51
|
Theuns S, Vyt P, Desmarets LMB, Roukaerts IDM, Heylen E, Zeller M, Matthijnssens J, Nauwynck HJ. Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Res 2015; 213:172-183. [PMID: 26677793 DOI: 10.1016/j.virusres.2015.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 10/22/2022]
Abstract
The importance of group A and C rotaviruses (RVA and RVC) in the pathogenesis of diarrhea in Belgian suckling pigs is poorly investigated, and it is not known which strains are circulating in the Belgian suckling pig population. Obtaining better insights in the occurrence of both viral species in the swine population is essential in order to develop accurate diagnostic, therapeutic and prophylactic strategies to protect suckling pigs against diarrhea in a durable manner. In the present study, viral loads of RVA and RVC were quantified in diarrhea samples of suckling piglets less than 2 weeks old, collected on 36 different Belgian farms. On 22 of 36 farms tested (61%), high viral loads of RVA (6.96-11.95 log10 copies/g feces) and/or RVC (5.40-11.63 log10 copies/g feces) were detected. Seventeen RVA isolates were genotyped for their outer capsid proteins VP7 and VP4. Four different G-genotypes (G3, G4, G5 and G9) for VP7 were found together with 4 different P-genotypes (P[6], P[7], P[13] and P[23]) for VP4, in 8 different G/P combinations. All characterized RVC strains belonged to genotype G6 (VP7), except for one strain possessing the G1 genotype. VP4 genes of Belgian RVC strains were genetically heterogeneous, but were classified in the genotype P5. Most rotavirus positive samples also contained Escherichia coli, whereas Clostridium perfringens infections were mainly detected in rotavirus negative samples. Results of the present study offer better insights in the occurrence of RVA and RVC infections in Belgian diarrheic suckling piglets. As a conclusion, routine diagnostic testing for both viral species in cases of diarrhea in suckling pigs is highly recommended. Furthermore, the present findings also offer valuable information for the development of new prophylactic measures against rotavirus. Finally, the relatedness between RVC strains from pigs and other host species is described, and their possible implications in interspecies transmission events are discussed.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium.
| | | | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium.
| |
Collapse
|
52
|
Characterization and evolution of porcine deltacoronavirus in the United States. Prev Vet Med 2015; 123:168-174. [PMID: 26611652 PMCID: PMC7114263 DOI: 10.1016/j.prevetmed.2015.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 11/22/2022]
Abstract
Porcine deltacoronavirus (PDCoV) was identified in multiple states across the United States (US) in 2014. In this study, we investigate the presence of PDCoV in diagnostic samples, which were further categorized by case identification (ID), and the association between occurrence, age, specimen and location between March and September 2014. Approximately, 7% of the case IDs submitted from the US were positive for PDCoV. Specimens were categorized into eight groups, and the univariate analysis indicated that oral fluids had 1.89 times higher odds of detecting PDCoV compared to feces. While the 43-56 day age group had the highest percentage of PDCoV positives (8.4%), the univariate analysis indicated no significant differences between age groups. However, multivariable analysis for age adjusted by specimen indicated the >147 day age group had 59% lower odds than suckling pigs of being positive for PDCoV. The percentage of PDCoV in diagnostic samples decreased to <1% in September 2014. In addition, 19 complete PDCoV genomes were sequenced, and Bayesian analysis was conducted to estimate the emergence of the US clade. The evolutionary rate of the PDCoV genome is estimated to be 3.8×10(-4) substitutions/site/year (2.3×10(-4)-5.4×10(-4), 95% HPD). Our results indicate that oral fluids continue to be a valuable specimen to monitor swineherd health, and PDCoV has been circulating in the US prior to 2014.
Collapse
|
53
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-1350. [PMID: 26428261 DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Group A rotavirus (Rotavirus A, RVA) is the main cause of acute dehydrating diarrhea in humans and numerous animal species. RVA shows vast diversity and a variety of human strains share genetic and antigenic features with animal origin RVA strains. This finding suggests that interspecies transmission is an important mechanism of rotavirus evolution and contributes to the diversity of human RVA strains. RVA is responsible for half a million deaths and several million hospitalizations worldwide. Globally, two rotavirus vaccines are available for routine use in infants. These vaccines show a great efficacy profile and induce protective immunity against various rotavirus strains. However, little is known about the long-term evolution and epidemiology of RVA strains under selective pressure related to vaccine use. Continuous strain surveillance in the post-vaccine licensure era is needed to help better understand mechanisms that may affect vaccine effectiveness.
Collapse
Affiliation(s)
- Renáta Dóró
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Szilvia L Farkas
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- b 2 Department of Veterinary Public Health, University of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | - Krisztián Bányai
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
54
|
Lobo PDS, Guerra SDFDS, Siqueira JAM, Soares LDS, Gabbay YB, Linhares AC, Mascarenhas JDP. Phylogenetic analysis of human group C rotavirus in hospitalized children with gastroenteritis in Belém, Brazil. J Med Virol 2015; 88:728-33. [PMID: 26369400 DOI: 10.1002/jmv.24379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 11/10/2022]
Abstract
Group C rotavirus (RVC) is potentially an important pathogen associated with acute gastroenteritis (AG), especially in outbreaks. This study aims to detect and molecularly characterize RVC in hospitalized children with AG in Belém, Brazil. From May 2008 to April 2011, 279 stools were subjected to reverse-transcription polymerase chain reaction targeting VP7, VP6, VP4, and NSP4 genes. RVC positivity rate was 2.1% (6/279) and phylogenetic analysis of positive samples yields genotype G4-P[2]-I2-E2. No evidence of zoonotic transmission and VP7 gene demonstrated close relationship with Asian strains. RVC surveillance is worth to expand information on evolutionary and epidemiological features of this virus.
Collapse
|
55
|
Chandler-Bostock R, Hancox LR, Payne H, Iturriza-Gomara M, Daly JM, Mellits KH. Diversity of group A rotavirus on a UK pig farm. Vet Microbiol 2015; 180:205-11. [PMID: 26432051 PMCID: PMC4627360 DOI: 10.1016/j.vetmic.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 11/15/2022]
Abstract
Group A rotaviruses (GARV) are a significant cause of enteritis in young pigs. The aim of this study was to extend our understanding of the molecular epidemiology of porcine GARV in the UK by investigating the genetic diversity of GARV on a conventional farrow-to-finish farm. Faecal samples were obtained from six batches of pigs in 2009 and 8 batches in 2010, when the pigs were 2, 3 (time point omitted in 2009), 4, 5, 6 and 8 weeks of age. Presence of rotavirus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in 89% and 80% of samples from 2009 and 2010, respectively. A combination of multiplex PCRs and sequencing identified four VP7 genotypes (G2, G3, G4 and G5) and three VP4 genotypes (P[6], P[7] and P[32]) present in almost every combination over the 2 years. The predominant genotype combination was G5P[32] in 2009 and G4P[32] in 2010. Conservation among the P[32] sequences between 2009 and 2010 suggests that reassortment may have led to the different genotype combinations. There were significant changes in the predominant VP7 genotype prior to weaning at 4 weeks, and post weaning when pigs were moved to a different building. Phylogenetic analysis indicated that introduction of new viruses onto the farm was limited. Taken together, these findings suggest that genetically diverse GARV strains persist within the farm environment.
Collapse
Affiliation(s)
- Rebecca Chandler-Bostock
- School of Biosciences, Division of Food Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Laura R Hancox
- School of Biosciences, Division of Food Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Helen Payne
- School of Biosciences, Division of Food Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Kenneth H Mellits
- School of Biosciences, Division of Food Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
56
|
Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Marton S, Mihalov-Kovács E, Dóró R, Csata T, Fehér E, Oldal M, Jakab F, Matthijnssens J, Martella V, Bányai K. Canine rotavirus C strain detected in Hungary shows marked genotype diversity. J Gen Virol 2015; 96:3059-3071. [PMID: 26297005 DOI: 10.1099/jgv.0.000237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Species C rotaviruses (RVC) have been identified in humans and animals, including pigs, cows and ferrets. In dogs, RVC strains have been reported anecdotally on the basis of visualization of rotavirus-like virions by electron microscopy combined with specific electrophoretic migration patterns of the genomic RNA segments. However, no further molecular characterization of these viruses was performed. Here, we report the detection of a canine RVC in the stool of a dog with enteritis. Analysis of the complete viral genome uncovered distinctive genetic features of the identified RVC strain. The genes encoding VP7, VP4 and VP6 were distantly related to those of other RVC strains and were putatively classified as G10, P8 and I8, respectively. The new strain was named RVC/Dog-wt/HUN/KE174/2012/G10P[8]. Phylogenetic analyses revealed that canine RVC was most closely related to bovine RVC strains with the exception of the NSP4 gene, which clustered together with porcine RVC strains. These findings provide further evidence for the genetic diversity of RVC strains.
Collapse
Affiliation(s)
- Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Eszter Mihalov-Kovács
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Renáta Dóró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Tünde Csata
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Miklós Oldal
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Vito Martella
- Department of Veterinary Public Health, University of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| |
Collapse
|
58
|
Vlasova AN, Marthaler D, Wang Q, Culhane MR, Rossow KD, Rovira A, Collins J, Saif LJ. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis 2015; 20:1620-8. [PMID: 25279722 PMCID: PMC4193278 DOI: 10.3201/eid2010.140491] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sequence analysis showed heterogeneity among 74 strains and distinct molecular characteristics of highly virulent strains and variants. Porcine epidemic diarrhea virus (PEDV), which emerged in the United States in 2013, has spread throughout North America. Limited availability of PEDV complete genomes worldwide has impeded our understanding of PEDV introduction into the United States. To determine the relationship between the North American strains and global emerging and historic PEDV strains, we sequenced and analyzed complete genomes of 74 strains from North America; the strains clustered into 2 distinct clades. Compared with the initially reported virulent US PEDV strains, 7 (9.7%) strains from 4 states contained insertions and deletions in the spike gene (S INDELs). These S INDEL strains share 99.8%–100% nt identity with each other and 96.2%–96.7% nt identity with the initial US strains. Furthermore, the S INDEL strains form a distinct cluster within North American clade II, sharing 98.6%–100% nt identity overall. In the United States, the S INDEL and original PEDV strains are co-circulating and could have been introduced simultaneously.
Collapse
|
59
|
Moutelíková R, Prodělalová J, Dufková L. Diversity of VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of porcine rotavirus C: phylogenetic analysis and description of potential new VP7, VP4, VP6, and NSP4 genotypes. Arch Virol 2015; 160:1715-27. [PMID: 25951969 DOI: 10.1007/s00705-015-2438-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Rotavirus C (RVC) is a cause of gastroenteritis in swine and has a worldwide distribution. A total of 448 intestinal or faecal samples from pigs of all ages were tested for viruses causing gastroenteritis. RVC was detected in 118 samples (26.3%). To gain information on virus diversity, the complete coding nucleotide sequences of the VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of seven RVC strains were determined. Phylogenetic analysis of VP7 nucleotide sequence divided studied Czech strains into six G genotypes (G1, G3, G5-G7, and a newly described G10 genotype) based on an 85% identity cutoff value at the nucleotide level. Analysis of the VP4 gene revealed low nucleotide sequence identities between two Czech strains and other porcine (72.2-75.3%), bovine (74.1-74.6%), and human (69.1-69.3%) RVC strains. Thus, we propose that those two Czech porcine strains comprise a new RVC VP4 genotype, P8. Analysis of the VP6 gene showed 79.9-86.8% similarity at the nucleotide level between the Czech strains and other porcine RVC strains. According to the 87% identity cutoff value, we propose the existence of three new RVC VP6 genotypes, I8-I10. Analysis of the NSP4 gene divided porcine RVC strains into two clusters (the E1 genotype and the new E4 genotype, based on an 85% nucleotide sequence identity cutoff value). Our results indicate a degree of high genetic heterogeneity, not only in the variable VP7 and VP4 genes encoding the outer capsid proteins, but also in more-conserved genes encoding the inner capsid protein VP6 and the non-structural proteins NSP2, NSP4, and NSP5. This emphasizes the need for a whole-genome-sequence-based classification system.
Collapse
Affiliation(s)
- Romana Moutelíková
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic,
| | | | | |
Collapse
|
60
|
Marthaler D, Rossow K, Culhane M, Goyal S, Collins J, Matthijnssens J, Nelson M, Ciarlet M. Widespread rotavirus H in commercially raised pigs, United States. Emerg Infect Dis 2015; 20:1195-8. [PMID: 24960190 PMCID: PMC4073875 DOI: 10.3201/eid2007.140034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the presence in US pigs of rotavirus H (RVH), identified in pigs in Japan and Brazil. From 204 samples collected during 2006–2009, we identified RVH in 15% of fecal samples from 10 US states, suggesting that RVH has circulated in the United States since 2002, but probably longer.
Collapse
|
61
|
Jeong YJ, Matthijnssens J, Kim DS, Kim JY, Alfajaro MM, Park JG, Hosmillo M, Son KY, Soliman M, Baek YB, Kwon J, Choi JS, Kang MI, Cho KO. Genetic diversity of the VP7, VP4 and VP6 genes of Korean porcine group C rotaviruses. Vet Microbiol 2015; 176:61-9. [DOI: 10.1016/j.vetmic.2014.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
62
|
Phylogenetic analysis of human group C rotavirus circulating in Brazil reveals a potential unique NSP4 genetic variant and high similarity with Asian strains. Mol Genet Genomics 2014; 290:969-86. [PMID: 25501310 DOI: 10.1007/s00438-014-0971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
Abstract
Group C rotaviruses (RVC) cause gastroenteritis in humans and animals worldwide, and the evidence for a possible zoonotic role has been recently provided. To gain information on the genetic diversity and relationships between human and animal RVC, we sequenced the VP4, VP7, and NSP4 genes of 12, 19, and 15 human strains, respectively, detected in São Paulo state during historical (1988 and 1993) and recent (2007 and 2008) Brazilian rotavirus surveillance. All RVC strains analyzed in the present study grouped into human genotype (G4-P[2]-E2), and did not show any evidence of animal ancestry. Phylogenetic analysis showed that RVC samples detected in 1988 and 1993 clustered together with strains from distinct continents, indicating that historical RVC strains circulating in São Paulo were closely related to those strains circulating worldwide. All three genes (VP7, VP4 and NSP4) of São Paulo RVC strains isolated in 2007-2008 exhibited close phylogenetic relationship with human RVC strains isolated in China and Japan, suggesting that they are genetically linked, and that a gene flow could be occurring between this Asian countries and Brazil. We identified two distinct clusters in the NSP4 phylogenetic tree. One cluster formed exclusively by human Brazilian strains detected in 1997 and 2003-2004 in Rio de Janeiro, Bahia, and Rio Grande do Sul states (Subgroup II) previously described in a different study, that displayed low sequence identities to other human strains formerly published, and to the Brazilian RVC strains (Subgroup I) characterized in the present study. These data suggests the circulation of two genetic profiles of the NSP4 gene in Brazil. High sequence diversity in NSP4 gene was previously reported in Asia, and additional diversity in NSP4 RVC strains spreading in the world should be expected. More in-depth molecular and epidemiological analysis of human RVC throughout the world will be needed to understand their diversity and clarify their evolution, as well as to develop classifications schemes.
Collapse
|
63
|
Analysis of genetic divergence among strains of porcine rotavirus C, with focus on VP4 and VP7 genotypes in Japan. Virus Res 2014; 197:26-34. [PMID: 25499298 DOI: 10.1016/j.virusres.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
Abstract
Porcine rotavirus C (RVC) has been often detected in sporadic cases or outbreaks of diarrhoea in suckling and weaned pigs. Surveillance studies of RVCs have demonstrated high prevalence in the United States, and Japan, and some other countries. To date, the zoonotic impact and pathogenicity of RVCs are not well understood, and only a few complete sequences of RVCs are available. The aim of this study was to perform sequence and phylogenetic analyses for the VP4 and VP7 genes of the 22 porcine RVCs identified in Japan from 2002 to 2010. The genetic classification of the VP4 genes of the 22 porcine RVCs revealed the presence of six clusters including one cluster each from human and bovine RVCs with a cut-off value of 80%. In addition, VP7 genes of the 22 porcine RVCs were grouped into four of the seven known clusters on the basis of cut-off values of 85% at the nucleotide level reported previously. The data presented here demonstrate that multiple porcine RVC strains with distinctive genotypes based on a combination of the VP4 and VP7 genes are widely distributed and circulated among farms throughout Japan. According to establishment of dual genetic classification for VP4 and VP7 genotypes of porcine RVCs, furthermore, we discovered a possible event of gene reassortment between different rotavirus strains from the same farm. Our findings should advance the understanding of the evolution and pathogenicity of RVCs.
Collapse
|
64
|
Marthaler D, Homwong N, Rossow K, Culhane M, Goyal S, Collins J, Matthijnssens J, Ciarlet M. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples. J Virol Methods 2014; 209:30-4. [DOI: 10.1016/j.jviromet.2014.08.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 01/12/2023]
|
65
|
Lahon A, Ingle VC, Birade HS, Raut CG, Chitambar SD. Molecular characterization of group B rotavirus circulating in pigs from India: identification of a strain bearing a novel VP7 genotype, G21. Vet Microbiol 2014; 174:342-352. [PMID: 25465661 DOI: 10.1016/j.vetmic.2014.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/27/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022]
Abstract
The occurrence of group B rotavirus (RVB) infections in pigs has been reported from different parts of world. However, such infection in the pig population maintained in Indian farms has not been investigated as yet. A total of 187 faecal specimens were collected from pigs reared in different pig farms/pigsties located in western and northern regions of India and tested for the presence of porcine RVB by amplification of the NSP2 gene using conventional RT-PCR. Nine specimens (4.8%) were shown to contain RVB RNA. N2 and N4 genotypes of NSP2 gene were detected in three and six RVB strains respectively. VP7 (G-type) and NSP5 (H-type) genes of selected six RVB strains were characterized to identify the genotypes. Multiple G (G7, G19 and G20) and H (H4 and H5) genotypes detected in the RVB strains indicated circulation of heterogeneous population of RVB strains in pigs of India. Additionally, one strain was proposed to belong to a novel RVB genotype designated as G21 on account of <80% identity of VP7 gene sequence with its counterpart in RVB strains from 20 established genotypes. Deduced amino acid sequence of VP7 gene also displayed the presence of seven unique substitutions in the strain. The study reports for the first time the occurrence of RVB infections in Indian pig herds and provides important epidemiological data useful for better understanding of ecology and evolution of porcine RVBs.
Collapse
Affiliation(s)
- Anismrita Lahon
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Vijay C Ingle
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur 400006, India
| | - Hemant S Birade
- Department of Animal Reproduction, Gynaecology & Obstetrics, Krantisinh Nana Patil College of Veterinary Science, Shirwal, Satara 412801, India
| | | | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India.
| |
Collapse
|
66
|
VP6 gene diversity in 11 Brazilian strains of porcine group C rotavirus. Virus Genes 2014; 50:142-6. [PMID: 25331342 DOI: 10.1007/s11262-014-1133-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/15/2023]
Abstract
Porcine group C rotavirus (RVC) is recognised as an enteric pathogen in piglets worldwide. The VP6 gene of RVC is divided into seven I-genotypes. Genotypes I2 and I3 are found in human and bovine strains, respectively; the porcine strains are divided into the other five genotypes (I1, I4-I7). In this study, molecular analysis of nearly the full length of the VP6 gene was performed in 11 Brazilian wild-type porcine RVC strains identified in diarrhoeic faecal samples, which were collected from eight pig farms located in five Brazilian states from piglets of 1-4 weeks of age. The nucleotide sequences of the VP6 gene showed 82.9-100 % identity between the Brazilian strains, 84.9-93.1 % with the prototype Cowden strain, and 82.4-92.2 % with other porcine RVC strains. In the 11 diarrhoeic faecal samples analysed in this study, three distinct porcine RVC genotypes (I1, I5, and I6) were identified and none were predominant. The results presented in this study revealed a high nucleotide diversity of the VP6 gene in porcine RVC field strains circulating in Brazil, which highlights the importance of further epidemiological and molecular surveys worldwide.
Collapse
|
67
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [PMID: 25016036 DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
68
|
Theuns S, Desmarets LM, Heylen E, Zeller M, Dedeurwaerder A, Roukaerts ID, Van Ranst M, Matthijnssens J, Nauwynck HJ. Porcine group a rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Vet Microbiol 2014; 172:23-34. [DOI: 10.1016/j.vetmic.2014.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
69
|
Phylogenetic characterization of VP6 gene (inner capsid) of porcine rotavirus C collected in Japan. INFECTION GENETICS AND EVOLUTION 2014; 26:223-7. [PMID: 24929122 DOI: 10.1016/j.meegid.2014.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 11/22/2022]
Abstract
Porcine rotavirus C (RVC) has been often detected in sporadic cases or outbreaks of diarrhea in suckling and weaned pigs. Previous surveillance studies using both enzyme-linked immunosorbent assays and reverse-transcription polymerase chain reaction in some countries including Japan and the United States have demonstrated a high prevalence of porcine RVCs. In order to understand the phylogenetic relatedness of RVCs, we performed genetic analysis of VP6 gene encoding inner capsid protein by using 22 porcine RVC strains collected in Japan from 2002 to 2010. Comparative analyses of the VP6 nucleotide and amino acid sequences from these porcine RVCs exhibited lower sequence identities than those from human and bovine RVCs. The phylogenetic analysis of VP6 gene of RVC indicated the presence of seven clusters (tentatively assigned I1-I7) according to host species with cut-off values of 87% at the nucleotide level, and VP6 genes of porcine RVCs were divided into five genotypes. These findings indicate that multiple porcine RVC strains with distinctive genotypes are broadly spreading and circulating among farms in Japan. Our data may provide important insights in understanding evolutionary dynamics of RVCs.
Collapse
|
70
|
Marthaler D, Suzuki T, Rossow K, Culhane M, Collins J, Goyal S, Tsunemitsu H, Ciarlet M, Matthijnssens J. VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Vet Microbiol 2014; 172:359-66. [PMID: 24970362 DOI: 10.1016/j.vetmic.2014.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/25/2014] [Accepted: 05/03/2014] [Indexed: 01/14/2023]
Abstract
Rotavirus B (RVB) has been identified as a causative agent of diarrhea in rats, humans, cattle, lambs, and swine. Recently, 20 RVB VP7 genotypes were determined based on an 80% nucleotide percent cut-off value. In this study, we sequenced the RVB VP6 gene segment from 80 RVB positive swine samples from the United States and Japan. Phylogenetic analyses, using the 30 available RVB VP6 sequences from GenBank and our 80 novel RVB VP6 sequences, revealed a large genetic diversity of RVB strains, mainly in pigs. For classification purposes, pairwise identity frequency analyses suggested an 81% nucleotide percent cut-off value, resulting in 13 RVB VP6 (I) genotypes. In addition, an intragenic recombinant RVB VP6 segment was identified from Japan. Furthermore, the data indicates frequent reassortment events occurred between the porcine RVB VP7 and VP6 gene segments.
Collapse
Affiliation(s)
- Douglas Marthaler
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN, United States.
| | - Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kurt Rossow
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN, United States
| | - Marie Culhane
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN, United States
| | - James Collins
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN, United States
| | - Sagar Goyal
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN, United States
| | - Hiroshi Tsunemitsu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Max Ciarlet
- Clinical Research and Development, Novartis Vaccines & Diagnostics, Inc., Cambridge, MA, United States
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Belgium
| |
Collapse
|
71
|
Mawatari T, Hirano K, Tsunemitsu H, Suzuki T. Whole-genome analysis of bovine rotavirus species C isolates obtained in Yamagata, Japan, 2003–2010. J Gen Virol 2014; 95:1117-1125. [DOI: 10.1099/vir.0.062166-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An epidemic of diarrhoea in adult cows occurred at a total of 105 dairy farms in Yamagata Prefecture, Japan, between 2003 and 2010. Reverse transcription-PCR diagnostic tests revealed the presence of bovine rotavirus species C (RVCs) in samples from each of six farms (5.7 %). In this study, we determined the full-length nucleotide sequences of 11 RNA segments from six bovine RVC strains and investigated genetic diversity among them, including two bovine RVC strains identified in a previous study. Comparisons of all segmental nucleotide and the deduced amino acid sequences among bovine RVCs indicated high identities across all genes except for the VP4 gene. Phylogenetic analysis of each gene revealed that the six bovine RVCs belonged to a bovine cluster distinct from human and porcine RVCs. Bovine RVC strains could be clearly divided into two lineages of the VP4 genes. The nucleotide sequence identity for VP4 genes between lineage I and II was 83.7–84.8 %. Moreover, bovine RVC strains belonging to lineage I exhibited one amino acid deletion and three amino acid insertions, which differed for those strains belonging to lineage II. Our data suggest that multiple bovine RVCs originated from a common ancestor, but had different genetic backgrounds, not only in Yamagata Prefecture but also in the rest of Japan.
Collapse
Affiliation(s)
- Takahiro Mawatari
- Yamagata Prefectural Central Livestock Health and Sanitation Office, Yamagata, 990-2161 Japan
| | - Kaori Hirano
- Yamagata Prefectural Central Livestock Health and Sanitation Office, Yamagata, 990-2161 Japan
| | - Hiroshi Tsunemitsu
- Dairy Hygiene Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, 062-0045 Japan
| | - Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, 305-0856 Japan
| |
Collapse
|