51
|
Ling S, Luo M, Jiang S, Liu J, Ding C, Zhang Q, Guo H, Gong W, Tu C, Sun J. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway. Virology 2018. [PMID: 29525670 DOI: 10.1016/j.virol.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shifeng Ling
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Mingyang Luo
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Shengnan Jiang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Jiayu Liu
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Chunying Ding
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Qinghuan Zhang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Huancheng Guo
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China.
| | - Jinfu Sun
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China.
| |
Collapse
|
52
|
[Virus resistance genes in plants]. Uirusu 2018; 68:13-20. [PMID: 31105131 DOI: 10.2222/jsv.68.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plants defend themselves from virus infection by RNA silencing and resistance (R) gene-mediated mechanisms. Many dominant R genes encode nucleotide-binding site and leucine-rich repeat (NB-LRR)-containing proteins. NB-LRR proteins are also encoded by R genes against bacteria or fungi, suggesting a similar mechanism underlies defense systems to diverse pathogens. In contrast, several non-NB-LRR-type R genes have recently been cloned, each of which differs from others in sequences and functions. In this review, we introduce a diversity of R gene-mediated plant defense systems against viruses. Tm-1, JAX1, and Scmv1, resistance genes against tomato mosaic virus, potexviruses, and sugarcane mosaic virus, respectively, inhibit virus multiplication at a single cell level. The RTM1, RTM2, RTM3 genes of Arabidopsis thaliana inhibit systemic transport of potyviruses through the phloem. STV11 of rice against rice stripe virus and Ty-1 and Ty-3 genes of tomato against tomato yellow leaf curl virus allow low level virus multiplication and confer tolerance. The wide diversity of plant defense systems against viruses implies their recent emergence. We suggest that plants evolved new defense systems to counter infection by viruses that had overcome pre-existing defense systems (RNA silencing and NB-LRR-type R gene-mediated systems).
Collapse
|
53
|
Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG, Hensley LE, Frieman MB, Jahrling PB. Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs 2017; 77:1935-1966. [PMID: 29143192 PMCID: PMC5733787 DOI: 10.1007/s40265-017-0830-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No specific antivirals are currently available for two emerging infectious diseases, Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). A literature search was performed covering pathogenesis, clinical features and therapeutics, clinically developed drugs for repurposing and novel drug targets. This review presents current knowledge on the epidemiology, pathogenesis and clinical features of the SARS and MERS coronaviruses. The rationale for and outcomes with treatments used for SARS and MERS is discussed. The main focus of the review is on drug development and the potential that drugs approved for other indications provide for repurposing. The drugs we discuss belong to a wide range of different drug classes, such as cancer therapeutics, antipsychotics, and antimalarials. In addition to their activity against MERS and SARS coronaviruses, many of these approved drugs have broad-spectrum potential and have already been in clinical use for treating other viral infections. A wealth of knowledge is available for these drugs. However, the information in this review is not meant to guide clinical decisions, and any therapeutic described here should only be used in context of a clinical trial. Potential targets for novel antivirals and antibodies are discussed as well as lessons learned from treatment development for other RNA viruses. The article concludes with a discussion of the gaps in our knowledge and areas for future research on emerging coronaviruses.
Collapse
Affiliation(s)
- Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MN, Canada
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | | | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Peter B Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
54
|
Liu S, Li W, Wang Y, Gu C, Liu X, Charreyre C, Fan S, He Q. Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets. Virol J 2017; 14:227. [PMID: 29157279 PMCID: PMC5696968 DOI: 10.1186/s12985-017-0890-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022] Open
Abstract
Background Postweaning multisystemic wasting syndrome (PMWS) is an emerging disease in swine. Pigs with PMWS are often infected with a variety of other pathogens, including bacteria, viruses and mycoplasm, in addition to porcine circovirus type 2 (PCV2). PCV2 and Haemophilus parasuis serovar 4 (HPS4) coinfection remain epidemic in China. Methods Here we report construction of a three-week-old naturally farrowed, colostrum-deprived (NFCD) piglet’s infection model and demonstrate that PCV2-infected piglets with the HPS4 coinfection increased the virulence of PCV2 and these pathogens interact acquired PMWS. Results All the single infected piglets were transiently bacteremic or viremic. All the PCV2/HPS4 coinfected piglets developed PMWS, characterized by dyspnea, anorexia, prostration and lose weight severely. Co-infection with PCV2 and HPS4 resulted in an increased amount of virus in serum and tissues, presented a slower generation and lower levels of antibodies against PCV2. Co-infection with PCV2 and HPS4 resulted in further reductions in total and differential peripheral blood leukocyte counts. Meantime, PCV2/ HPS4 coinfection potentiated the severity of lung and lymphoid lesions by PCV2-associated, increased the virulence of PCV2-antigen and enhanced the incidence of PMWS in piglets. Conclusion Co-infection with PCV2 and HPS4 induce the exacerbation of system injuries and enhance the pathogenicity of PCV2 in piglets.
Collapse
Affiliation(s)
- Shuqing Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoli Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Shenxian Fan
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Department of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
55
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
56
|
Nagy PD. Exploitation of a surrogate host, Saccharomyces cerevisiae, to identify cellular targets and develop novel antiviral approaches. Curr Opin Virol 2017; 26:132-140. [PMID: 28843111 DOI: 10.1016/j.coviro.2017.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Abstract
Plant RNA viruses are widespread pathogens that need to interact intricately with their hosts to co-opt numerous cellular factors to facilitate their replication. Currently, there are only a limited number of plant resistance genes against a limited number of viruses. To develop novel antiviral approaches, the interaction network between the given virus and the host cell could be targeted. Yeast (Saccharomyces cerevisiae) has been developed as a surrogate host for tomato bushy stunt virus (TBSV), allowing systematic genome-wide screens to identify both susceptibility and restriction factors for TBSV. Importantly, pro-viral or antiviral functions of several of the characterized yeast proteins have been validated in plant hosts. This paper describes how yeast susceptibility and restriction factors of TBSV could be used as antiviral approaches. The gained knowledge on host factors could lead to novel, inducible, broad-range, and durable antiviral tools against plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
57
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
58
|
Huang YW, Hu CC, Tsai CH, Lin NS, Hsu YH. Chloroplast Hsp70 Isoform Is Required for Age-Dependent Tissue Preference of Bamboo mosaic virus in Mature Nicotiana benthamiana Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:631-645. [PMID: 28459172 DOI: 10.1094/mpmi-01-17-0012-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.
Collapse
Affiliation(s)
- Ying Wen Huang
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Chung Chi Hu
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Ching Hsiu Tsai
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| | - Na Sheng Lin
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
- 2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau Heiu Hsu
- 1 Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; and
| |
Collapse
|
59
|
Wang Y, Gong AY, Ma S, Chen X, Strauss-Soukup JK, Chen XM. Delivery of parasite Cdg7_Flc_0990 RNA transcript into intestinal epithelial cells during Cryptosporidium parvum infection suppresses host cell gene transcription through epigenetic mechanisms. Cell Microbiol 2017; 19. [PMID: 28655069 DOI: 10.1111/cmi.12760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Cryptosporidial infection causes dysregulated transcription of host genes key to intestinal epithelial homeostasis, but the underlying mechanisms remain obscure. Previous studies demonstrate that several Cryptosporidium parvum (C. parvum) RNA transcripts are selectively delivered into epithelial cells during host cell invasion and may modulate gene transcription in infected cells. We report here that C. parvum infection suppresses the transcription of LRP5, SLC7A8, and IL33 genes in infected intestinal epithelium. Trans-suppression of these genes in infected host cells is associated with promoter enrichment of suppressive epigenetic markers (i.e., H3K9me3). Cdg7_FLc_0990, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected epithelial cells, is recruited to the promoter regions of LRP5, SLC7A8, and IL33 genes. Cdg7_FLc_0990 appears to be recruited to their promoter regions together with G9a, a histone methyltransferase for H3K9 methylation. The PR domain zinc finger protein 1, a G9a-interacting protein, is required for the assembly of Cdg7_FLc_0990 to the G9a complex and gene-specific enrichment of H3K9 methylation. Our data demonstrate that cryptosporidial infection induces epigenetic histone methylations in infected cells through nuclear transfer of parasite Cdg7_Flc_0990 RNA transcript, resulting in transcriptional suppression of the LRP5, SLC7A8, and IL33 genes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Shibin Ma
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
60
|
Lillsunde KE, Tomašič T, Kikelj D, Tammela P. Marine alkaloid oroidin analogues with antiviral potential: A novel class of synthetic compounds targeting the cellular chaperone Hsp90. Chem Biol Drug Des 2017; 90:1147-1154. [DOI: 10.1111/cbdd.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/30/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Katja-Emilia Lillsunde
- Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; Helsinki Finland
| | - Tihomir Tomašič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; Helsinki Finland
| |
Collapse
|
61
|
Wang Y, Gong AY, Ma S, Chen X, Li Y, Su CJ, Norall D, Chen J, Strauss-Soukup JK, Chen XM. Delivery of Parasite RNA Transcripts Into Infected Epithelial Cells During Cryptosporidium Infection and Its Potential Impact on Host Gene Transcription. J Infect Dis 2017; 215:636-643. [PMID: 28007919 DOI: 10.1093/infdis/jiw607] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidium parvum is an important opportunistic parasite pathogen for immunocompromised individuals and a common cause of diarrhea in young children. Previous studies have identified a panel of RNA transcripts of very low protein-coding potential in C. parvum. Using an in vitro model of human intestinal cryptosporidiosis, we report here that some of these C. parvum RNA transcripts were selectively delivered into the nuclei of host epithelial cells during C. parvum infection. Nuclear delivery of several such parasitic RNAs, including Cdg7_FLc_0990, involved heat-shock protein 70-mediated nuclear importing mechanism. Overexpression of Cdg7_FLc_0990 in intestinal epithelial cells resulted in significant changes in expression levels of specific genes, with significant overlapping with alterations in gene expression profile detected in host cells after C. parvum infection. Our data demonstrate that C. parvum transcripts of low protein-coding potential are selectively delivered into epithelial cells during infection and may modulate gene transcription in infected host cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Shibin Ma
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Xiqiang Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Yan Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Chun-Jen Su
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Dana Norall
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Jing Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Juliane K Strauss-Soukup
- Department of Chemistry, Creighton University College of Arts and Sciences, Omaha, Nebraska, USA
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
62
|
Gorovits R, Czosnek H. The Involvement of Heat Shock Proteins in the Establishment of Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:355. [PMID: 28360921 PMCID: PMC5352662 DOI: 10.3389/fpls.2017.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 05/07/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a begomovirus, induces protein aggregation in infected tomatoes and in its whitefly vector Bemisia tabaci. The interactions between TYLCV and HSP70 and HSP90 in plants and vectors are necessity for virus infection to proceed. In infected host cells, HSP70 and HSP90 are redistributed from a soluble to an aggregated state. These aggregates contain, together with viral DNA/proteins and virions, HSPs and components of the protein quality control system such as ubiquitin, 26S proteasome subunits, and the autophagy protein ATG8. TYLCV CP can form complexes with HSPs in tomato and whitefly. Nonetheless, HSP70 and HSP90 play different roles in the viral cell cycle in the plant host. In the infected host cell, HSP70, but not HSP90, participates in the translocation of CP from the cytoplasm into the nucleus. Viral amounts decrease when HSP70 is inhibited, but increase when HSP90 is downregulated. In the whitefly vector, HSP70 impairs the circulative transmission of TYLCV; its inhibition increases transmission. Hence, the efficiency of virus acquisition by whiteflies depends on the functionality of both plant chaperones and their cross-talk with other protein mechanisms controlling virus-induced aggregation.
Collapse
|
63
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
64
|
Li Z, Chen F, Ye S, Guo X, Muhanmmad Memon A, Wu M, He Q. Comparative Proteome Analysis of Porcine Jejunum Tissues in Response to a Virulent Strain of Porcine Epidemic Diarrhea Virus and Its Attenuated Strain. Viruses 2016; 8:v8120323. [PMID: 27916855 PMCID: PMC5192384 DOI: 10.3390/v8120323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a predominant cause of acute enteric infection, leads to severe dehydrating diarrhea and mortality in piglets all over the world. A virulent PEDV YN13 strain, isolated in our laboratory, was attenuated to yield an attenuated PEDV strain YN144. To better understand the pathogenesis mechanism and the virus-host interaction during infection with both PEDV YN13 and YN144 strains, a comparative proteomic analysis was carried out to investigate the proteomic changes produced in the primary target organ, using isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). A total of 269 and 301 differently expressed proteins (DEPs) were identified in the jejunum tissues of the piglets inoculated with YN13 and YN144, respectively. Bioinformatics analysis revealed that these proteins were involved in stress responses, signal transduction, and the immune system. All of these involved interferon-stimulated genes (ISGs) which were up-regulated in jejunums by both of the PEDV-infected groups. Based on the comparative analysis, we proposed that different changes induced by YN13 and YN144 in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), eukaryotic initiation factor 4G1 (eIF4G1), and some members in the heat shock protein (HSP) family, may be responsible for differences in their pathogenicity.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Atta Muhanmmad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
65
|
de Wilde AH, Falzarano D, Zevenhoven-Dobbe JC, Beugeling C, Fett C, Martellaro C, Posthuma CC, Feldmann H, Perlman S, Snijder EJ. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res 2016; 228:7-13. [PMID: 27840112 PMCID: PMC7114565 DOI: 10.1016/j.virusres.2016.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023]
Abstract
In cell culture models, low-micromolar doses of alisporivir block SARS-CoV and MERS-CoV replication. Combination treatment with alisporivir and ribavirin increases the anti-MERS-CoV activity in cell culture. Combination treatment with alisporivir and ribavirin does not protect against SARS-CoV infection in a mouse model. Cyclophilin-binding drugs should be explored further in the context of host-directed anti-coronaviral strategies.
Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Darryl Falzarano
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrine Beugeling
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Fett
- Department of Microbiology, University of Iowa, Iowa City, USA
| | - Cynthia Martellaro
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Feldmann
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
66
|
Baturcam E, Snape N, Yeo TH, Schagen J, Thomas E, Logan J, Galbraith S, Collinson N, Phipps S, Fantino E, Sly PD, Spann KM. Human Metapneumovirus Impairs Apoptosis of Nasal Epithelial Cells in Asthma via HSP70. J Innate Immun 2016; 9:52-64. [PMID: 27723652 DOI: 10.1159/000449101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/13/2016] [Indexed: 12/13/2022] Open
Abstract
Asthmatics are highly susceptible to respiratory viral infections, possibly due to impaired innate immunity. However, the exact mechanisms of susceptibility are likely to differ amongst viruses. Therefore, we infected primary nasal epithelial cells (NECs) from adults with mild-to-moderate asthma, with respiratory syncytial virus (RSV) or human metapneumovirus (hMPV) in vitro and investigated the antiviral response. NECs from these asthmatics supported elevated hMPV but not RSV infection, compared to non-asthmatic controls. This correlated with reduced apoptosis and reduced activation of caspase-9 and caspase-3/7 in response to hMPV, but not RSV. The expression of heat shock protein 70 (HSP70), a known inhibitor of caspase activation and subsequent apoptosis, was amplified in response to hMPV infection. Chemical inhibition of HSP70 function restored caspase activation and reduced hMPV infection in NECs from asthmatic subjects. There was no impairment in the production of IFN by NECs from asthmatics in response to either hMPV or RSV, demonstrating that increased infection of asthmatic airway cells by hMPV is IFN-independent. This study demonstrates, for the first time, a mechanism for elevated hMPV infection in airway epithelial cells from adult asthmatics and identifies HSP70 as a potential target for antiviral and asthma therapies.
Collapse
Affiliation(s)
- Engin Baturcam
- School of Medicine, The University of Queensland, Brisbane, Qld., Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shatzer A, Ali MA, Chavez M, Dowdell K, Lee MJ, Tomita Y, El-Hariry I, Trepel JB, Proia DA, Cohen JI. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood. Leuk Lymphoma 2016; 58:923-931. [PMID: 27686857 DOI: 10.1080/10428194.2016.1213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.
Collapse
Affiliation(s)
- Amber Shatzer
- a Laboratory of Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Mir A Ali
- a Laboratory of Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Mayra Chavez
- a Laboratory of Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Kennichi Dowdell
- a Laboratory of Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Min-Jung Lee
- b Developmental Therapeutics Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Yusuke Tomita
- b Developmental Therapeutics Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | - Jane B Trepel
- b Developmental Therapeutics Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | - Jeffrey I Cohen
- a Laboratory of Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
68
|
Nagy PD. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annu Rev Virol 2016; 3:491-515. [PMID: 27578441 DOI: 10.1146/annurev-virology-110615-042312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant positive-strand (+)RNA viruses are intracellular infectious agents that reorganize subcellular membranes and rewire the cellular metabolism of host cells to achieve viral replication in elaborate replication compartments. This review describes the viral replication process based on tombusviruses, highlighting common strategies with other plant and animal viruses. Overall, the works on Tomato bushy stunt virus (TBSV) have revealed intriguing and complex functions of co-opted cellular translation factors, heat shock proteins, DEAD-box helicases, lipid transfer proteins, and membrane-deforming proteins in virus replication. The emerging picture is that many of the co-opted host factors are from highly expressed and conserved protein families. By hijacking host proteins, phospholipids, sterols, and the actin network, TBSV exerts supremacy over the host cell to support viral replication in large replication compartments. Altogether, these advances in our understanding of tombusvirus-host interactions are broadly applicable to many other viruses, which also usurp conserved host factors for various viral processes.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
69
|
Schulze A, Beliu G, Helmerich DA, Schubert J, Pearl LH, Prodromou C, Neuweiler H. Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism. Nat Chem Biol 2016; 12:628-35. [PMID: 27322067 PMCID: PMC4955915 DOI: 10.1038/nchembio.2111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
Abstract
The Hsp90 chaperone is a central node of protein homeostasis, activating many diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies have defined distinct conformational states of the mechanistic core, implying structural changes that have not yet been observed in solution. Here we engineered one-nanometer fluorescence probes based on photoinduced electron transfer into the yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement were mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilized the lid of apo Hsp90, suggesting an early role in the catalytic cycle.
Collapse
Affiliation(s)
- Andrea Schulze
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
70
|
Kakumani PK, Medigeshi GR, Kaur I, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of human GRP75 in miRNA mediated regulation of dengue virus replication. Gene 2016; 586:7-11. [DOI: 10.1016/j.gene.2016.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
71
|
Nawaz-ul-Rehman MS, Prasanth KR, Xu K, Sasvari Z, Kovalev N, de Castro Martín IF, Barajas D, Risco C, Nagy PD. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly. PLoS Pathog 2016; 12:e1005440. [PMID: 26863541 PMCID: PMC4749184 DOI: 10.1371/journal.ppat.1005440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/15/2016] [Indexed: 01/28/2023] Open
Abstract
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.
Collapse
Affiliation(s)
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
72
|
Wang H, Feng Z, Wu Y, Wei Y, Gan Y, Hua L, Li B, Wang X, Liu M, Xiong Q, Shao G. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. Res Vet Sci 2016; 105:56-61. [PMID: 27033909 DOI: 10.1016/j.rvsc.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS). Mycoplasma hyopneumoniae (Mhp) is a very well-known co-factor that potentially enhances PCV2 replication and thus the development of PMWS. However, co-infection with Mhp and PCV2 in vivo under different conditions can produce divergent clinical signs and lesions. In this study, PCV2 replication could be enhanced by subsequent co-inoculation with Mhp (PCV2+Mhp) in a time and dose dependent method, but not by prior (Mhp+PCV2) or simultaneous (Mhp/PCV2) co-inoculation. Furthermore, different magnitudes of PCV2-infected cells, varying from 150% ± 14% to 351% ± 28%, were detected when co-infected with different Mhp strains. The relative percentage of PCV2-infected cells greatly decreased from 351% ± 28 to 141% ± 18 when the Mhp strain was treated with UV light for 12 h. These results offer the evidences to better understand the complex clinical syndromes in Mhp/PCV2 co-infection cases, and the occurrence of PMWS.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Lizhong Hua
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
73
|
Alam SB, Rochon D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J Virol 2015; 90:3302-17. [PMID: 26719261 PMCID: PMC4794660 DOI: 10.1128/jvi.02833-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| |
Collapse
|
74
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
75
|
Li J, Xiang CY, Yang J, Chen JP, Zhang HM. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants. Sci Rep 2015; 5:14016. [PMID: 26359114 PMCID: PMC4642574 DOI: 10.1038/srep14016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/13/2015] [Indexed: 11/09/2022] Open
Abstract
Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cong-Ying Xiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
76
|
Tripathi S, Batra J, Lal SK. Interplay between influenza A virus and host factors: targets for antiviral intervention. Arch Virol 2015; 160:1877-91. [PMID: 26016443 DOI: 10.1007/s00705-015-2452-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Influenza A viruses (IAVs) pose a major public health threat worldwide. Recent experience with the 2013 H7N9 outbreak in China and the 2009 "swine flu" pandemic have shown that antiviral vaccines and drugs fall short of controlling the spread of disease in a timely and effective manner. Major problems include rapid emergence of drug-resistant influenza virus strains and the slow process of vaccine production. With the threat of a highly pathogenic H5N1 bird-flu pandemic looming large, it is crucial to develop novel ways of combating influenza A viruses. Targeting the host factors critical for influenza A virus replication has shown promise as a strategy to develop novel antiviral molecules with broad-spectrum protection. In this review, we summarize the role of currently identified host factors that play a critical role in the influenza A virus life cycle and discuss the most promising candidates for anti-influenza therapeutics.
Collapse
Affiliation(s)
- Shashank Tripathi
- Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | |
Collapse
|
77
|
Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 2015; 89:6352-63. [PMID: 25855731 PMCID: PMC4474317 DOI: 10.1128/jvi.00315-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5' and 3' extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.
Collapse
|
78
|
Besong-Ndika J, Ivanov KI, Hafrèn A, Michon T, Mäkinen K. Cotranslational coat protein-mediated inhibition of potyviral RNA translation. J Virol 2015; 89:4237-48. [PMID: 25631087 PMCID: PMC4442359 DOI: 10.1128/jvi.02915-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.
Collapse
Affiliation(s)
- Jane Besong-Ndika
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Konstantin I Ivanov
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anders Hafrèn
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
79
|
Zhang C, Kang K, Ning P, Peng Y, Lin Z, Cui H, Cao Z, Wang J, Zhang Y. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication. Virology 2015; 482:9-18. [PMID: 25827528 DOI: 10.1016/j.virol.2015.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling via to its ability to interact with various cellular proteins. Here, HSP70/NS5A complex formation is confirmed by coimmunoprecipitation and GST-pulldown studies. Additionally, the N-terminal amino acids (29-240) of NS5A were identified as the interaction region through in vivo deletion analyses, and confocal microscopy showed that NS5A and HSP70 colocalized in the cytoplasm. Overexpression of HSP70 via the eukaryotic expression plasmid pDsRED N1 or lentivirus significantly promoted viral RNA synthesis. Whereas the knockdown of HSP70 by lentivirus-mediated shRNA or inhibition by quercetin markedly decreased the viral load. These data suggest that HSP70 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of HSP70 protein functions may be beneficial for developing new strategies to treat CSFV infection.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yangxin Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Hongjie Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
80
|
Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro. J Virol 2015; 89:5714-23. [PMID: 25762742 DOI: 10.1128/jvi.03711-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/08/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Similar to other positive-strand RNA viruses, tombusviruses are replicated by the membrane-bound viral replicase complex (VRC). The VRC consists of the p92 virus-coded RNA-dependent RNA polymerase (RdRp), the viral p33 RNA chaperone, and several co-opted host proteins. In order to become a functional RdRp after its translation, the p92 replication protein should be incorporated into the VRC, followed by its activation. We have previously shown in a cell-free yeast extract-based assay that the activation of the Tomato bushy stunt virus (TBSV) RdRp requires a soluble host factor(s). In this article, we identify the cellular heat shock protein 70 (Hsp70) as the co-opted host factor required for the activation of an N-terminally truncated recombinant TBSV RdRp. In addition, small-molecule-based blocking of Hsp70 function inhibits RNA synthesis by the tombusvirus RdRp in vitro. Furthermore, we show that neutral phospholipids, namely, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), enhance RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) shows a strong and dominant inhibitory effect on in vitro RdRp activation. We also demonstrate that PE and PC stimulate RdRp-viral plus-strand RNA [(+)RNA] interaction, while PG inhibits the binding of the viral RNA to the RdRp. Based on the stimulatory versus inhibitory roles of various phospholipids in tombusvirus RdRp activation, we propose that the lipid composition of targeted subcellular membranes might be utilized by tombusviruses to regulate new VRC assembly during the course of infection. IMPORTANCE The virus-coded RNA-dependent RNA polymerase (RdRp), which is responsible for synthesizing the viral RNA progeny in infected cells of several positive-strand RNA viruses, is initially inactive. This strategy is likely to avoid viral RNA synthesis in the cytosol that would rapidly lead to induction of RNA-triggered cellular antiviral responses. During the assembly of the membrane-bound replicase complex, the viral RdRp becomes activated through an incompletely understood process that makes the RdRp capable of RNA synthesis. By using TBSV RdRp, we show that the co-opted cellular Hsp70 chaperone and neutral phospholipids facilitate RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) has a dominant inhibitory effect on in vitro RdRp activation and RdRp-viral RNA interaction, suggesting that the membranous microdomain surrounding the RdRp greatly affects its ability for RNA synthesis. Thus, the activation of the viral RdRp likely depends on multiple host components in infected cells.
Collapse
|
81
|
Li M, He X, Liu H, Fu Z, He X, Lu X. Proteomic analysis of silkworm midgut cellular proteins interacting with the 5' end of infectious flacherie virus genomic RNA. Acta Biochim Biophys Sin (Shanghai) 2015; 47:80-90. [PMID: 25534780 DOI: 10.1093/abbs/gmu119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The flacherie disease in the silkworm is caused by the infectious flacherie virus (IFV). IFV relies on its 5' region of genomic RNA to recruit host-related factors to implement viral translation and replication. To identify host proteins bound to the 5'-region of IFV RNA and identify proteins important for its function, mass spectrometry was used to identify proteins from silkworm midgut extracts that were obtained using RNA aptamer-labeled 5' region of IFV RNA. We found 325 protein groups (unique peptide≥2) bound to the 5' region of IFV RNA including translation-related factors (16 ribosomal subunits, 3 eukaryotic initiation factor subunits, 1 elongation factor subunit and 6 potential internal ribosome entry site trans-acting factors), cytoskeleton-related proteins, membrane-related proteins, metabolism enzymes, and other proteins. These results can be used to study the translation and replication related factors of IFV interacting with host silkworm and to control flacherie disease in silkworm.
Collapse
Affiliation(s)
- Mingqian Li
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
82
|
Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:773. [PMID: 26442082 PMCID: PMC4585176 DOI: 10.3389/fpls.2015.00773] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.
Collapse
Affiliation(s)
- Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hong-Kun Zhao
- Crop Germplasm Institute, Jilin Academy of Agricultural SciencesGongzhuling, China
| | - Qian-Li Dong
- Department of Biology, Beijing Normal UniversityBeijing, China
| | - Yuan-Yu Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Yu-Min Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hai-Yun Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Guo-Jie Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Qi-Yun Li
- Institute of Plant Protection, Jilin Academy of Agricultural SciencesGongzhuling, China
- *Correspondence: Qi-Yun Li, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, No. 303 Kemaoxi Street, Gongzhuling, JiLin 136100, China
| | - Ying-Shan Dong
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
- Ying-Shan Dong, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363 Shengtai Street, Jing Yue District, ChangChun, JiLin 130033, China
| |
Collapse
|
83
|
Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr Opin Virol 2014; 9:119-26. [DOI: 10.1016/j.coviro.2014.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
|
84
|
Jiang S, Lu Y, Li K, Lin L, Zheng H, Yan F, Chen J. Heat shock protein 70 is necessary for Rice stripe virus infection in plants. MOLECULAR PLANT PATHOLOGY 2014; 15:907-17. [PMID: 24823923 PMCID: PMC6638618 DOI: 10.1111/mpp.12153] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Heat shock proteins 70 (HSP70s) are a highly conserved family of genes in eukaryotes, and are involved in a remarkable variety of cellular processes. In many plant positive-stranded RNA viruses, HSP70 participates in the construction of a viral replication complex and plays various roles during viral infection. Here, we found increased expression of HSP70 following infection by Rice stripe virus (RSV), a negative-stranded RNA virus, in both rice (the natural host) and Nicotiana benthamiana (an experimental host). Heat treatment of N. benthamiana (Nb) plants enhanced viral infection, whereas RSV infection was retarded and viral RNAs accumulated at a low level when HSP70 was silenced. In both bimolecular fluorescence complement and in vitro pull-down assays, the N-terminus of RSV RNA-dependent RNA polymerase (RdRp) interacted and co-localized with the HSP70s of both plants (OsHSP70 and NbHSP70). The localization of the N-terminus of RdRp when expressed alone was not obviously different from when it was co-expressed with OsHSP or NbHSP, and vice versa. RSV infection also had no effect on the localization of host HSP70. These results demonstrate that host HSP70 is necessary for RSV infection and probably plays a role in viral replication by interacting with viral RdRp, which provides the first evidence of an interacting host protein related to RSV replication, which has been little studied to date.
Collapse
Affiliation(s)
- Shanshan Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory Breeding Base for Sustainable Control of Plant Pest and Disease, Ministry of China Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Mathioudakis MM, Rodríguez-Moreno L, Sempere RN, Aranda MA, Livieratos I. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1356-69. [PMID: 25162316 DOI: 10.1094/mpmi-07-14-0195-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pepino mosaic virus (PepMV) (family Alphaflexiviridae, genus Potexvirus) is a mechanically transmitted tomato pathogen that, over the last decade, has evolved from emerging to endemic worldwide. Here, two heat-shock cognate (Hsc70) isoforms were identified as part of the coat protein (CP)/Hsc70 complex in vivo, following full-length PepMV and CP agroinoculation. PepMV accumulation was severely reduced in Hsp70 virus-induced gene silenced and in quercetin-treated Nicotiana benthamiana plants. Similarly, in vitro-transcribed as well as virion RNA input levels were reduced in quercetin-treated protoplasts, suggesting an essential role for Hsp70 in PepMV replication. As for Potato virus X, the PepMV CP and triple gene-block protein 1 (TGBp1) self-associate and interact with each other in vitro but, unlike in the prototype, both PepMV proteins represent suppressors of transgene-induced RNA silencing with different modes of action; CP is a more efficient suppressor of RNA silencing, sequesters the silencing signal by preventing its spread to neighboring cells and its systemic movement. Here, we provide evidence for additional roles of the PepMV CP and host-encoded Hsp70 in viral infection, the first as a truly multifunctional protein able to specifically bind to a host chaperone and to counterattack an RNA-based defense mechanism, and the latter as an essential factor for PepMV infection.
Collapse
|
86
|
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1107-18. [PMID: 24940990 DOI: 10.1094/mpmi-02-14-0035-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.
Collapse
|
87
|
Sasvari Z, Alatriste Gonzalez P, Nagy PD. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. FRONTIERS IN PLANT SCIENCE 2014; 5:383. [PMID: 25157258 PMCID: PMC4127529 DOI: 10.3389/fpls.2014.00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/18/2014] [Indexed: 05/23/2023]
Abstract
To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF) are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae), which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5'-3' exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as "guardians" of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.
Collapse
Affiliation(s)
| | | | - Peter D. Nagy
- *Correspondence: Peter D. Nagy, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA e-mail:
| |
Collapse
|
88
|
The hop-like stress-induced protein 1 cochaperone is a novel cell-intrinsic restriction factor for mitochondrial tombusvirus replication. J Virol 2014; 88:9361-78. [PMID: 24920799 DOI: 10.1128/jvi.00561-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Recent genome-wide screens reveal that the host cells express an arsenal of proteins that inhibit replication of plus-stranded RNA viruses by functioning as cell-intrinsic restriction factors of viral infections. One group of cell-intrinsic restriction factors against tombusviruses contains tetratricopeptide repeat (TPR) domains that directly interact with the viral replication proteins. In this paper, we find that the TPR domain-containing Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV). In contrast, Sti1/Hop does not inhibit the peroxisome membrane-based replication of the closely related Tomato bushy stunt virus (TBSV) or Cucumber necrosis virus (CNV) in a yeast model or in plants. Deletion of STI1 in yeast leads to up to a 4-fold increase in CIRV replication, and knockdown of the orthologous Hop cochaperone in plants results in a 3-fold increase in CIRV accumulation. Overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins has confirmed that Sti1p, similar to the TPR-containing Cyp40-like Cpr7p cyclophilin and the Ttc4 oncogene-like Cns1 cochaperone, is a strong inhibitor of CIRV replication. Sti1p interacts and colocalizes with the CIRV replication proteins in yeast. Our findings indicate that the TPR-containing Hop/Sti1 cochaperone could act as a cell-intrinsic virus restriction factor of the mitochondrial CIRV, but not against the peroxisomal tombusviruses in yeast and plants. IMPORTANCE The host cells express various cell-intrinsic restriction factors that inhibit the replication of plus-stranded RNA viruses. In this paper, the authors find that the Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV) in yeast. Deletion of STI1 in yeast or knockdown of the orthologous Hop cochaperone in plants leads to increased CIRV replication. In addition, overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins have confirmed that Sti1p is a strong inhibitor of CIRV replication. The authors' findings reveal that the Hop/Sti1 cochaperone could act as a cell-intrinsic restriction factor against the mitochondrial CIRV, but not against the related peroxisomal tombusviruses.
Collapse
|
89
|
Kovalev N, Nagy PD. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication. PLoS Pathog 2014; 10:e1004051. [PMID: 24743583 PMCID: PMC3990711 DOI: 10.1371/journal.ppat.1004051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC), template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3' terminal promoter region in the viral minus-strand (-)RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5' proximal RIII(-) replication enhancer (REN) element in the TBSV (-)RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (-)RNA could unwind the dsRNA structure within the RIII(-) REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(-) REN in stimulation of plus-strand (+)RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(-) REN that promotes bringing the 5' and 3' terminal (-)RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+)-strand synthesis, thus resulting in asymmetrical viral replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
90
|
Mäkinen K, Hafrén A. Intracellular coordination of potyviral RNA functions in infection. FRONTIERS IN PLANT SCIENCE 2014; 5:110. [PMID: 24723931 PMCID: PMC3972461 DOI: 10.3389/fpls.2014.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/07/2014] [Indexed: 05/26/2023]
Abstract
Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.
Collapse
Affiliation(s)
- Kristiina Mäkinen
- Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Anders Hafrén
- Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| |
Collapse
|
91
|
Nagy PD, Pogany J, Lin JY. How yeast can be used as a genetic platform to explore virus-host interactions: from 'omics' to functional studies. Trends Microbiol 2014; 22:309-16. [PMID: 24647076 DOI: 10.1016/j.tim.2014.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/07/2023]
Abstract
The yeast Saccharomyces cerevisiae is an advanced model organism that has emerged as an effective host to gain insights into the intricate interactions of viruses with host cells. RNA viruses have limited coding potential and need to coopt numerous host cellular factors to facilitate their replication. To identify the host factors subverted by viruses, high-throughput genomics and global proteomics approaches have been performed with plant viruses such as brome mosaic virus (BMV) and tomato bushy stunt virus (TBSV). Accordingly, several hundred susceptibility and restriction factors for BMV and TBSV have been identified using yeast as a model host. Amazingly, host factors affecting viral genetic recombination and evolution have also been identified in genome-wide screens in yeast. The roles of many yeast host factors involved in various steps of the viral replication process have been validated by exploiting the orthologous genes in plant hosts. This Opinion summarizes the advantages of using simple viruses and yeast model host to advance our general understanding of virus-host interactions. The knowledge gained on host factors could lead to novel specific or broad-range resistance and antiviral tools against viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Jing-Yi Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
92
|
Gao J, Xiao S, Liu X, Wang L, Ji Q, Mo D, Chen Y. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiol 2014; 14:64. [PMID: 24625230 PMCID: PMC3984673 DOI: 10.1186/1471-2180-14-64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Successful viral infection requires the involvement of host cellular factors in their life cycle. Heat shock protein 70 (HSP70) can be recruited by numerous viruses to promote the folding, maturation, or assembly of viral proteins. We have previously shown that HSP70 is significantly elevated in porcine reproductive and respiratory syndrome virus (PRRSV)-infected lungs, suggesting HSP70 may play a potential role during PRRSV infection. In this study, we tried to investigate the role of HSP70 during PRRSV infection. Results In this study, we observed that PRRSV infection induced the expression of HSP70. The down-regulation of HSP70 using quercetin, a HSPs synthesis inhibitor, or small interfering RNAs (siRNA) reduced the viral protein level and viral production. Notably, these inhibitory effects on PRRSV infection could be attenuated by heat shock treatment. In addition, HSP70 was found to colocalize with the viral double-stranded RNA (dsRNA) and knockdown of HSP70 decreased the dsRNA levels, suggesting HSP70 is involved in the formation of viral replication and transcription complex (RTC) and thus affects the viral replication. Conclusions Our study revealed that HSP70 is an essential host factor required for the replication of PRRSV. The inhibition of HSP70 significantly reduced PRRSV replication, which may be applied as an effective antiviral strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, P, R, China.
| |
Collapse
|
93
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
94
|
Luo R, Fang L, Jin H, Wang D, An K, Xu N, Chen H, Xiao S. Label-Free Quantitative Phosphoproteomic Analysis Reveals Differentially Regulated Proteins and Pathway in PRRSV-Infected Pulmonary Alveolar Macrophages. J Proteome Res 2014; 13:1270-80. [DOI: 10.1021/pr400852d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rui Luo
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Liurong Fang
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Hui Jin
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Dang Wang
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Kang An
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Ningzhi Xu
- Laboratory
of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong
Dan San Tiao, Beijing 100005, China
| | - Huanchun Chen
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| | - Shaobo Xiao
- Division
of Animal Infectious Diseases, State Key Laboratory of Agricultural
Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shi-zi-shan Street, Wuhan, Hubei 430070, China
| |
Collapse
|
95
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 PMCID: PMC3949406 DOI: 10.3389/fpls.2014.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA e-mail:
| |
Collapse
|
96
|
Kovalev N, Nagy PD. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 2013; 87:13330-42. [PMID: 24089553 PMCID: PMC3838255 DOI: 10.1128/jvi.02101-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
97
|
Allison AB, Mead DG, Palacios GF, Tesh RB, Holmes EC. Gene duplication and phylogeography of North American members of the Hart Park serogroup of avian rhabdoviruses. Virology 2013; 448:284-92. [PMID: 24314659 PMCID: PMC3873333 DOI: 10.1016/j.virol.2013.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/11/2013] [Accepted: 10/17/2013] [Indexed: 12/28/2022]
Abstract
Flanders virus (FLAV) and Hart Park virus (HPV) are rhabdoviruses that circulate in mosquito–bird cycles in the eastern and western United States, respectively, and constitute the only two North American representatives of the Hart Park serogroup. Previously, it was suggested that FLAV is unique among the rhabdoviruses in that it contains two pseudogenes located between the P and M genes, while the cognate sequence for HPV has been lacking. Herein, we demonstrate that FLAV and HPV do not contain pseudogenes in this region, but encode three small functional proteins designated as U1–U3 that apparently arose by gene duplication. To further investigate the U1–U3 region, we conducted the first large-scale evolutionary analysis of a member of the Hart Park serogroup by analyzing over 100 spatially and temporally distinct FLAV isolates. Our phylogeographic analysis demonstrates that although FLAV appears to be slowly evolving, phylogenetically divergent lineages co-circulate sympatrically. Flanders virus (FLAV) does not contain pseudogenes as previously reported. The FLAV U1–U3 proteins arose by gene duplication. The SH protein of FLAV is tentatively expressed by coupled translation. Distinct lineages of FLAV circulate sympatrically in the United States. Histone H4 and cyclophilin A are apparently incorporated into FLAV particles.
Collapse
Affiliation(s)
- Andrew B Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
98
|
Du Y, Zhao J, Chen T, Liu Q, Zhang H, Wang Y, Hong Y, Xiao F, Zhang L, Shen Q, Liu Y. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity. PLoS Pathog 2013; 9:e1003659. [PMID: 24098120 PMCID: PMC3789785 DOI: 10.1371/journal.ppat.1003659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.
Collapse
Affiliation(s)
- Yumei Du
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianyuan Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haili Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Science, University of Idaho, Moscow, Idaho, United States of America
| | - Ling Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
99
|
Liu J, Bai J, Zhang L, Jiang Z, Wang X, Li Y, Jiang P. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 2013; 447:52-62. [PMID: 24210099 DOI: 10.1016/j.virol.2013.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/26/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022]
Abstract
The Hsp70 chaperone plays a central role in multiple processes within cells. Porcine circovirus type 2 (PCV2) is the essential causal agent of post-weaning multisystemic wasting syndrome (PMWS), which has spread worldwide. But the mechanism of PCV2 replication remains poorly understood. In this study, we firstly found the positive effect of heat stress on the replication of PCV2 in the continuous porcine monocytic cell line 3D4/31. Downregulation of Hsp70 by the specific chaperone inhibitor Quercetin or RNA interference and upregulation of Hsp70 by expression from a recombinant adenovirus showed that Hsp70 enhanced PCV2 genome replication and virion production. A specific interaction between Hsp70 and PCV2 Cap was confirmed by colocalization by confocal microscopy and co-immunoprecipitation. Furthermore, the NF-κB pathway was activated and caspase-3 activity was reduced when Hsp70 was overexpressed in PCV2-infected 3D4/31 cells. These data suggested that Hsp70 positively regulated PCV2 replication, which being helpful for understanding the molecular mechanism of PCV2 infection.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | |
Collapse
|
100
|
Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast. J Virol 2013; 87:12600-10. [PMID: 24027337 DOI: 10.1128/jvi.00196-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.
Collapse
|