51
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
52
|
Davydenko O, Schultz RM, Lampson MA. Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I. ACTA ACUST UNITED AC 2013; 202:221-9. [PMID: 23857768 PMCID: PMC3718970 DOI: 10.1083/jcb.201303019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The slow increase in CDK1 activity in meiosis I acts as a timing mechanism to allow stable kinetochore–microtubule attachments only after bipolar spindle formation, thus preventing attachment errors. Chromosome segregation during cell division depends on stable attachment of kinetochores to spindle microtubules. Mitotic spindle formation and kinetochore–microtubule (K-MT) capture typically occur within minutes of nuclear envelope breakdown. In contrast, during meiosis I in mouse oocytes, formation of the acentrosomal bipolar spindle takes 3–4 h, and stabilization of K-MT attachments is delayed an additional 3–4 h. The mechanism responsible for this delay, which likely prevents stabilization of erroneous attachments during spindle formation, is unknown. Here we show that during meiosis I, attachments are regulated by CDK1 activity, which gradually increases through prometaphase and metaphase I. Partial reduction of CDK1 activity delayed formation of stable attachments, whereas a premature increase in CDK1 activity led to precocious formation of stable attachments and eventually lagging chromosomes at anaphase I. These results indicate that the slow increase in CDK1 activity in meiosis I acts as a timing mechanism to allow stable K-MT attachments only after bipolar spindle formation, thus preventing attachment errors.
Collapse
Affiliation(s)
- Olga Davydenko
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | |
Collapse
|
53
|
Gonzalez-Garcia JR, Machaty Z, Lai FA, Swann K. The dynamics of PKC-induced phosphorylation triggered by Ca2+ oscillations in mouse eggs. J Cell Physiol 2013; 228:110-9. [PMID: 22566126 PMCID: PMC3746124 DOI: 10.1002/jcp.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
Abstract
Fertilization of mammalian eggs is characterized by a series of Ca(2+) oscillations triggered by a phospholipase C activity. These Ca(2+) increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC-induced phosphorylation in mouse eggs, alongside Ca(2+) oscillations, using fluorescent C-kinase activity reporter (CKAR) probes. Ca(2+) oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr(2+) all caused repetitive increases in PKC-induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca(2+) transients. High frequency oscillations caused by PLCζ led to an integration of PKC-induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca(2+) oscillations using an isoform-specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ-specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC-induced phosphorylation outlasts each Ca(2+) increase in mouse eggs but that signal integration only occurs at a non-physiological, high Ca(2+) oscillation frequency. The results also suggest that Ca(2+) -induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization.
Collapse
Affiliation(s)
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue UniversityWest Lafayette, Indiana
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| |
Collapse
|
54
|
Fonovich T, Magnarelli G. Phosphoinositide and phospholipid phosphorylation and hydrolysis pathways<br/>—Organophosphate and organochlorine pesticides effects<br>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.33a004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
55
|
Chalupnikova K, Nejepinska J, Svoboda P. Production and application of long dsRNA in mammalian cells. Methods Mol Biol 2013; 942:291-314. [PMID: 23027058 DOI: 10.1007/978-1-62703-119-6_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA (dsRNA) is involved in different biological processes. At least three different pathways can respond to dsRNA in mammals. One of these pathways is RNA interference (RNAi) where long dsRNA induces sequence-specific degradation of transcripts carrying sequences complementary to dsRNA. Long dsRNA is also a potent trigger of the interferon pathway, a sequence-independent response that leads to global suppression of translation and global RNA degradation. In addition, dsRNA can be edited by adenosine deamination, which may result in nuclear retention and degradation of dsRNA or in alteration of RNA coding potential. Here, we provide a technical review summarizing different strategies of long dsRNA usage. While the review is largely focused on long dsRNA-induced RNAi in mammalian cells, it also provides helpful information on both the in vitro production and in vivo expression of dsRNAs. We present an overview of currently available vectors for dsRNA expression and provide the latest update on oocyte-specific transgenic RNAi approaches.
Collapse
|
56
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
57
|
Abstract
RNA interference (RNAi), a sequence-specific mRNA degradation induced by double-stranded RNA (dsRNA), is a common approach employed to specifically silence genes. Experimental RNAi in plant and invertebrate models is frequently induced by long dsRNA. However, in mammals, short RNA molecules are used preferentially since long dsRNA can provoke sequence-independent type I interferon response. A notable exception are mammalian oocytes where the interferon response is suppressed and long dsRNA is a potent and specific trigger of RNAi. Transgenic RNAi is an adaptation of RNAi allowing for inducing sequence-specific silencing upon expression of dsRNA. A decade ago, we have developed a vector for oocyte-specific expression of dsRNA, which has been used to study gene function in mouse oocytes on numerous occasions. This review provides an overview and discusses benefits and drawbacks encountered by us and our colleagues while working with the oocytes-specific transgenic RNAi system.
Collapse
Affiliation(s)
- Radek Malik
- Institute of Molecular Genetics AS CR, Videnska 1083, Prague, Czech Republic
| | | |
Collapse
|
58
|
Lee MB, Kooistra M, Zhang B, Slow S, Fortier AL, Garrow TA, Lever M, Trasler JM, Baltz JM. Betaine homocysteine methyltransferase is active in the mouse blastocyst and promotes inner cell mass development. J Biol Chem 2012; 287:33094-103. [PMID: 22847001 DOI: 10.1074/jbc.m112.365478] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methyltransferases are an important group of enzymes with diverse roles that include epigenetic gene regulation. The universal donor of methyl groups for methyltransferases is S-adenosylmethionine (AdoMet), which in most cells is synthesized using methyl groups carried by a derivative of folic acid. Another mechanism for AdoMet synthesis uses betaine as the methyl donor via the enzyme betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5), but it has been considered to be significant only in liver. Here, we show that mouse preimplantation embryos contain endogenous betaine; Bhmt mRNA is first expressed at the morula stage; BHMT is abundant at the blastocyst stage but not other preimplantation stages, and BHMT activity is similarly detectable in blastocyst homogenates but not those of two-cell or morula stage embryos. Knockdown of BHMT protein levels and reduction of enzyme activity using Bhmt-specific antisense morpholinos or a selective BHMT inhibitor resulted in decreased development of embryos to the blastocyst stage in vitro and a reduction in inner cell mass cell number in blastocysts. The detrimental effects of BHMT knockdown were fully rescued by the immediate methyl-carrying product of BHMT, methionine. A physiological role for betaine and BHMT in blastocyst viability was further indicated by increased fetal resorption following embryo transfer of BHMT knockdown blastocysts versus control. Thus, mouse blastocysts are unusual in being able to generate AdoMet not only by the ubiquitous folate-dependent mechanism but also from betaine metabolized by BHMT, likely a significant pool of methyl groups in blastocysts.
Collapse
Affiliation(s)
- Martin B Lee
- Ottawa Hospital Research Institute, Ottawa, Ontario K1Y4E9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. Proc Natl Acad Sci U S A 2012; 109:E2215-22. [PMID: 22778418 DOI: 10.1073/pnas.1120517109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aurora kinases are highly conserved, essential regulators of cell division. Two Aurora kinase isoforms, A and B (AURKA and AURKB), are expressed ubiquitously in mammals, whereas a third isoform, Aurora C (AURKC), is largely restricted to germ cells. Because AURKC is very similar to AURKB, based on sequence and functional analyses, why germ cells express AURKC is unclear. We report that Aurkc(-/-) females are subfertile, and that AURKB function declines as development progresses based on increasing severity of cytokinesis failure and arrested embryonic development. Furthermore, we find that neither Aurkb nor Aurkc is expressed after the one-cell stage, and that AURKC is more stable during maturation than AURKB using fluorescently tagged reporter proteins. In addition, Aurkc mRNA is recruited during maturation. Because maturation occurs in the absence of transcription, posttranscriptional regulation of Aurkc mRNA, coupled with the greater stability of AURKC protein, provides a means to ensure sufficient Aurora kinase activity, despite loss of AURKB, to support both meiotic and early embryonic cell divisions. These findings suggest a model for the presence of AURKC in oocytes: that AURKC compensates for loss of AURKB through differences in both message recruitment and protein stability.
Collapse
|
60
|
Bernhardt ML, Kong BY, Kim AM, O'Halloran TV, Woodruff TK. A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 2012; 86:114. [PMID: 22302686 DOI: 10.1095/biolreprod.111.097253] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise coordination of meiotic progression is a critical determinant of an egg's capacity to be fertilized successfully, and zinc has emerged as a key regulatory element in this process. An early manifestation of a regulatory role for this transition metal is the significant increase in total intracellular zinc. This accumulation is essential for meiotic progression beyond telophase I and the establishment of meiotic arrest at metaphase II. The subsequent developmental event, fertilization, induces a rapid expulsion of labile zinc that is a hallmark event in meiotic resumption. In the present study, we show that the zinc fluxes work, in part, by altering the activity of the cytostatic factor (CSF), the cellular activity required for the establishment and maintenance of metaphase II arrest in the mature, unfertilized egg. We propose a model in which zinc exerts concentration-dependent regulation of meiosis through the CSF component EMI2, a zinc-binding protein. Together, the data support the conclusion that zinc itself, through its interaction with EMI2, is a central component of the CSF.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
61
|
Calcium Oscillations, Oocyte Activation, and Phospholipase C zeta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1095-121. [DOI: 10.1007/978-94-007-2888-2_50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, Lee KA. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS One 2011; 6:e23304. [PMID: 21850267 PMCID: PMC3151302 DOI: 10.1371/journal.pone.0023304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr(2+), Gas6-silenced MII oocytes had markedly reduced Ca(2+) oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Yuna Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eunju Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
63
|
Baumann C, Viveiros MM, De La Fuente R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010; 6:e1001137. [PMID: 20885787 PMCID: PMC2944790 DOI: 10.1371/journal.pgen.1001137] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/24/2010] [Indexed: 01/10/2023] Open
Abstract
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis. The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Maria M. Viveiros
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
64
|
Svoboda P, Stein P. RNAi experiments in mouse oocytes and early embryos. Cold Spring Harb Protoc 2010; 2009:pdb.top56. [PMID: 20147032 DOI: 10.1101/pdb.top56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The discovery of RNA interference (RNAi) in 1998 ushered in a new era in biology. RNAi currently serves as a favorite approach for inhibition of gene function in many areas of research. This article provides a brief review of RNAi and discussion of the benefits and drawbacks of using long double-stranded RNA (dsRNA) in mammalian oocytes and early embryos. We also provide an introduction to protocols for RNAi experiments in mouse, including preparation and microinjection of dsRNA into mouse oocytes and early embryos, and preparation and testing of constructs for transgenic RNAi based on long hairpin RNA expression.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
65
|
Fukami K, Inanobe S, Kanemaru K, Nakamura Y. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 2010; 49:429-37. [PMID: 20553968 DOI: 10.1016/j.plipres.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Spatial and temporal activation of phosphoinositide turnover enables eukaryotic cells to perform various functions such as cell proliferation/differentiation, fertilization, neuronal functions, and cell motility. In this system, phospholipase C (PLC) is a key enzyme, which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) into two second messengers, inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and diacylglycerol (DAG). Ins(1,4,5)P(3) triggers the release of calcium from intracellular stores, and DAG mediates the activation of protein kinase C (PKC). In parallel, PI(4,5)P(2) also directly regulates a variety of cellular functions, including cytoskeletal remodeling, cytokinesis, phagocytosis, membrane dynamics, and channel activity, in addition to its role as a substrate for PLC and phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5)P(3). An imbalance of these phosphoinositides contributes to the pathogeneses of various human diseases. Therefore, strict regulation of the levels of PI(4,5)P(2) and PI(3,4,5)P(3) by PLC or other interconverting enzymes is necessary for cellular functions. In this review, we focus on the roles of PLC as a calcium-regulating enzyme and as a modulator of the phosphoinositide balance.
Collapse
Affiliation(s)
- Kiyoko Fukami
- Laboratory of the Genome and Biosignals, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | |
Collapse
|
66
|
Murai S, Stein P, Buffone MG, Yamashita S, Schultz RM. Recruitment of Orc6l, a dormant maternal mRNA in mouse oocytes, is essential for DNA replication in 1-cell embryos. Dev Biol 2010; 341:205-12. [PMID: 20219456 PMCID: PMC2854205 DOI: 10.1016/j.ydbio.2010.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 01/08/2023]
Abstract
Mouse oocytes acquire the ability to replicate DNA during meiotic maturation, presumably to ensure that DNA replication does not occur precociously between MI and MII and only after fertilization. Acquisition of DNA replication competence requires protein synthesis, but the identity of the proteins required for DNA replication is poorly described. In Xenopus, the only component missing for DNA replication competence is CDC6, which is synthesized from a dormant maternal mRNA recruited during oocyte maturation, and a similar situation also occurs during mouse oocyte maturation. We report that ORC6L is another component required for acquisition of DNA replication competence that is absent in mouse oocytes. The dormant maternal Orc6l mRNA is recruited during maturation via a CPE present in its 3' UTR. RNAi-mediated ablation of maternal Orc6l mRNA prevents the maturation-associated increase in ORC6L protein and inhibits DNA replication in 1-cell embryos. These results suggest that mammalian oocytes have more complex mechanisms to establish DNA replication competence when compared to their Xenopus counterparts.
Collapse
Affiliation(s)
- Shin Murai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | | | | | |
Collapse
|
67
|
|
68
|
Buffone MG, Schindler K, Schultz RM. Overexpression of CDC14B causes mitotic arrest and inhibits zygotic genome activation in mouse preimplantation embryos. Cell Cycle 2009; 8:3904-13. [PMID: 19923902 DOI: 10.4161/cc.8.23.10074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following fertilization the transition from a highly differentiated oocyte to a totipotent 2-cell embryo requires two unique mitotic cell cycles. The first cell cycle is characterized by a prolonged G(1) phase, DNA replication (S phase) that occurs separately in the female and male pronuclei, and a short G(2) phase that occur in the absence of cell growth. During the second cell cycle, G(1) is short whereas G(2) is prolonged and occurs concurrently with zygotic genome activation, which is essential for progression past the 2-cell stage. CDC14B, a dual specificity phosphatase that counteracts cyclin dependent kinase 1 (CDK1/CDC2A) action, regulates mitosis in somatic cells and prevents premature meiotic resumption in mouse oocytes. It is not known if CDC14B plays a role during the unique mitotic cell cycles of preimplantation development. We report that CDC14B is present in mouse embryos and localizes to mitotic centrosomes and spindles. Overexpressing CDC14B in 1-cell embryos results in 40% and 60% of the embryos arresting at the 1- and 2-cell stages, respectively. Embryos arrested at the 1-cell stage contained reduced CDC2A activity, whereas embryos arrested at the 2-cell stage were in G(2) and failed to activate the zygotic genome. In contrast, overexpressing CDC14B in meiotically-incompetent oocytes, which are arrested in a G(2)-like state and are transcriptionally active, does not repress global transcription. These data suggest that CDC14B is a negative regulator of the 1-to-2-cell transition and of zygotic genome activation in mouse embryogenesis.
Collapse
Affiliation(s)
- Mariano G Buffone
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | | | | |
Collapse
|
69
|
Kidder BL, Palmer S, Knott JG. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 2009; 27:317-28. [PMID: 19056910 DOI: 10.1634/stemcells.2008-0710] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SWI/SNF-Brg1 chromatin remodeling protein plays critical roles in cell-cycle control and differentiation through regulation of gene expression. Loss of Brg1 in mice results in early embryonic lethality, and recent studies have implicated a role for Brg1 in somatic stem cell self-renewal and differentiation. However, little is known about Brg1 function in preimplantation embryos and embryonic stem (ES) cells. Here we report that Brg1 is required for ES cell self-renewal and pluripotency. RNA interference-mediated knockdown of Brg1 in blastocysts caused aberrant expression of Oct4 and Nanog. In ES cells, knockdown of Brg1 resulted in phenotypic changes indicative of differentiation, downregulation of self-renewal and pluripotency genes (e.g., Oct4, Sox2, Sall4, Rest), and upregulation of differentiation genes. Using genome-wide promoter analysis (chromatin immunoprecipitation) we found that Brg1 occupied the promoters of key pluripotency-related genes, including Oct4, Sox2, Nanog, Sall4, Rest, and Polycomb group (PcG) proteins. Moreover, Brg1 co-occupied a subset of Oct4, Sox2, Nanog, and PcG protein target genes. These results demonstrate an important role for Brg1 in regulating self-renewal and pluripotency in ES cells.
Collapse
|
70
|
Duncan FE, Chiang T, Schultz RM, Lampson MA. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol Reprod 2009; 81:768-76. [PMID: 19553597 DOI: 10.1095/biolreprod.109.077909] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Advanced maternal age is unequivocally associated with increased aneuploidy in human eggs and infertility, but the molecular basis for this phenomenon is unknown. An age-dependent deterioration of the spindle assembly checkpoint (SAC) has been proposed as a probable cause of aneuploidy. Accurate chromosome segregation depends on correct chromosome attachment to spindle microtubules, and the SAC provides time for this process by delaying anaphase onset until all chromosomes are stably attached. If SAC function decreases with age, oocytes from reproductively old mice would enter anaphase of meiosis I (AI) prematurely, leading to chromosome segregation errors and aneuploid eggs. Although intuitively appealing, this hypothesis is largely untested. We used a natural reproductive aging mouse model to determine if a defective SAC is the primary cause of aneuploidy in eggs. We tracked the progress of individual oocytes from young and old mice through meiosis I by time-lapse microscopy and counted chromosomes in the resulting eggs. This data set allowed us to correlate the timing of AI onset with aneuploidy in individual oocytes. We found that oocytes from old mice do not enter AI prematurely compared to young counterparts despite a 4-fold increase in the incidence of aneuploidy. Moreover, we did not observe a correlation between the timing of AI onset and aneuploidy in individual oocytes. When SAC function was challenged with a low concentration of the spindle toxin nocodazole, oocytes from both young and old mice arrested at meiosis I, which is indicative of a functional checkpoint. These findings indicate that a defective SAC is unlikely the primary cause of aneuploidy associated with maternal age.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
71
|
Gómez-Fernández C, Pozo-Guisado E, Gañán-Parra M, Perianes MJ, Alvarez IS, Martín-Romero FJ. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry. Reproduction 2009; 138:211-21. [PMID: 19470709 DOI: 10.1530/rep-09-0126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcium waves represent one of the most important intracellular signaling events in oocytes at fertilization required for the exit from metaphase arrest and the resumption of the cell cycle. The molecular mechanism ruling this signaling has been described in terms of the contribution of intracellular calcium stores to calcium spikes. In this work, we considered the possible contribution of store-operated calcium entry (SOCE) to this signaling, by studying the localization of the protein STIM1 in oocytes. STIM1 has been suggested to play a key role in the recruitment and activation of plasma membrane calcium channels, and we show here that mature mouse oocytes express this protein distributed in discrete clusters throughout their periphery in resting cells, colocalizing with the endoplasmic reticulum marker calreticulin. However, immunolocalization of the endogenous STIM1 showed considerable redistribution over larger areas or patches covering the entire periphery of the oocyte during Ca(2+) store depletion induced with thapsigargin or ionomycin. Furthermore, pharmacological activation of endogenous phospholipase C induced a similar pattern of redistribution of STIM1 in the oocyte. Finally, fertilization of mouse oocytes revealed a significant and rapid relocalization of STIM1, similar to that found after pharmacological Ca(2+) store depletion. This particular relocalization supports a role for STIM1 and SOCE in the calcium signaling during early stages of fertilization.
Collapse
Affiliation(s)
- Carolina Gómez-Fernández
- Departamento de Biología Celular, Reproductive and Developmental Biology Group (ReDes), Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 2009; 15:573-85. [DOI: 10.1093/humupd/dmp014] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
73
|
Schindler K, Schultz RM. CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. Biol Reprod 2009; 80:795-803. [PMID: 19129509 DOI: 10.1095/biolreprod.108.074906] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiotic maturation in oocytes is a prolonged process that is unique because of cell cycle arrests at prophase of meiosis I (MI) and at metaphase of meiosis II (MII). Fluctuations in cyclin-dependent kinase 1 (CDK1/CDC2A) activity govern meiotic progression, yet little is known about how these fluctuations are achieved. CDC14 is a highly conserved dual-specificity phosphatase that counteracts the function of proteins phosphorylated by CDK. Mammals contain two CDC14 homologs, CDC14A and CDC14B. We report that CDC14B localizes with the meiotic spindle in mouse oocytes, and (unlike somatic cells) it does not localize in the nucleolus. Oocytes that overexpress CDC14B are significantly delayed in resuming meiosis and fail to progress to MII, whereas oocytes depleted of CDC14B spontaneously resume meiosis under conditions that normally inhibit meiotic resumption. Depletion of FZR1 (CDH1), a regulatory subunit of the anaphase-promoting complex/cyclosome that targets cyclin B1 (CCNB1) for ubiquitin-mediated proteolysis, partially restores normal timing of meiotic resumption in oocytes with excess CDC14B. These studies also reveal that experimentally altering CDC14B levels generates eggs with abnormal spindles and with chromosome alignment perturbations. Our data indicate that CDC14B is a negative regulator of meiotic resumption and may regulate MI in mouse oocytes.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
74
|
Regulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCzeta-mediated mouse egg activation. Biol Cell 2008; 100:633-43. [PMID: 18471090 PMCID: PMC2615188 DOI: 10.1042/bc20080033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION At fertilization in mammalian eggs, the sperm induces a series of Ca(2+) oscillations via the production of inositol 1,4,5-trisphosphate. Increased inositol 1,4,5-trisphosphate production appears to be triggered by a sperm-derived PLCzeta (phospholipase C-zeta) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5-bisphosphate hydrolytic activity of PLCzeta implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization-mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. RESULTS We investigated PLCzeta- and fertilization-mediated generation of DAG in mouse eggs by monitoring plasma-membrane translocation of a fluorescent DAG-specific reporter. Consistent plasma-membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCzeta, was barely detectable. However, when PLCzeta is overexpressed in eggs, significant plasma-membrane DAG production occurs in concert with a series of unexpected secondary high-frequency Ca(2+) oscillations. We show that these secondary Ca(2+) oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca(2+) oscillations appears to involve Ca(2+) influx and the loading of thapsigargin-sensitive Ca(2+) stores. CONCLUSIONS Our results suggest that overproduction of DAG in PLCzeta-injected eggs can lead to PKC-mediated Ca(2+) influx and subsequent overloading of Ca(2+) stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca(2+) homoeostasis via excessive Ca(2+) influx.
Collapse
|