced Green Fluorescent Protein (EGFP) under the control of the p21 promoter (p21HepG2GFP). DNA damage was induced by genotoxic agents with known mechanisms of action. The increase in fluorescence intensity, due to p21 mediated EGFP expression, was measured with a fluorescence microplate reader. The viability of treated cells was determined by the colorimetric MTS assay. Results The directly acting alkylating agent methylmethane sulphonate (MMS) showed significant increase in EGFP production after 48 h at 20 μg/mL. The indirectly acting carcinogen benzo(a)pyren (BaP) and the cross-linking agent cisplatin (CisPt) induced a dose- dependent increase in EGFP fluorescence, which was already significant at concentrations 0.13 μg/mL and 0.41 μg/mL, respectively. Vinblastine (VLB), a spindle poison that does not induce direct DNA damage, induced only a small increase in EGFP fluorescence intensity after 24 h at the lowest concentration (0.1 μg/mL), while exposure to higher concentrations was associated with significantly reduced cell viability. Conclusions The results of our study demonstrated that this novel assay based on the stably transformed cell line p21HepG2GFP can be used as a fast and simple biosensor system for detection of genetic damage caused by chemical agents.
Collapse
|
79
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
80
|
Amado LL, Monserrat JM. Oxidative stress generation by microcystins in aquatic animals: why and how. ENVIRONMENT INTERNATIONAL 2010; 36:226-235. [PMID: 19962762 DOI: 10.1016/j.envint.2009.10.010] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/09/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Microcystins (MICs) are potent toxins produced worldwide by cyanobacteria during bloom events. Phosphatases inhibition is a well recognized effect of this kind of toxins as well as oxidative stress. However, it is not fully understood why and how MICs exposure can lead to an excessive formation of reactive oxygen species (ROS) that culminate in oxidative damage. Some evidences suggest a close connection between cellular hyperphosphorylation state and oxidative stress generation induced by MICs exposure. It is shown, based on literature data, that MICs incorporation per se can be the first event that triggers glutathione depletion and the consequent increase in ROS concentration. Also, literature data suggest that hyperphosphorylated cellular environment induced by MICs exposure can modulate antioxidant enzymes, contributing to the generation of oxidative damage. This review summarizes information on MICs toxicity in aquatic animals, focusing on mechanistic aspects, and rise questions that in our opinion needs to be further investigated.
Collapse
Affiliation(s)
- L L Amado
- Curso de Pós-graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Cx. P. 474, CEP 96.201-900, Rio Grande, RS, Brazil
| | | |
Collapse
|
81
|
Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 2010; 11:268-287. [PMID: 20162015 PMCID: PMC2821003 DOI: 10.3390/ijms11010268] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022] Open
Abstract
Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.
Collapse
Affiliation(s)
- Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +351-223-401-813; Fax: +351-223-390-608
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| |
Collapse
|
82
|
Svircev Z, Baltić V, Gantar M, Juković M, Stojanović D, Baltić M. Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2010; 28:39-59. [PMID: 20390967 DOI: 10.1080/10590500903585382] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It is known that microcystin (MC) is a cyanotoxin that is a potent environmental inhibitor of eucariotic protein serine/threonine phosphatase 1 and 2A, both in vitro and in vivo. Consequently, these cyanobacterial toxins (MC-IARC group 2B carcinogen, MC extracts-group 3) are potent tumor promoters and there is an indication that they may also act as tumor initiators. The ability of microcystin-LR (MC-LR) to act as a tumor initiator is based on fact that it can induce DNA damage either by direct interaction with DNA or by indirect mechanisms through formation of reactive oxygen species (ROS). Both acute and chronic exposures, to either low or high doses of MC-LR, can activate apoptotic pathways. Chronic exposure to low concentrations of MC-LR contributes to increased risk for cancer development. Epidemiological studies, in certain areas of China, have suggested that MC is one of the risk factors for the high incidence of primary liver cancer (PLC). Recently, we have reported a correlation between PLC and cyanobacterial "blooms" in reservoirs used as a source for drinking water supply in central Serbia. It appears that the combination of acute and chronic exposures to both high and low doses of MC can lead to PLC initiation and promotion. Based on this, we propose that the requirement for the co-factors such as aflatoxin B1 and other mycotoxins, HBV, HCV, alcohol, etc. is not needed for initiation and promotion of PLC by MC-LR as was suggested earlier. The possible mechanisms of the genotoxicity of MC and its role as a hepatocarcinogen are outlined in this review. Furthermore, we show that the exposure of hepatocytes to MC can lead either to malignant proliferation or apoptosis.
Collapse
Affiliation(s)
- Z Svircev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
83
|
Li H, Xie P, Zhang D, Chen J. The first study on the effects of microcystin-RR on gene expression profiles of antioxidant enzymes and heat shock protein-70 in Synechocystis sp. PCC6803. Toxicon 2009; 53:595-601. [DOI: 10.1016/j.toxicon.2008.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 11/30/2022]
|
84
|
Sandrini JZ, Trindade GS, Nery LEM, Marins LF. Time-course Expression of DNA Repair-related Genes in Hepatocytes of Zebrafish (Danio rerio) After UV-B Exposure. Photochem Photobiol 2009; 85:220-6. [DOI: 10.1111/j.1751-1097.2008.00422.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
85
|
The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol 2008; 26:239-45. [PMID: 18848877 DOI: 10.1016/j.reprotox.2008.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/30/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate whether microcystin-LR, one of the most common cyanobacterial toxins has toxic effects on reproductive system in vivo or Leydig cells in vitro. Male rats were treated with MC-LR (i.p.) at a dose of 0, 5, 10 or15 microg/(kgday) for 28 days. Leydig cells were cultured with a culture medium including 0, 0.5, 5, 50 or 500 nM MC-LR. In vivo study, we observed exposure to 5 microg/(kgday) of MC-LR decreased the sperm motility, increasing the sperm abnormality rate, 15 microg/(kgday) of MC-LR led to the decrease of testis weight and sperm concentration, decreased the levels of serum testosterone, FSH and LH. The histological findings showed that the seminiferous tubules atrophied and obstructed. In vitro study evaluated MC-LR-induced toxicity and oxidative stress in Leydig cells. It was observed 50 and 500 nM MC-LR significantly decreased the cell viability, increasing the apoptotic DNA fragmentation, and increasing the ratio of necrotic cells. The Leydig cells exposed to MC-LR decreased testosterone production. 500 nM MC-LR increased ROS production, 50 or 500 nM MC-LR enhanced the lipid peroxidation. All Leydig cells exposed to MC-LR showed decreased SOD activity. The results of this study showed that the oxidative stress of MC-LR might lead to cytotoxicity, which may play an important role in cell apoptosis. Then could reduce the production of testosterone in Leydig cells and result in reproductive toxicity.
Collapse
|