51
|
Šale S, Lafkas D, Artavanis-Tsakonas S. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 2013; 15:451-60. [PMID: 23604318 DOI: 10.1038/ncb2725] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
Notch signalling is implicated in stem and progenitor cell fate control in numerous organs. Using conditional in vivo genetic labelling we traced the fate of cells expressing the Notch2 receptor paralogue and uncovered the existence of two previously unrecognized mammary epithelial cell lineages that we term S (Small) and L (Large). S cells appear in a bead-on-a-string formation and are embedded between the luminal and basal/myoepithelial layers in a unique reiterative pattern, whereas single or paired L cells appear among ductal and alveolar cells. Long-term lineage tracing and functional studies indicate that S and L cells regulate ipsi- and contralateral spatial placement of tertiary branches and formation of alveolar clusters. Our findings revise present models of mammary epithelial cell hierarchy, reveal a hitherto undescribed mechanism regulating branching morphogenesis and may have important implications for identification of the cell-of-origin of distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Sanja Šale
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
52
|
BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev Rep 2012; 8:982-93. [PMID: 22426855 DOI: 10.1007/s12015-012-9354-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.
Collapse
|
53
|
Chakrabarti R, Wei Y, Romano RA, DeCoste C, Kang Y, Sinha S. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells 2012; 30:1496-508. [PMID: 22523003 DOI: 10.1002/stem.1112] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factor E74-like factor 5 (Elf5) functions downstream of the prolactin receptor signaling pathway and plays an important role in mammary gland development. Using conditional mouse knockouts, we have previously shown that Elf5-null mammary glands exhibit a complete failure of alveologenesis during pregnancy. The Elf5-null developmental phenotype is mediated through alteration in the expression of several critical genes involved in alveologenesis, particularly those belonging to the JAK/STAT pathway. Here, we demonstrate that in addition to regulating terminal differentiation of alveolar cells, Elf5 also plays a critical role in determining cell fate and in regulating the stem/progenitor function of the mammary epithelium. Targeted deletion of Elf5 in the mammary glands leads to accumulation of cell types with dual luminal/basal properties such as coexpression of K8 and K14 and an increase in CD61(+) luminal progenitor population during pregnancy. Further interrogation suggests that the abnormal increase in K14(+) K8(+) cells may represent the CD61(+) luminal progenitors blocked in differentiation. Remarkably, Elf5 deficiency in mammary epithelium also triggers an increase of adult mammary stem activity as evidenced by the accumulation of mammary stem cell (MaSC)-enriched cell population in both pregnant and virgin mice and further confirmed by mammosphere and transplantation assays. Additional support for this phenotype comes from the enriched MaSC gene signature based on transcriptomic analysis of the Elf5-null mammary gland. Finally, our biochemical studies suggest that Elf5 loss leads to hyperactivation of the Notch signaling pathway, which might constitute in part, the underlying molecular mechanism for the altered cell lineage decisions in Elf5-null mammary epithelial cells.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Princeton, NJ 08554, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Simmons MJ, Serra R, Hermance N, Kelliher MA. NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Res 2012; 14:R126. [PMID: 22992387 PMCID: PMC4053103 DOI: 10.1186/bcr3321] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 09/19/2012] [Indexed: 12/18/2022] Open
Abstract
Introduction NOTCH activation has been recently implicated in human breast cancers, associated with a poor prognosis, and tumor-initiating cells are hypothesized to mediate resistance to treatment and disease relapse. To address the role of NOTCH1 in mammary gland development, transformation, and mammary tumor-initiating cell activity, we developed a doxycycline-regulated mouse model of NOTCH1-mediated mammary transformation. Methods Mammary gland development was analyzed by using whole-mount analysis and by flow cytometry in nulliparous transgenic mice maintained in the presence/absence of doxycycline (or intracellular NOTCH1). Mammary tumors were examined histologically and immunophenotyped by staining with antibodies followed by flow cytometry. Tumors were transplanted into mammary fat pads under limiting dilution conditions, and tumor-initiating cell frequency was calculated. Mammary tumor cells were also plated in vitro in a tumorsphere assay in the presence/absence of doxycycline. RNA was isolated from mammary tumor cell lines cultured in the presence/absence of doxycycline and used for gene-expression profiling with Affymetrix mouse arrays. NOTCH1-regulated genes were identified and validated by using quantitative real-time polymerase chain reaction (PCR). Mammary tumor-bearing mice were treated with doxycycline to suppress NOTCH1 expression, and disease recurrence was monitored. Results Similar to published studies, we show that constitutive expression of human intracellular NOTCH1 in the developing mouse mammary gland inhibits side branching and promotes luminal cell fate. These mice develop mammary adenocarcinomas that express cytokeratin (CK) 8/18. In vivo limiting-dilution analyses revealed that these mammary tumors exhibit functional heterogeneity and harbor a rare (1/2,978) mammary tumor-initiating cell population. With this dox-regulated NOTCH1 mammary tumor model, we demonstrate that NOTCH1 inhibition results in mammary tumor regression in vivo and prevents disease recurrence in four of six tumors tested. Consistent with the in vivo data, NOTCH1 inhibition reduces mammary tumorsphere activity in vitro. We also identify the embryonic stem cell transcription factor Nanog as a novel NOTCH1-regulated gene in tumorspheres and in mouse and human breast cancer cell lines. Conclusions These data indicate that NOTCH1 inhibition results in mammary tumor regression in vivo and interferes with disease recurrence. We demonstrate that NOTCH1-transformed mouse mammary tumors harbor a rare mammary tumor-initiating population and that NOTCH1 contributes to mammary tumor-initiating activity. This work raises the possibility that NOTCH therapeutics may target mammary tumor-initiating cells in certain human breast cancer subtypes.
Collapse
|
55
|
Raouf A, Sun Y, Chatterjee S, Basak P. The biology of human breast epithelial progenitors. Semin Cell Dev Biol 2012; 23:606-12. [PMID: 22609813 DOI: 10.1016/j.semcdb.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 12/21/2022]
Abstract
Current evidence suggests that similar to other tissues in the human body mammary epithelia cells are being maintained by the unique properties of stem cells, undifferentiated as well as lineage-restricted progenitors. Because of their longevity, proliferation and differentiation potentials these primitive breast epithelial cells are likely targets of transforming mutations that can cause them to act as cancer initiating cells. In this context, understanding the molecular mechanisms that regulate the normal functions of the human breast epithelial stem cells and progenitors and how alterations to these same mechanisms can confer a cancer stem cell phenotype on these rare cell populations is crucial to the development of new and more effective therapies again breast cancer. This review article will examine the current state of knowledge about the isolation and characterization of human breast epithelial progenitors and their relevance to breast cancer research.
Collapse
Affiliation(s)
- Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba and Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
56
|
Chen L, Ashraf M, Wang Y, Zhou M, Zhang J, Qin G, Rubinstein J, Weintraub NL, Tang Y. The role of notch 1 activation in cardiosphere derived cell differentiation. Stem Cells Dev 2012; 21:2122-9. [PMID: 22239539 DOI: 10.1089/scd.2011.0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiosphere derived cells (CDC) are present in the human heart and include heterogeneous cell populations of cardiac progenitor cells, multipotent progenitors that play critical roles in the physiological and pathological turnover of heart tissue. Little is known about the molecular pathways that control the differentiation of CDC. In this study, we examined the role of Notch 1/J kappa-recombining binding protein (RBPJ) signaling, a critical cell-fate decision pathway, in CDC differentiation. We isolated CDC from mouse cardiospheres and analyzed the differentiation of transduced cells expressing the Notch1 intracellular domain (N1-ICD), the active form of Notch1, using a terminal differentiation marker polymerase chain reaction (PCR) array. We found that Notch1 primarily supported the differentiation of CDC into smooth muscle cells (SMC), as demonstrated by the upreguation of key SMC proteins, including smooth muscle myosin heavy chain (Myh11) and SM22α (Tagln), in N1-ICD expressing CDC. Conversely, genetic ablation of RBPJ in CDC diminished the expression of SMC differentiation markers, confirming that SMC differentiation CDC is dependent on RBPJ. Finally, in vivo experiments demonstrate enhanced numbers of smooth muscle actin-expressing implanted cells after an injection of N1-ICD-expressing CDC into ischemic myocardium (44±8/high power field (hpf) vs. 11±4/high power field (hpf), n=7 sections, P<0.05). Taken together, these results provide strong evidence that Notch1 promotes SMC differentiation of CDC through an RBPJ-dependent signaling pathway in vitro, which may have important implications for progenitor cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Lijuan Chen
- Division of Cardiovascular Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45243, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS One 2012; 7:e30113. [PMID: 22253899 PMCID: PMC3258259 DOI: 10.1371/journal.pone.0030113] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/09/2011] [Indexed: 01/16/2023] Open
Abstract
The bovine mammary gland is a favorable organ for studying mammary cell hierarchy due to its robust milk-production capabilities that reflect the adaptation of its cell populations to extensive expansion and differentiation. It also shares basic characteristics with the human breast, and identification of its cell composition may broaden our understanding of the diversity in cell hierarchy among mammals. Here, Lin− epithelial cells were sorted according to expression of CD24 and CD49f into four populations: CD24medCD49fpos (putative stem cells, puStm), CD24negCD49fpos (Basal), CD24highCD49fneg (putative progenitors, puPgt) and CD24medCD49fneg (luminal, Lum). These populations maintained differential gene expression of lineage markers and markers of stem cells and luminal progenitors. Of note was the high expression of Stat5a in the puPgt cells, and of Notch1, Delta1, Jagged1 and Hey1 in the puStm and Basal populations. Cultured puStm and Basal cells formed lineage-restricted basal or luminal clones and after re-sorting, colonies that preserved a duct-like alignment of epithelial layers. In contrast, puPgt and Lum cells generated only luminal clones and unorganized colonies. Under non-adherent culture conditions, the puPgt and puStm populations generated significantly more floating colonies. The increase in cell number during culture provides a measure of propagation potential, which was highest for the puStm cells. Taken together, these analyses position puStm cells at the top of the cell hierarchy and denote the presence of both bi-potent and luminally restricted progenitors. In addition, a population of differentiated luminal cells was marked. Finally, combining ALDH activity with cell-surface marker analyses defined a small subpopulation that is potentially stem cell- enriched.
Collapse
|
58
|
Notch signaling: mediator and therapeutic target of bone metastasis. BONEKEY REPORTS 2012; 1:3. [PMID: 23951415 DOI: 10.1038/bonekey.2012.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/22/2023]
Abstract
The Notch signaling pathway regulates several distinct cellular programs that are indispensible for proper embryonic development and maintenance of adult tissue homeostasis. Among the various organs of the human body, the pathway has an important role in the bone microenvironment, managing cell-fate decisions in two bone-specific cells. Significantly, pathological activation of the Notch pathway in these cells by metastatic tumor cells promotes osteolytic colonization of the bone. Armed with this knowledge, disruption of the Notch pathway, and other bone microenvironment signaling components that facilitate Notch-mediated bone metastasis, may serve as a viable therapeutic intervention in this aggressive, incurable disease.
Collapse
|
59
|
Wang J, Sullenger BA, Rich JN. Notch Signaling in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:174-85. [DOI: 10.1007/978-1-4614-0899-4_13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Reedijk M. Notch Signaling and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:241-57. [DOI: 10.1007/978-1-4614-0899-4_18] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 712] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
62
|
Kent S, Hutchinson J, Balboni A, Decastro A, Cherukuri P, Direnzo J. ΔNp63α promotes cellular quiescence via induction and activation of Notch3. Cell Cycle 2011; 10:3111-8. [PMID: 21912215 DOI: 10.4161/cc.10.18.17300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of self-renewing capacity in the stem cell compartments of diverse epithelial structures; however, the underlying cellular and molecular mechanisms remain incompletely defined. Cellular quiescence is a common feature of adult stem cells that may account for their ability to retain long-term replicative capacity while simultaneously limiting cellular division. Similarly, quiescence within tumor stem cell populations may represent a mechanism by which these populations evade cytotoxic therapy and initiate tumor recurrence. Here, we present evidence that ΔNp63α, the predominant TP63 isoform in the regenerative compartment of diverse epithelial structuresm, promotes cellular quiescence via activation of Notch signaling. In HC11 cells, ectopic ΔNp63α mediates a proliferative arrest in the 2N state coincident with reduced RNA synthesis characteristic of cellular quiescence. Additionally, ΔNp63α and other quiescence-inducing stimuli enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3 (ICD) ) was sufficient to cause accumulation in G 0/G 1 and increased expression of two genes associated with quiescence, Hes1 and Mxi1. Pharmacologic inhibition of Notch signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. These studies identify a novel mechanism by which ΔNp63α preserves long-term replicative capacity by promoting cellular quiescence and identify the Notch signaling pathway as a mediator of multiple quiescence-inducing stimuli, including ΔNp63α expression.
Collapse
Affiliation(s)
- Sierra Kent
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | |
Collapse
|
63
|
Ercan C, van Diest PJ, Vooijs M. Mammary development and breast cancer: the role of stem cells. Curr Mol Med 2011; 11:270-85. [PMID: 21506923 DOI: 10.2174/156652411795678007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/14/2011] [Indexed: 12/15/2022]
Abstract
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.
Collapse
Affiliation(s)
- C Ercan
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
64
|
Raafat A, Goldhar AS, Klauzinska M, Xu K, Amirjazil I, McCurdy D, Lashin K, Salomon D, Vonderhaar BK, Egan S, Callahan R. Expression of Notch receptors, ligands, and target genes during development of the mouse mammary gland. J Cell Physiol 2011; 226:1940-52. [PMID: 21506125 DOI: 10.1002/jcp.22526] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.
Collapse
Affiliation(s)
- Ahmed Raafat
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kondratyev M, Kreso A, Hallett RM, Girgis-Gabardo A, Barcelon ME, Ilieva D, Ware C, Majumder PK, Hassell JA. Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 2011; 31:93-103. [PMID: 21666715 DOI: 10.1038/onc.2011.212] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human breast tumors comprise a minor sub-population of tumor-initiating cells (TICs), commonly termed cancer stem cells. TICs are thought to sustain tumor growth and to confer resistance to current anticancer therapies. Hence, targeting TIC may be essential to achieving durable cancer cures. To identify molecular targets in breast TIC, we employed a transgenic mouse model of ERBB2 breast cancer; tumors arising in this model comprise a very high frequency of TIC, which is maintained in tumor cell populations propagated in vitro as non-adherent tumorspheres. The Notch pathway is dysregulated in human breast tumors and overexpression of constitutively active Notch proteins induces mammary tumors in mice. The Notch pathway has also been implicated in stem cell processes including those of mammary epithelial stem cells. Hence, we investigated the potential that the Notch pathway is required for TIC activity. We found that an antagonist of Notch signaling, a gamma (γ)-secretase inhibitor termed MRK-003, inhibited the survival of tumorsphere-derived cells in vitro and eliminated TIC as assessed by cell transplantation into syngeneic mice. Whereas MRK-003 also inhibited the self-renewal and/or proliferation of mammosphere-resident cells, this effect of the inhibitor was reversible thus suggesting that it did not compromise the survival of these cells. MRK-003 administration to tumor-bearing mice eliminated tumor-resident TIC and resulted in rapid and durable tumor regression. MRK-003 inhibited the proliferation of tumor cells, and induced their apoptosis and differentiation. These findings suggest that MRK-003 targets breast TIC and illustrate that eradicating these cells in breast tumors ensures long-term, recurrence-free survival.
Collapse
Affiliation(s)
- M Kondratyev
- Center for Functional Genomics, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 2011; 356:337-49. [PMID: 21624358 DOI: 10.1016/j.ydbio.2011.05.659] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
We have shown previously that during branching morphogenesis of the mouse prostate gland, Bone morphogenetic protein 7 functions to restrict Notch1-positive progenitor cells to the tips of the prostate buds. Here, we employed prostate-specific murine bi-genic systems to investigate the effects of gain and loss of Notch function during prostate development. We show that Nkx3.1(Cre) and Probasin(Cre) alleles drive expression of Cre recombinase to the prostate epithelium and periepithelial stroma. We investigated the effects of gain of Notch function using the Rosa(NI1C) conditional allele, which carries a constitutively active intracellular domain of Notch1 receptor. We carried out the analysis of loss of Notch function in Nkx3.1(Cre/+);RBP-J(flox/flox) prostates, where RBP-J is a ubiquitous transcriptional mediator of Notch signaling. We found that gain of Notch function resulted in inhibition of the tumor suppressor PTEN, and increase in cell proliferation and progenitor cells in the basal epithelium and smooth muscle compartments. In turn, loss of Notch/RBP-J function resulted in decreased cell proliferation and loss of epithelial and smooth muscle progenitors. Gain of Notch function resulted in an early onset of benign prostate hyperplasia by three months of age. Loss of Notch function also resulted in abnormal differentiation of the prostate epithelium and stroma. In particular, loss of Notch signaling and increase in PTEN promoted a switch from myoblast to fibroblast lineage, and a loss of smooth muscle. In summary, we show that Notch signaling is necessary for terminal differentiation of the prostate epithelium and smooth muscle, and that during normal prostate development Notch/PTEN pathway functions to maintain patterned progenitors in the epithelial and smooth muscle compartments. In addition, we found that both positive and negative modulation of Notch signaling results in abnormal organization of the prostate tissue, and can contribute to prostate disease in the adult organ.
Collapse
|
67
|
Yuan T, Wang Y, Pao L, Anderson SM, Gu H. Lactation defect in a widely used MMTV-Cre transgenic line of mice. PLoS One 2011; 6:e19233. [PMID: 21559430 PMCID: PMC3084790 DOI: 10.1371/journal.pone.0019233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/23/2011] [Indexed: 01/15/2023] Open
Abstract
Background MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines. Methodology/Principal Findings To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development. Conclusions/Significance The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the controls did not include mice expressing only Cre recombinase.
Collapse
Affiliation(s)
- Taichang Yuan
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Yongping Wang
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Lily Pao
- Cancer Biology Program, Division of Hematology and Oncology, Department of Medicine, Beth Israel and Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steve M. Anderson
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Haihua Gu
- Department of Pathology, University of Colorado School of Medicine, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
68
|
Visvader JE, Smith GH. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004879. [PMID: 20926515 DOI: 10.1101/cshperspect.a004879] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An entire mammary epithelial outgrowth, capable of full secretory differentiation, may comprise the progeny of a single cellular antecedent, i.e., may be generated from a single mammary epithelial stem cell. Early studies showed that any portion of an intact murine mammary gland containing epithelium could recapitulate an entire mammary epithelial tree on transplantation into an epithelium-free mammary fat pad. More recent studies have shown that a hierarchy of mammary stem/progenitor cells exists among the mammary epithelium and that their behavior and maintenance is dependent on signals generated both locally and systemically. In this review, we have attempted to develop the scientific saga surrounding the discovery and characterization of the murine mammary stem/progenitor cell hierarchy and to suggest further approaches that will enhance our knowledge and understanding of these cells and their role in both normal development and neoplasia.
Collapse
Affiliation(s)
- Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | | |
Collapse
|
69
|
The fate of Notch-deficient nephrogenic progenitor cells during metanephric kidney development. Kidney Int 2011; 79:1099-112. [PMID: 21270765 DOI: 10.1038/ki.2010.553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine which nephron segments require Notch signals for development, we conditionally deleted Rbpj, a transcription factor required for canonical Notch signaling, in nephrogenic progenitors (NPs) of the metanephric mesenchyme. The retinoic acid receptor-β2 (Rarb2) promoter efficiently directed Cre-recombinase (Cre) activity to these progenitors. Conditional knockout of Rbpj in mice (Rarb2Cre(+)/Rbpj (f/-)) caused severe renal hypoplasia, as indicated by a 70-95% reduction in nephron number and the development of tubular cysts. To track the fate of NPs following Rarb2Cre expression, we labeled them with membrane-associated enhanced green fluorescent protein (GFP). In TomatoGFP(+)/Rarb2Cre(+) control mice, NPs differentiated into epithelia of all nephron segments, except into collecting ducts. In TomatoGFP(+)/Rarb2Cre(+)/Rbpj (f/-) conditional knockout mice, NPs developed into podocytes or distal tubular epithelia, indicating that canonical Notch signals were not required for mesenchymal-to-epithelial transition or for the specification of these nephron segments. Conversely, the few proximal tubules and associated cysts that developed in these mice were derived from the 5-10% of NPs that had failed to express Cre and, therefore, had intact Notch signaling. Thus, our fate mapping studies establish that the profound effect of Notch signaling on nephrogenesis is due to the specification of proximal but not distal tubules or podocytes.
Collapse
|
70
|
Robinson GW, Hennighausen L. MMTV-Cre transgenes can adversely affect lactation: considerations for conditional gene deletion in mammary tissue. Anal Biochem 2011; 412:92-5. [PMID: 21255551 DOI: 10.1016/j.ab.2011.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/08/2023]
Abstract
CRE-loxP-mediated inactivation and activation of genes in mouse mammary epithelium have been widely used to study genetic pathways in normal development and neoplastic transformation in vivo. In 1997, we generated three distinct mouse lines carrying an identical MMTV-Cre transgene (lines A, D, and F). Because the presence of CRE recombinase can adversely affect the physiology of nonmammary cells, we explored whether transgenic females display lactational defects. Whereas dams from line D nurse their pups and display overtly normal mammary development, line A shows some impairment during lactation and females from line F completely fail to nurse their litters. The ability to nurse a litter correlates with the extent of alveolar development and differentiation. This study demonstrates the importance of including appropriate "Cre-only" controls and provides guidelines to avoid problems in data interpretation.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
71
|
From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 2011; 21:245-57. [PMID: 21243011 DOI: 10.1038/cr.2011.11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy. In recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer. In particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ER/PR(-) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/PR(+) tumors.
Collapse
|
72
|
Lin HY, Kao CH, Lin KMC, Kaartinen V, Yang LT. Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis. PLoS One 2011; 6:e15842. [PMID: 21267458 PMCID: PMC3022660 DOI: 10.1371/journal.pone.0015842] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/25/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. METHODOLOGY AND PRINCIPAL FINDINGS We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. SIGNIFICANCE our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.
Collapse
Affiliation(s)
- Hsien-Yi Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan, Republic of China
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Kurt Ming-Chao Lin
- Division of Medical Engineering, National Health Research Institutes, Miaoli County, Taiwan, Republic of China
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Liang-Tung Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan, Republic of China
| |
Collapse
|
73
|
Harrison H, Farnie G, Brennan KR, Clarke RB. Breast cancer stem cells: something out of notching? Cancer Res 2010; 70:8973-6. [PMID: 21045140 DOI: 10.1158/0008-5472.can-10-1559] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We and others have established that the developmental Notch receptor signaling pathway is active in breast cancer cell lines, as well as in preinvasive and invasive primary samples. Recently, a role for Notch in regulating the hierarchy of stem and progenitor cells in both normal and cancer epithelium has been elucidated. Because inhibiting the Notch receptor signaling pathway is a possible future breast cancer therapy, here, we review the expression and activity of the different ligands and receptors and summarize the various ways in which the pathway's activity can be inhibited, and the likely effects of inhibition on different tumor cell subpopulations.
Collapse
Affiliation(s)
- Hannah Harrison
- Breast Biology Group, School of Cancer and Enabling Sciences, Paterson Institute for Cancer Research, University of Manchester;, Manchester, United Kingdom
| | | | | | | |
Collapse
|
74
|
Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci 2010; 67:2957-68. [PMID: 20458516 PMCID: PMC11115867 DOI: 10.1007/s00018-010-0391-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/10/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022]
Abstract
Evolutionarily conserved Notch signaling orchestrates diverse physiological mechanisms during metazoan development and homeostasis. Classically, ligand-activated Notch receptors transduce the signaling cascade through the interaction of DNA-bound CBF1-co-repressor complex. However, recent reports have demonstrated execution of a CBF1-independent Notch pathway through signaling cross-talks in various cells/tissues. Here, we have tried to congregate the reports that describe the non-canonical/CBF1-independent Notch signaling and target gene activation in vertebrates with specific emphasis on their functional relevance.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| | - Sivadasan Bindu Dhanesh
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| | - Jackson James
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| |
Collapse
|
75
|
Wegwitz F, Kluth MA, Mänz C, Otto B, Gruner K, Heinlein C, Kühl M, Warnecke G, Schumacher U, Deppert W, Tolstonog GV. Tumorigenic WAP-T mouse mammary carcinoma cells: a model for a self-reproducing homeostatic cancer cell system. PLoS One 2010; 5:e12103. [PMID: 20730114 PMCID: PMC2920333 DOI: 10.1371/journal.pone.0012103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/14/2010] [Indexed: 12/21/2022] Open
Abstract
Background In analogy to normal stem cell differentiation, the current cancer stem cell (CSC) model presumes a hierarchical organization and an irreversible differentiation in tumor tissue. Accordingly, CSCs should comprise only a small subset of the tumor cells, which feeds tumor growth. However, some recent findings raised doubts on the general applicability of the CSC model and asked for its refinement. Methodology/Principal Findings In this study we analyzed the CSC properties of mammary carcinoma cells derived from transgenic (WAP-T) mice. We established a highly tumorigenic WAP-T cell line (G-2 cells) that displays stem-like traits. G-2 cells, as well as their clonal derivates, are closely related to primary tumors regarding histology and gene expression profiles, and reflect heterogeneity regarding their differentiation states. G-2 cultures comprise cell populations in distinct differentiation states identified by co-expression of cytoskeletal proteins (cytokeratins and vimentin), a combination of cell surface markers and a set of transcription factors. Cellular subsets sorted according to expression of CD24a, CD49f, CD61, Epcam, Sca1, and Thy1 cell surface proteins, or metabolic markers (e.g. ALDH activity) are competent to reconstitute the initial cellular composition. Repopulation efficiency greatly varies between individual subsets and is influenced by interactions with the respective complementary G-2 cellular subset. The balance between differentiation states is regulated in part by the transcription factor Sox10, as depletion of Sox10 led to up-regulation of Twist2 and increased the proportion of Thy1-expressing cells representing cells in a self-renewable, reversible, quasi-mesenchymal differentiation state. Conclusions/Significance G-2 cells constitute a self-reproducing cancer cell system, maintained by bi- and unidirectional conversion of complementary cellular subsets. Our work contributes to the current controversial discussion on the existence and nature of CSC and provides a basis for the incorporation of alternative hypotheses into the CSC model.
Collapse
Affiliation(s)
- Florian Wegwitz
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Mark-Andreas Kluth
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Claudia Mänz
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Benjamin Otto
- Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Gruner
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Christina Heinlein
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Marion Kühl
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Gabriele Warnecke
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Deppert
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
- * E-mail: (WD); (GVT)
| | - Genrich V. Tolstonog
- Department of Tumor Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
- * E-mail: (WD); (GVT)
| |
Collapse
|
76
|
ChIP (chromatin immunoprecipitation) analysis demonstrates co-ordinated binding of two transcription factors to the promoter of thep53tumour-suppressor gene. Cell Biol Int 2010; 34:883-91. [DOI: 10.1042/cbi20090401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
77
|
Ling H, Sylvestre JR, Jolicoeur P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 2010; 29:4543-54. [PMID: 20562911 DOI: 10.1038/onc.2010.186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the Notch family are involved in the development of breast cancer in animal models and in humans. In young transgenic mice, expressing intracellular activated Notch1 (N1(IC)) in mammary cells, we found that CD24(+) CD29(high) progenitor cells had enhanced survival, and were expanded through a cyclin D1-dependent pathway. This expansion positively correlated with the later cyclin D1-dependent formation of basal-like ductal tumors. This expanded population exhibited abnormal differentiation skewed toward the basal cells, showed signs of pre-malignancy (low PTEN/p53 and high c-myc) and contained stem cells with impaired self-renewal in vivo, and more numerous multipotent, ductal-restricted progenitors. Our data suggest that N1(IC) can favor transformation of progenitor cells early in life through a cyclin D1-dependent pathway.
Collapse
Affiliation(s)
- H Ling
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
78
|
LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F, Rosen JM. CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells 2010; 28:535-44. [PMID: 20054865 DOI: 10.1002/stem.297] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The bZIP transcription factor C/EBP beta is important for mammary gland development and its expression is deregulated in human breast cancer. To determine whether C/EBP beta regulates mammary stem cells (MaSCs), we employed two different knockout strategies. Using both a germline and a conditional knockout strategy, we demonstrate that mammosphere formation was significantly decreased in C/EBP beta-deficient mammary epithelial cells (MECs). Functional limiting dilution transplantation assays indicated that the repopulating ability of C/EBP beta-deleted MECs was severely impaired. Serial transplantation experiments demonstrated that C/EBP beta deletion resulted in decreased outgrowth potential and premature MaSC senescence. In accord, fluorescence-activated cell sorting analysis demonstrated that C/EBP beta-null MECs contained fewer MaSCs, the loss of luminal progenitors and an increase in differentiated luminal cells as compared with wild-type. Gene profiling of C/EBP beta-null stem cells revealed an alteration in cell fate specification, exemplified by the expression of basal markers in the luminal compartment. Thus, C/EBP beta is a critical regulator of both MaSC repopulation activity and luminal cell lineage commitment. These findings have critical implications for understanding both stem cell biology and the etiology of different breast cancer subtypes.
Collapse
Affiliation(s)
- Heather L LaMarca
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Groner B, Vafaizadeh V, Brill B, Klemmt P. Stem cells of the breast and cancer therapy. ACTA ACUST UNITED AC 2010; 6:205-19. [PMID: 20187727 DOI: 10.2217/whe.10.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer remains a significant public health problem despite advances in the understanding of the molecular and cellular events that underlie the disease. Crucial pathways regulating the cell cycle, proliferation and survival of breast cancer cells have been investigated and aberrant components of these pathways have been exploited as new drug targets. However, the mortality from breast cancer is only slowly declining. Recently, a model has been proposed that might explain the heterogeneous biological features of breast cancer cell populations and their differential response to therapeutic agents, which has interesting implications for further progress in therapy. This model links the emergence of breast cancer cells to stem cells and progenitors, an observation originally made in other cancer entities. It hypothesizes that the tumors originate from a small population of undifferentiated cells. These cells can undergo self-renewal and are able to generate a large number of partially differentiated cells, which constitute the bulk of the tumor. These cancer stem cells resemble adult stem and progenitor cells found in the normal breast, but are deregulated in their patterns of proliferation and differentiation. They could originate from normal stem cells or from more differentiated progenitors and lose their normal growth restraints through a series of oncogenic mutations that deregulate a small number of central signaling pathways. If breast cancer really is a stem and progenitor cell disease, this will have important implications for the understanding of the emergence of cancer cells. A combination of the cell-type of origin, stem cells, early or late progenitors and the particular oncogenic mutations acquired could provide a new classification of the different types of breast cancer. These parameters might determine the mechanisms of cancer progression and the responsiveness of patients to drug treatment. Stem cell-specific features could possibly be exploited as innovative drug targets.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt, Germany.
| | | | | | | |
Collapse
|
80
|
Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ 2010; 17:1600-12. [DOI: 10.1038/cdd.2010.37] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
81
|
Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl Acad Sci U S A 2010; 107:5012-7. [PMID: 20194747 DOI: 10.1073/pnas.1000896107] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch receptors has been implicated in breast cancer; however, the mechanisms contributing to Notch-dependent transformation remain elusive because Notch displays dichotomous functional activities, promoting both proliferation and growth arrest. We investigated the cellular basis for the heterogeneous responses to Notch pathway activation in 3D cultures of MCF-10A mammary epithelial cells. Expression of a constitutively active Notch-1 intracellular domain (NICD) was found to induce two distinct types of 3D structures: large, hyperproliferative structures and small, growth-arrested structures with reduced cell-to-matrix adhesion. Interestingly, we found that these heterogeneous phenotypes reflect differences in Notch pathway activation levels; high Notch activity caused down-regulation of multiple matrix-adhesion genes and inhibition of proliferation, whereas low Notch activity maintained matrix adhesion and provoked a strong hyperproliferative response. Moreover, microarray analyses implicated NICD-induced p63 down-regulation in loss of matrix adhesion. In addition, a reverse-phase protein array-based analysis and subsequent loss-of-function studies identified STAT3 as a dominant downstream mediator of the NICD-induced outgrowth. These results indicate that the phenotypic responses to Notch are determined by the dose of pathway activation; and this dose affects the balance between growth-stimulative and growth-suppressive effects. This unique feature of Notch signaling provides insights into mechanisms that contribute to the dichotomous effects of Notch during development and tumorigenesis.
Collapse
|
82
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 2010; 70:709-18. [PMID: 20068161 DOI: 10.1158/0008-5472.can-09-1681] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA(+)/CD44(+)/CD24(low). Using these breast cancer stem cell populations, we compared the activation status of Notch receptors with the status in luminally differentiated cells, and we evaluated the consequences of pathway inhibition in vitro and in vivo. We found that Notch4 signaling activity was 8-fold higher in stem cell-enriched cell populations compared with differentiated cells, whereas Notch1 signaling activity was 4-fold lower in the stem cell-enriched cell populations. Pharmacologic or genetic inhibition of Notch1 or Notch4 reduced stem cell activity in vitro and reduced tumor formation in vivo, but Notch4 inhibition produced a more robust effect with a complete inhibition of tumor initiation observed. Our findings suggest that Notch4-targeted therapies will be more effective than targeting Notch1 in suppressing breast cancer recurrence, as it is initiated by breast cancer stem cells.
Collapse
Affiliation(s)
- Hannah Harrison
- Breast Biology Group, School of Cancer, Enabling Sciences and Technology, Paterson Institute for Cancer Research, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
In recent years a substantial body of evidence derived from not only preclinical but also clinical studies has accumulated in support of Notch signaling playing important oncogenic roles in several types of cancer. The finding that activating Notch mutations are frequently found in patients suffering from acute lymphoblastic leukemia is one of the best examples for a critical role of Notch signaling in cancer, a fact that motivated many researchers and clinicians to study the role of Notch also in solid tumors. Hence Notch signaling has gained increasing attention as a potential therapeutic target. In this book chapter we would like to discuss our current knowledge of Notch signaling within different types of solid cancers as well as advantages and disadvantages of potential new therapies that try to target the oncogenic properties of Notch signaling.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | | |
Collapse
|
85
|
Abstract
RBP-J/Su(H)/Lag1, the main transcriptional mediator of Notch signaling, binds DNA with the consensus sequence YRTGDGAD. Notch target genes can be controlled by two opposing activities of RBP-J. The interaction of the Notch intracellular domain with RBP-J induces a weak transcriptional activation and requires an additional tissue-specific transcriptional activator such as bHLH proteins or GATA to mediate strong target gene expression. For example, during Drosophila sensory organ precursor (SOP) cell development, proneural bHLH interacts with Da, a Drosophila orthologue of E2A, to form a tissue-specific activator of Su(H), the Drosophila orthologue of RBP-J. This complex and Su(H) act synergistically to promote the epidermal cell fate. In contrast, a complex of Su(H) with Hairless, a Drosophila functional homologue of MINT, has transcriptional repression activity that promotes SOP differentiation to neurons. Recent conditional loss-of-function studies demonstrated that transcriptional networks involving RBP-J, MINT, and E2A are conserved in mammalian cell differentiation, including multiple steps of lymphocyte development, and probably also in neuronal maturation in adult neurogenesis. During neurogenesis, Notch-RBP-J signaling was thought historically to be involved mainly in the maintenance of undifferentiated neural progenitors. However, the identification of a tissue-specific transcriptional activator of RBP-J-Notch has revealed new roles of RBP-J in the promotion of neuronal maturation. Finally, the Notch-independent function of RBP-J was recently discovered and will be reviewed here.
Collapse
|
86
|
Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23:2563-77. [PMID: 19933147 DOI: 10.1101/gad.1849509] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.
Collapse
Affiliation(s)
- Jane E Visvader
- VBCRC (Victorian Breast Cancer Research Consortium) Laboratory, The Walter and Eliza Hall of Medical Research, Parkville, Victoria 3052, Australia.
| |
Collapse
|
87
|
Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW, Hennighausen L. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 2009; 23:2382-7. [PMID: 19833766 DOI: 10.1101/gad.1840109] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammary alveologenesis is abrogated in the absence of the transcription factors STAT5A/5B, which mediate cytokine signaling. To reveal the underlying causes for this developmental block, we studied mammary stem and progenitor cells. While loss of STAT5A/5B did not affect the stem cell population and its ability to form mammary ducts, luminal progenitors were greatly reduced and unable to form alveoli during pregnancy. Temporally controlled expression of transgenic STAT5A in mammary epithelium lacking STAT5A/5B restored the luminal progenitor population and rescued alveologenesis in a reversible fashion in vivo. Thus, STAT5A is necessary and sufficient for the establishment of luminal progenitor cells.
Collapse
Affiliation(s)
- Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Harmes DC, DiRenzo J. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? J Mammary Gland Biol Neoplasia 2009; 14:19-27. [PMID: 19240987 PMCID: PMC3736345 DOI: 10.1007/s10911-009-9111-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/08/2009] [Indexed: 12/26/2022] Open
Abstract
Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.
Collapse
Affiliation(s)
- David C. Harmes
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA
| |
Collapse
|
89
|
Yin Y, Yuan H, Zeng X, Kopelovich L, Glazer RI. Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res 2009; 69:687-94. [PMID: 19147585 DOI: 10.1158/0008-5472.can-08-2446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that regulates gene transcription associated with intermediary metabolism, adipocyte differentiation, and tumor suppression and proliferation. To understand the role of PPARgamma in tumorigenesis, transgenic mice were generated with mammary gland-directed expression of the dominant-negative transgene Pax8PPARgamma. Transgenic mice were phenotypically indistinguishable from wild-type (WT) mice, but mammary epithelial cells expressed a greater percentage of CD29(hi)/CD24(neg), CK5(+), and double-positive CK14/CK18 cells. These changes correlated with reduced PTEN and increased Ras and extracellular signal-regulated kinase (ERK) and AKT activation. Although spontaneous tumorigenesis did not occur, transgenic animals were highly susceptible to progestin/7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis, which in contrast to WT mice resulted in a high tumor multiplicity and, most importantly, in the appearance of predominantly estrogen receptor alpha-positive (ER(+)) ductal adenocarcinomas. Tumors expressed a similar PTEN(lo)/pERK(hi)/pAKT(hi) phenotype as mammary epithelium and exhibited high activation of estrogen response element-dependent reporter gene activity. Tumorigenesis in MMTV-Pax8PPARgamma mice was insensitive to the chemopreventive effect of a PPARgamma agonist but was profoundly inhibited by the ER antagonist fulvestrant. These results reveal important new insights into the previously unrecognized role of PPARgamma in the specification of mammary lineage and the development of ER(+) tumors.
Collapse
Affiliation(s)
- Yuzhi Yin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | | | | | |
Collapse
|
90
|
Welm BE, Dijkgraaf GJP, Bledau AS, Welm AL, Werb Z. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2009; 2:90-102. [PMID: 18371425 DOI: 10.1016/j.stem.2007.10.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 09/06/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
The mouse mammary gland is the only epithelial organ capable of complete regeneration upon orthotopic transplantation, making it ideally suited for in vivo gene function studies through viral-mediated gene delivery. A hurdle that has challenged the widespread adoption of this technique has been the inability to transduce mammary stem cells effectively. We have overcome this limitation by infecting total primary mammary epithelial cells in suspension with high-titer lentiviruses. Transduced cells gave rise to all major cell types of the mammary gland and were capable of clonal outgrowth and functional differentiation in serial transplants. To demonstrate that this method is a valuable alternative to developing transgenic animals, we used lentiviral-mediated Wnt-1 overexpression to replicate MMTV-Wnt-1 mammary phenotypes and used a dominant-negative Xenopus Suppressor of Hairless to reveal a requirement for Notch signaling during ductal morphogenesis. Importantly, this method is also applicable to transduction of cells from other tissues.
Collapse
Affiliation(s)
- Bryan E Welm
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA
| | | | | | | | | |
Collapse
|
91
|
LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol (Camb) 2009; 1:70-9. [PMID: 20023793 PMCID: PMC2933184 DOI: 10.1039/b816472j] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.
Collapse
Affiliation(s)
- Mark A. LaBarge
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Celeste M. Nelson
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Rene Villadsen
- The Panum Institute, Department of Medical Anatomy, Copenhagen, Denmark
| | | | - Jason R. Ruth
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Martha R. Stampfer
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ole W. Petersen
- The Panum Institute, Department of Medical Anatomy, Copenhagen, Denmark
| | - Mina J. Bissell
- Lawrence Berkeley National Laboratory, Division of Life Sciences, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
92
|
Abstract
Notch signals mediate a wide range of activities in development and cancer. A report in this issue of Cell Stem Cell (Bouras et al., 2008) demonstrates that Notch serves as a switch that controls cell fate and tissue homeostasis in mammary epithelium.
Collapse
|
93
|
Lee CW, Simin K, Liu Q, Plescia J, Guha M, Khan A, Hsieh CC, Altieri DC. A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 2008; 10:R97. [PMID: 19025652 PMCID: PMC2656893 DOI: 10.1186/bcr2200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/12/2008] [Accepted: 11/24/2008] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Basal-type, or triple-negative, breast cancer (lacking estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 expression) is a high-risk disease for which no molecular therapies are currently available. We studied genetic signatures of basal breast cancer potentially suitable for therapeutic intervention. METHODS We analyzed protein expression of the Notch-1 intracellular domain and survivin by immunohistochemistry in a series of basal breast cancer patients. A hierarchical clustering and overall survival analysis was carried out on a microarray mRNA database of 232 breast cancer patients. Fifteen published mRNA datasets containing estrogen receptor-negative or estrogen receptor-positive samples were subjected to meta-analysis for co-segregated gene expression. Experiments of plasmid transfection and gene silencing were carried out in estrogen receptor-negative MDA-MB-231 breast cancer cells. RESULTS The developmental signaling regulator Notch-1 was highly expressed in breast cancer, compared with normal tissue, and was segregated with basal disease. Higher Notch-1 levels correlated with progressively abbreviated overall survival, and with increased expression of survivin, a tumor-associated cell death and mitotic regulator implicated in stem cell viability. Analysis of Pearson's correlation coefficient indicated that Notch-1 and survivin co-segregated in basal breast cancer. Notch-1 stimulation in MDA-MB-231 cells increased survivin expression, whereas silencing Notch reduced survivin levels. CONCLUSIONS A Notch-1-survivin functional gene signature is a hallmark of basal breast cancer, and may contribute to disease pathogenesis. Antagonists of Notch and survivin currently in the clinic may be tested as novel molecular therapy for these recurrence-prone patients.
Collapse
Affiliation(s)
- Connie W Lee
- Department of Cancer Biology, Cancer Center, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Rbpj conditional knockout reveals distinct functions of Notch4/Int3 in mammary gland development and tumorigenesis. Oncogene 2008; 28:219-30. [PMID: 18836481 DOI: 10.1038/onc.2008.379] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transgenic mice expressing the Notch 4 intracellular domain (ICD) (Int3) in the mammary gland have two phenotypes: arrest of mammary alveolar/lobular development and mammary tumorigenesis. Notch4 signaling is mediated primarily through the interaction of Int3 with the transcription repressor/activator Rbpj. We have conditionally ablated the Rbpj gene in the mammary glands of mice expressing whey acidic protein (Wap)-Int3. Interestingly, Rbpj knockout mice (Wap-Cre(+)/Rbpj(-/-)/Wap-Int3) have normal mammary gland development, suggesting that the effect of endogenous Notch signaling on mammary gland development is complete by day 15 of pregnancy. RBP-J heterozygous (Wap-Cre(+)/Rbpj(-/+)/Wap-Int3) and Rbpj control (Rbpj(flox/flox)/Wap-Int3) mice are phenotypically the same as Wap-Int3 mice with respect to mammary gland development and tumorigenesis. In addition, the Wap-Cre(+)/Rbpj(-/-)/Wap-Int3-knockout mice also developed mammary tumors at a frequency similar to Rbpj heterozygous and Wap-Int3 control mice but with a slightly longer latency. Thus, the effect on mammary gland development is dependent on the interaction of the Notch ICD with the transcription repressor/activator Rbpj, and Notch-induced mammary tumor development is independent of this interaction.
Collapse
|
95
|
Melchor L, Smalley MJ. Highway to heaven: mammary gland development and differentiation. Breast Cancer Res 2008; 10:305. [PMID: 18947364 PMCID: PMC2614513 DOI: 10.1186/bcr2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, the mammary gland epithelium has been shown to be a mixture of differentiated cell populations in a hierarchical relationship with their stem and progenitor cells. However, the mechanisms that regulate their cellular differentiation processes are still unclear. The identification of genes that govern stem and progenitor cell expansion, or that determine daughter cell fate, will be of crucial interest for understanding breast cancer diversity and, ultimately, improving treatment. Two recent analyses have identified some of the key genes that regulate these processes, lighting up the highway to normal mammary gland development.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
96
|
Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, Lindeman GJ, Visvader JE. Notch Signaling Regulates Mammary Stem Cell Function and Luminal Cell-Fate Commitment. Cell Stem Cell 2008; 3:429-41. [DOI: 10.1016/j.stem.2008.08.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/26/2008] [Accepted: 08/04/2008] [Indexed: 12/13/2022]
|
97
|
Glazer RI, Wang XY, Yuan H, Yin Y. Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 2008; 7:2635-9. [PMID: 18719393 DOI: 10.4161/cc.7.17.6522] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the earliest genes identified with stem and early progenitor cells is the RNA-binding protein, Musashi1 (Msi1). Through gene profiling of mammary epithelial cells transduced with Msi1, a unique autocrine signaling pathway was identified that activates both the Wnt and Notch pathways. This process was associated with increased secretion of the growth factor, PLF1 and inhibition of the secreted Wnt pathway inhibitor, DKK3. Identification of PLF1 as an effector of these pathways in the absence of the DKK3 tumor suppressor provides a new avenue for investigating differences between normal and malignant tissues, and potentially targeting tumor stem cells.
Collapse
Affiliation(s)
- Robert I Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
98
|
Kim ML, Chandrasekharan K, Glass M, Shi S, Stahl MC, Kaspar B, Stanley P, Martin PT. O-fucosylation of muscle agrin determines its ability to cluster acetylcholine receptors. Mol Cell Neurosci 2008; 39:452-64. [PMID: 18775496 DOI: 10.1016/j.mcn.2008.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022] Open
Abstract
Protein O-fucosyltransferase 1 (Pofut1) transfers fucose to serine or threonine on proteins, including Notch receptors, that contain EGF repeats with a particular consensus sequence. Here we demonstrate that agrin is O-fucosylated in a Pofut1-dependent manner, and that this glycosylation can regulate agrin function. Fucosylation of recombinant C45 agrin, both active (neural, z8) and inactive (muscle, z0) splice forms, was eliminated when agrin was overexpressed in Pofut1-deficient cells or by mutation of a consensus site for Pofut1 fucosylation (serine 1726 in the EGF4 domain). Loss of O-fucosylation caused a gain of function for muscle agrin such that it stimulated AChR clustering and MuSK phosphorylation in cultured myotubes at levels normally only found with the neural splice form. Deletion of Pofut1 in cultured primary myotubes and in adult skeletal muscle increased AChR aggregation. In addition, Pofut1 gene and protein expression and Pofut1 activity of the EGF4 domain of agrin were modulated during neuromuscular development. These data are consistent with a role for Pofut1 in AChR aggregation during synaptogenesis via the regulation of the synaptogenic activity of muscle agrin.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008; 3:109-18. [PMID: 18593563 DOI: 10.1016/j.stem.2008.05.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/09/2008] [Accepted: 05/15/2008] [Indexed: 01/16/2023]
Abstract
Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process, but the molecular mechanisms involved, particularly in the human mammary gland, are poorly understood. To address this issue, we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified, and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together, these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation.
Collapse
Affiliation(s)
- Afshin Raouf
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 2008; 135:995-1003. [PMID: 18296651 DOI: 10.1242/dev.005439] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammary gland development occurs through distinctive stages throughout embryonic and pubertal development and reproductive life. At each stage, different signals are required to induce changes in both the epithelium and the surrounding mesenchyme/stroma. Recent studies have provided new insights into the origin, specification and fate of mammary stem and progenitor cells and into how the differentiated lineages that comprise the functional mammary gland are determined. The development of new tools and culture techniques has also enabled the factors that influence branching morphogenesis in the embryonic and pubertal gland to be identified. A surprising recent discovery has been that mammary epithelial cells commit to differentiated lineages using the same signalling pathways that regulate lineage determination in T helper cells.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|