51
|
Fraire-Zamora JJ, Jaeger J, Solon J. Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita. eLife 2018. [PMID: 29537962 PMCID: PMC5851697 DOI: 10.7554/elife.33807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.
Collapse
Affiliation(s)
- Juan Jose Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Johannes Jaeger
- Universitat Pompeu Fabra, Barcelona, Spain.,System Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Konrad Lorenz Institute for Evolution and Cognition Research (KLI), Klosterneuburg, Austria
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
52
|
Panfilio KA, Angelini DR. By land, air, and sea: hemipteran diversity through the genomic lens. CURRENT OPINION IN INSECT SCIENCE 2018; 25:106-115. [PMID: 29602356 DOI: 10.1016/j.cois.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.
Collapse
Affiliation(s)
- Kristen A Panfilio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; Institute of Zoology: Developmental Biology, University of Cologne, 50674 Cologne, Germany.
| | - David R Angelini
- Department of Biology, Colby College, Waterville, ME 04901, United States
| |
Collapse
|
53
|
Dan H, Ikeda N, Fujikami M, Nakabachi A. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS One 2017; 12:e0189779. [PMID: 29240843 PMCID: PMC5730177 DOI: 10.1371/journal.pone.0189779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a serious pest worldwide, transmitting Candidatus Liberibacter spp. (Alphaproteobacteria), the causative agents of a devastating citrus disease known as huanglongbing or greening disease. In a symbiotic organ called the bacteriome, D. citri possesses an organelle-like defensive symbiont, Candidatus Profftella armatura (Betaproteobacteria), and a nutritional symbiont, Ca. Carsonella ruddii (Gammaproteobacteria). Drastically reduced symbiont genomes and metabolic complementarity among the symbionts and D. citri indicate their mutually indispensable association. Moreover, horizontal gene transfer between the Profftella and Liberibacter lineages suggests ecological and evolutionary interactions between the bacteriome symbiont and the HLB pathogen. Using fluorescence in situ hybridization, we examined the behavior of Profftella and Carsonella during transovarial transmission and the development of D. citri. In the bacteriomes of sexually-mature female adults, symbionts transformed from an extremely elongated tubular form into spherical or short-rod forms, which migrated toward the ovary. The symbionts then formed mosaic masses, which entered at the posterior pole of the vitellogenic oocytes. After anatrepsis, Carsonella and Profftella migrated to the central and peripheral parts of the mass, respectively. Following the appearance of host nuclei, the mass cellularized, segregating Carsonella and Profftella in the central syncytium and peripheral uninucleate bacteriocytes, respectively. Subsequently, the uninucleate bacteriocytes harboring Profftella assembled at the posterior pole, while the syncytium, containing Carsonella, sat on the anterior side facing the germ band initiating katatrepsis. During dorsal closure, the syncytium was divided into uninuclear bacteriocytes, which surrounded the mass of bacteriocytes containing Profftella. Once fully surrounded, the bacteriocyte mass containing Profftella was fused into a syncytium. Prior to hatching, a pair of wing-like protrusions arose from both lateral sides of the bacteriome, which continued to grow throughout the nymphal stages. These findings provide a foundation for better understanding the intricate relationship between D. citri and its microbiota.
Collapse
Affiliation(s)
- Hiroki Dan
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naoya Ikeda
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Masaya Fujikami
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
54
|
Simon S, Sagasser S, Saccenti E, Brugler MR, Schranz ME, Hadrys H, Amato G, DeSalle R. Comparative transcriptomics reveal developmental turning points during embryogenesis of a hemimetabolous insect, the damselfly Ischnura elegans. Sci Rep 2017; 7:13547. [PMID: 29051502 PMCID: PMC5648782 DOI: 10.1038/s41598-017-13176-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Identifying transcriptional changes during embryogenesis is of crucial importance for unravelling evolutionary, molecular and cellular mechanisms that underpin patterning and morphogenesis. However, comparative studies focusing on early/embryonic stages during insect development are limited to a few taxa. Drosophila melanogaster is the paradigm for insect development, whereas comparative transcriptomic studies of embryonic stages of hemimetabolous insects are completely lacking. We reconstructed the first comparative transcriptome covering the daily embryonic developmental progression of the blue-tailed damselfly Ischnura elegans (Odonata), an ancient hemimetabolous representative. We identified a "core" set of 6,794 transcripts - shared by all embryonic stages - which are mainly involved in anatomical structure development and cellular nitrogen compound metabolic processes. We further used weighted gene co-expression network analysis to identify transcriptional changes during Odonata embryogenesis. Based on these analyses distinct clusters of transcriptional active sequences could be revealed, indicating that embryos at different development stages have their own transcriptomic profile according to the developmental events and leading to sequential reprogramming of metabolic and developmental genes. Interestingly, a major change in transcriptionally active sequences is correlated with katatrepsis (revolution) during mid-embryogenesis, a 180° rotation of the embryo within the egg and specific to hemimetabolous insects.
Collapse
Affiliation(s)
- Sabrina Simon
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA.
| | - Sven Sagasser
- Ludwig Institute for Cancer Research, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeng 4, 6708 WE, Wageningen, The Netherlands
| | - Mercer R Brugler
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
- Biological Sciences Department, NYC College of Technology, City University of New York, 300 Jay Street, Brooklyn, New York, 11201, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Heike Hadrys
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
- ITZ, Ecology&Evolution, University of Veterinary Medicine Hanover, Buenteweg 17d, D-30559, Hannover, Germany
- Yale University, Department of Ecology & Evolutionary Biology, 165 Prospect Street, New Haven, CT, 06511, USA
| | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
| |
Collapse
|
55
|
Fujita M, Machida R. Embryonic development of Eucorydia yasumatsui Asahina, with special reference to external morphology (Insecta: Blattodea, Corydiidae). J Morphol 2017; 278:1469-1489. [PMID: 28707769 DOI: 10.1002/jmor.20725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022]
Abstract
As the first step in the comparative embryological study of Blattodea, with the aim of reconstructing the groundplan and phylogeny of Dictyoptera and Polyneoptera, the embryonic development of a corydiid was examined and described in detail using Eucorydia yasumatsui. Ten to fifteen micropyles are localized on the ventral side of the egg, and aggregated symbiont bacterial "mycetomes" are found in the egg. The embryo is formed by the fusion of paired blastodermal regions, with higher cellular density on the ventral side of the egg. This type of embryo formation, regarded as one of the embryological autapomorphies of Polyneoptera, was first demonstrated for "Blattaria" in the present study. The embryo undergoes embryogenesis of the short germ band type, and elongates to its full length on the ventral side of the egg. The embryo undergoes katatrepsis and dorsal closure, and then finally, it acquires its definitive form, keeping its original position on the ventral side of the egg, with its anteroposterior axis never reversed throughout development. The information obtained was compared with that of previous studies on other insects. "Micropyles grouped on the ventral side of the egg" is thought to be a part of the groundplan of Dictyoptera, and "possession of bacteria in the form of mycetomes" to be an apomorphic groundplan of Blattodea. Corydiid embryos were revealed to perform blastokinesis of the "non-reversion type (N)", as reported in blaberoid cockroaches other than Corydiidae ("Ectobiidae," Blaberidae, etc.) and in Mantodea; the embryos of blattoid cockroaches (Blattidae and Cryptocercidae) and Isoptera undergo blastokinesis of the "reversion type (R)," in which the anteroposterior axis of the embryo is reversed during blastokinesis. Dictyopteran blastokinesis types can be summarized as "Mantodea (N) + Blattodea [= Blaberoidea (N) + Blattoidea (R) + Isoptera (R)]".
Collapse
Affiliation(s)
- Mari Fujita
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira Kogen, Ueda Nagano, 386-2204, Japan
| | - Ryuichiro Machida
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadaira Kogen, Ueda Nagano, 386-2204, Japan
| |
Collapse
|
56
|
Chipman AD. Oncopeltus fasciatus
as an evo-devo research organism. Genesis 2017; 55. [DOI: 10.1002/dvg.23020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology; Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus; Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
57
|
Horn T, Panfilio KA. Novel functions for Dorsocross in epithelial morphogenesis in the beetle Tribolium castaneum. Development 2016; 143:3002-11. [PMID: 27407103 DOI: 10.1242/dev.133280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Epithelial morphogenesis, the progressive restructuring of tissue sheets, is fundamental to embryogenesis. In insects, not only embryonic tissues but also extraembryonic (EE) epithelia play a crucial role in shaping the embryo. In Drosophila, the T-box transcription factor Dorsocross (Doc) is essential for EE tissue maintenance and therefore embryo survival. However, Drosophila possesses a single amnioserosa, whereas most insects have a distinct amnion and serosa. How does this derived situation compare with Doc function in the ancestral context of two EE epithelia? Here, we investigate the Doc orthologue in the red flour beetle, Tribolium castaneum, which is an excellent model for EE tissue complement and for functional, fluorescent live imaging approaches. Surprisingly, we find that Tc-Doc controls all major events in Tribolium EE morphogenesis without affecting EE tissue specification or maintenance. These macroevolutionary changes in function between Tribolium and Drosophila are accompanied by regulatory network changes, where BMP signaling and possibly the transcription factor Hindsight are downstream mediators. We propose that the ancestral role of Doc was to control morphogenesis and discuss how Tc-Doc could provide spatial precision for remodeling the amnion-serosa border.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| |
Collapse
|
58
|
Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn 2016; 245:558-68. [PMID: 26878336 DOI: 10.1002/dvdy.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
Despite being a short-lived, extraembryonic tissue, the amnioserosa plays critical roles in the major morphogenetic events of Drosophila embryogenesis. These roles involve both cellular mechanics and biochemical signaling. Its best-known role is in dorsal closure-well studied by both developmental biologists and biophysicists-but the amnioserosa is also important during earlier developmental stages. Here, we provide an overview of amnioserosa specification and its role in several key developmental stages: germ band extension, germ band retraction, and dorsal closure. We also compare embryonic development in Drosophila and its relative Megaselia to highlight how the amnioserosa and its roles have evolved. Placed in context, the amnioserosa provides a fascinating example of how signaling, mechanics, and morphogen patterns govern cell-type specification and subsequent morphogenetic changes in cell shape, orientation, and movement. Developmental Dynamics 245:558-568, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica E Lacy
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystems Research & Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
59
|
Schmidt-Ott U, Kwan CW. Morphogenetic functions of extraembryonic membranes in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:86-92. [PMID: 27436557 DOI: 10.1016/j.cois.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 06/06/2023]
Abstract
Morphogenetic functions of the amnioserosa, the serosa, the amnion, and the yolk sac are reviewed on the basis of recent studies in flies (Drosophila, Megaselia), beetles (Tribolium), and hemipteran bugs (Oncopeltus). Three hypotheses are presented. First, it is suggested that the amnioserosa of Drosophila and the dorsal amnion of other fly species function in a similar manner. Second, it is proposed that in many species with an amniotic cavity, the amnion determines the site of serosa rupture, which, through interactions between the serosa and the amnion, enables the embryo to break free from the amniotic cavity and to close its backside. Finally, it is concluded that the yolk sac is likely an important player in insect morphogenesis.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Chun Wai Kwan
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
60
|
Hilbrant M, Horn T, Koelzer S, Panfilio KA. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 2016; 5. [PMID: 26824390 PMCID: PMC4786423 DOI: 10.7554/elife.13834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues - the amnion and serosa - actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the EE tissues dynamically form a basal-basal epithelial bilayer, contradicting the previous hypothesis of EE intercalation. We find that the EE tissues repeatedly detach and reattach throughout development and have distinct roles. Quantitative live imaging analyses show that the amnion initiates EE rupture in a specialized anterior-ventral cap. RNAi phenotypes demonstrate that the serosa contracts autonomously. Thus, apposition in a bilayer enables the amnion as 'initiator' to coordinate with the serosa as 'driver' to achieve withdrawal. This EE strategy may reflect evolutionary changes within the holometabolous insects and serves as a model to study interactions between developing epithelia.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Thorsten Horn
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Stefan Koelzer
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| |
Collapse
|
61
|
Horn T, Hilbrant M, Panfilio KA. Evolution of epithelial morphogenesis: phenotypic integration across multiple levels of biological organization. Front Genet 2015; 6:303. [PMID: 26483835 PMCID: PMC4586499 DOI: 10.3389/fgene.2015.00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 11/29/2022] Open
Abstract
Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In this Perspective, we argue that examining the evolution of embryonic morphogenesis requires the simultaneous consideration of different levels of biological organization: (1) genes, (2) cells, (3) tissues, and (4) the entire egg, or other gestational context. To illustrate the importance of integrating these levels, we use the extraembryonic epithelia of insects—a lineage-specific innovation and evolutionary hotspot—as an exemplary case study. We discuss how recent functional data, primarily from RNAi experiments targeting the Hox3/Zen and U-shaped group transcription factors, provide insights into developmental processes at all four levels. Comparisons of these data from several species both challenge and inform our understanding of homology, in assessing how the process of epithelial morphogenesis has itself evolved.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| | - Maarten Hilbrant
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| |
Collapse
|
62
|
Liu W, Chai D, Wang C, Li Q, Lei J, Yang M, Dai F, Lu C. The extramacrochaetae gene is required for blastokinesis in silkworm, Bombyx mori. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:405-9. [PMID: 26055521 DOI: 10.1002/jez.b.22626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
In silkworm, Bombyx mori Linnaeus (Lepidoptera: Bombycidae), blastokinesis results in embryo reversal from ventrally to dorsally convex flexion. In this study, we showed that the extramacrochaetae (emc) gene is required for blastokinesis in silkworm. Depletion of Bmemc expression via RNA interference led to severe phenotypic defects in blastokinesis. The defective embryos failed to invert their body sides during blastokinesis. This caused the posterior half of the abdomen to abnormally fold back toward the dorsal side, forming a U-shaped morphology. Dorsal closure was also disrupted. Our results suggest that Bmemc is involved in blastokinesis of silkworm embryos. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 405-409, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dezhi Chai
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Cailian Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Qing Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jinfeng Lei
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Min Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
63
|
Sachs L, Chen YT, Drechsler A, Lynch JA, Panfilio KA, Lässig M, Berg J, Roth S. Dynamic BMP signaling polarized by Toll patterns the dorsoventral axis in a hemimetabolous insect. eLife 2015; 4:e05502. [PMID: 25962855 PMCID: PMC4423117 DOI: 10.7554/elife.05502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Toll-dependent patterning of the dorsoventral axis in Drosophila represents one of the best understood gene regulatory networks. However, its evolutionary origin has remained elusive. Outside the insects Toll is not known for a patterning function, but rather for a role in pathogen defense. Here, we show that in the milkweed bug Oncopeltus fasciatus, whose lineage split from Drosophila's more than 350 million years ago, Toll is only required to polarize a dynamic BMP signaling network. A theoretical model reveals that this network has self-regulatory properties and that shallow Toll signaling gradients are sufficient to initiate axis formation. Such gradients can account for the experimentally observed twinning of insect embryos upon egg fragmentation and might have evolved from a state of uniform Toll activity associated with protecting insect eggs against pathogens.
Collapse
Affiliation(s)
- Lena Sachs
- Institute for Developmental Biology, University of Cologne, Köln, Germany
| | - Yen-Ta Chen
- Institute for Developmental Biology, University of Cologne, Köln, Germany
| | - Axel Drechsler
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Bonn, Germany
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
| | - Michael Lässig
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - Johannes Berg
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Köln, Germany
| |
Collapse
|
64
|
Jacobs CGC, Braak N, Lamers GEM, van der Zee M. Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of Knickkopf1, Retroactive and Laccase2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:7-12. [PMID: 25747006 DOI: 10.1016/j.ibmb.2015.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Insects have been extraordinary successful in colonizing terrestrial habitats and this success is partly due to a protective cuticle that mainly contains chitin and proteins. The cuticle has been well studied in larvae and adults, but little attention has been paid to the cuticle of the egg. This cuticle is secreted by the serosa, an extraembryonic epithelium that surrounds the yolk and embryo in all insect eggs, but was lost in the Schizophoran flies to which Drosophila belongs. We therefore set out to investigate serosal cuticle formation and function in a beetle (Tribolium castaneum) using RNAi-mediated knockdown of three candidate genes known to structure chitin in the adult cuticle, and we aimed to identify other serosal cuticle genes using RNA sequencing. Knockdown of Knickkopf (TcKnk-1) or Retroactive (TcRtv) affects the laminar structure of the serosal cuticle, as revealed by Transmission Electron Microscopy in knockdown eggs. In the absence of this laminar structure, significantly fewer eggs survive at low humidity compared to wild-type eggs. Survival in dry conditions is also adversely affected when cross-linking among proteins and chitin is prevented by Laccase2 (TcLac-2) RNAi. Finally, we compare the transcriptomes of wild-type eggs to serosa-less eggs and find serosa-biased expression of 21 cuticle-related genes including structural components, chitin deacetylases and chitinases. Our data indicate that the serosal cuticle utilizes the same machinery for structuring the cuticle as adults. We demonstrate that the structure of the cuticle is crucial for desiccation resistance, and we put forward the serosal cuticle of Tribolium as an excellent model to study the ecological properties of the insect cuticle.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| | - Nora Braak
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| | - Gerda E M Lamers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| |
Collapse
|
65
|
Donoughe S, Extavour CG. Embryonic development of the cricket Gryllus bimaculatus. Dev Biol 2015; 411:140-56. [PMID: 25907229 DOI: 10.1016/j.ydbio.2015.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States
| | - Cassandra G Extavour
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States; Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States.
| |
Collapse
|
66
|
Toll signals regulate dorsal-ventral patterning and anterior-posterior placement of the embryo in the hemipteran Rhodnius prolixus. EvoDevo 2014; 5:38. [PMID: 25908955 PMCID: PMC4407881 DOI: 10.1186/2041-9139-5-38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect embryonic dorso-ventral patterning depends greatly on two pathways: the Toll pathway and the Bone Morphogenetic Protein pathway. While the relative contribution of each pathway has been investigated in holometabolous insects, their role has not been explored in insects with a hemimetabolous type of development. The hemimetabolous insect Rhodnius prolixus, an important vector of Chagas disease in the Americas, develops from an intermediate germ band and displays complex movements during katatrepsis that are not observed in other orders. However, little is known about the molecular events that regulate its embryogenesis. Here we investigate the expression and function of genes potentially involved in the initial patterning events that establish the embryonic dorso-ventral axis in this hemipteran. RESULTS We establish a staging system for early embryogenesis that allows us to correlate embryo morphology with gene expression profiles. Using this system, we investigate the role of Toll pathway genes during embryogenesis. Detailed analyses of gene expression throughout development, coupled with functional analyses using parental RNA interference, revealed that maternal Toll is required to establish germ layers along the dorso-ventral axis and for embryo placement along the anterior-posterior axis. Interestingly, knockdown of the Toll pathway effector Rp-dorsal appears to regulate the expression of the Bone Morphogenetic Protein antagonist Rp-short-gastrulation. CONCLUSIONS Our results indicate that Toll signals are the initiating event in dorso-ventral patterning during Rhodnius embryogenesis, and this is the first report of a conserved role for Toll in a hemipteran. Furthermore, as Rp-dorsal RNA interference generates anteriorly misplaced embryos, our results indicate a novel role for Toll signals in establishment of the anterior-posterior axis in Rhodnius.
Collapse
|
67
|
Ferguson L, Marlétaz F, Carter JM, Taylor WR, Gibbs M, Breuker CJ, Holland PWH. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation. PLoS Genet 2014; 10:e1004698. [PMID: 25340822 PMCID: PMC4207634 DOI: 10.1371/journal.pgen.1004698] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/22/2014] [Indexed: 01/15/2023] Open
Abstract
Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.
Collapse
Affiliation(s)
- Laura Ferguson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | - William R. Taylor
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | | |
Collapse
|
68
|
Koelzer S, Kölsch Y, Panfilio KA. Visualizing late insect embryogenesis: extraembryonic and mesodermal enhancer trap expression in the beetle Tribolium castaneum. PLoS One 2014; 9:e103967. [PMID: 25080214 PMCID: PMC4117572 DOI: 10.1371/journal.pone.0103967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022] Open
Abstract
The beetle Tribolium castaneum has increasingly become a powerful model for comparative research on insect development. One recent resource is a collection of piggyBac transposon-based enhancer trap lines. Here, we provide a detailed analysis of three selected lines and demonstrate their value for investigations in the second half of embryogenesis, which has thus far lagged behind research on early stages. Two lines, G12424 and KT650, show enhanced green fluorescent protein (EGFP) expression throughout the extraembryonic serosal tissue and in a few discrete embryonic domains. Intriguingly, both lines show for the first time a degree of regionalization within the mature serosa. However, their expression profiles illuminate distinct aspects of serosal biology: G12424 tracks the tissue's rapid maturation while KT650 expression likely reflects ongoing physiological processes. The third line, G04609, is stably expressed in mesodermal domains, including segmental muscles and the heart. Genomic mapping followed by in situ hybridization for genes near to the G04609 insertion site suggests that the transposon has trapped enhancer information for the Tribolium orthologue of midline (Tc-mid). Altogether, our analyses provide the first live imaging, long-term characterizations of enhancer traps from this collection. We show that EGFP expression is readily detected, including in heterozygote crosses that permit the simultaneous visualization of multiple tissue types. The tissue specificity provides live, endogenous marker gene expression at key developmental stages that are inaccessible for whole mount staining. Furthermore, the nonlocalized EGFP in these lines illuminates both the nucleus and cytoplasm, providing cellular resolution for morphogenesis research on processes such as dorsal closure and heart formation. In future work, identification of regulatory regions driving these enhancer traps will deepen our understanding of late developmental control, including in the extraembryonic domain, which is a hallmark of insect development but which is not yet well understood.
Collapse
Affiliation(s)
- Stefan Koelzer
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Yvonne Kölsch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Liu W, Li C, Zhang Q, Lei Z, Hou Y, Dai F, Lu C. Sample preparation to observe the straight and flat posture of silkworm embryo under scanning electron microscopy via glycerol substitution method. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:964-967. [PMID: 24559610 DOI: 10.1017/s1431927614000233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the preparation process for scanning electron microscopy (SEM), flexed silkworm embryos typically assume several curled shapes with irregular postures that obscure morphological details during SEM observation. We describe a preparation technique based on glycerol substitution for better SEM visualization of straight and flat silkworm embryos. Glycerol has high viscosity, low vapor pressure, and sufficient electrical conductivity. Silkworm embryos were infiltrated with glycerol and arranged in a straight posture or flattened using a cover slip. Samples were directly observed by SEM without additional dehydration, drying, or coating procedures. The complete ventral side could be easily viewed in one image. Recoating alleviated the charging phenomenon. This represents a simple method for preparation of straight and flat samples from curled biological specimens for SEM observation.
Collapse
Affiliation(s)
- Wenbin Liu
- 1Department of Pharmaceutical and Biological Engineering,School of Chemical Engineering,Sichuan University,Chengdu 610065,China
| | - Chenzhao Li
- 1Department of Pharmaceutical and Biological Engineering,School of Chemical Engineering,Sichuan University,Chengdu 610065,China
| | - Qi Zhang
- 1Department of Pharmaceutical and Biological Engineering,School of Chemical Engineering,Sichuan University,Chengdu 610065,China
| | - Zhixin Lei
- 1Department of Pharmaceutical and Biological Engineering,School of Chemical Engineering,Sichuan University,Chengdu 610065,China
| | - Yanqi Hou
- 1Department of Pharmaceutical and Biological Engineering,School of Chemical Engineering,Sichuan University,Chengdu 610065,China
| | - Fangyin Dai
- 2State Key Laboratory of Silkworm Genome Biology,Southwest University,Chongqing 400716,China
| | - Cheng Lu
- 2State Key Laboratory of Silkworm Genome Biology,Southwest University,Chongqing 400716,China
| |
Collapse
|
70
|
Strobl F, Stelzer EHK. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 2014; 141:2331-8. [PMID: 24803590 DOI: 10.1242/dev.108795] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect development has contributed significantly to our understanding of metazoan development. However, most information has been obtained by analyzing a single species, the fruit fly Drosophila melanogaster. Embryonic development of the red flour beetle Tribolium castaneum differs fundamentally from that of Drosophila in aspects such as short-germ development, embryonic leg development, extensive extra-embryonic membrane formation and non-involuted head development. Although Tribolium has become the second most important insect model organism, previous live imaging attempts have addressed only specific questions and no long-term live imaging data of Tribolium embryogenesis have been available. By combining light sheet-based fluorescence microscopy with a novel mounting method, we achieved complete, continuous and non-invasive fluorescence live imaging of Tribolium embryogenesis at high spatiotemporal resolution. The embryos survived the 2-day or longer imaging process, developed into adults and produced fertile progeny. Our data document all morphogenetic processes from the rearrangement of the uniform blastoderm to the onset of regular muscular movement in the same embryo and in four orientations, contributing significantly to the understanding of Tribolium development. Furthermore, we created a comprehensive chronological table of Tribolium embryogenesis, integrating most previous work and providing a reference for future studies. Based on our observations, we provide evidence that serosa window closure and serosa opening, although deferred by more than 1 day, are linked. All our long-term imaging datasets are available as a resource for the community. Tribolium is only the second insect species, after Drosophila, for which non-invasive long-term fluorescence live imaging has been achieved.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe University - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main D-60348, Germany
| | - Ernst H K Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe University - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main D-60348, Germany
| |
Collapse
|
71
|
Vargas HCM, Farnesi LC, Martins AJ, Valle D, Rezende GL. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:54-60. [PMID: 24534672 DOI: 10.1016/j.jinsphys.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800's. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25°C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5hours, respectively. Our data suggest that serosa development is at least partially uncoupled from embryo development and that, depending upon the mosquito species, EDR bestows distinct levels of egg viability.
Collapse
Affiliation(s)
- Helena Carolina Martins Vargas
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil.
| | - Luana Cristina Farnesi
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil.
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Denise Valle
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil..
| | - Gustavo Lazzaro Rezende
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
72
|
Benton MA, Pavlopoulos A. Tribolium embryo morphogenesis: may the force be with you. BIOARCHITECTURE 2014; 4:16-21. [PMID: 24451992 DOI: 10.4161/bioa.27815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of multicellular organisms depends on patterning and growth mechanisms encoded in the genome, but also on the physical properties and mechanical interactions of the constituent cells that interpret these genetic cues. This fundamental biological problem requires integrated studies at multiple levels of biological organization: from genes, to cell behaviors, to tissue morphogenesis. We have recently combined functional genetics with live imaging approaches in embryos of the insect Tribolium castaneum, in order to understand their remarkable transformation from a uniform single-layered blastoderm into a condensed multi-layered embryo covered by extensive extra-embryonic tissues. We first developed a quick and reliable methodology to fluorescently label various cell components in entire Tribolium embryos. Live imaging of labeled embryos at single cell resolution provided detailed descriptions of cell behaviors and tissue movements during normal embryogenesis. We then compared cell and tissue dynamics between wild-type and genetically perturbed embryos that exhibited altered relative proportions of constituent tissues. This systematic comparison led to a qualitative model of the molecular, cellular and tissue interactions that orchestrate the observed epithelial rearrangements. We expect this work to establish the Tribolium embryo as a powerful and attractive model system for biologists and biophysicists interested in the molecular, cellular and mechanical control of tissue morphogenesis.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution; Department of Zoology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
73
|
Panfilio K, Roth S. Development: Getting into the Groove, or Evolving off the Rails? Curr Biol 2013; 23:R1101-3. [DOI: 10.1016/j.cub.2013.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
Sharma R, Beermann A, Schröder R. The dynamic expression of extraembryonic marker genes in the beetle Tribolium castaneum reveals the complexity of serosa and amnion formation in a short germ insect. Gene Expr Patterns 2013; 13:362-71. [DOI: 10.1016/j.gep.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
75
|
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN. The embryogenesis of the TickRhipicephalus (Boophilus) microplus: The establishment of a new chelicerate model system. Genesis 2013; 51:803-18. [DOI: 10.1002/dvg.22717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Vitória Tobias Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Amanda Fraga
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Cíntia Monteiro de Barros
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório Integrado de Morfologia; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), UFRJ Macaé, Rio de Janeiro Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcio Ribeiro Fontenele
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Helena Marcolla Araújo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Natalia Martins Feitosa
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Carlos Logullo
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos; Universidade Estadual Norte Fluminense; Campos dos Goytacazes RJ, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
76
|
Panfilio KA, Oberhofer G, Roth S. High plasticity in epithelial morphogenesis during insect dorsal closure. Biol Open 2013; 2:1108-18. [PMID: 24244847 PMCID: PMC3828757 DOI: 10.1242/bio.20136072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
Insect embryos complete the outer form of the body via dorsal closure (DC) of the epidermal flanks, replacing the transient extraembryonic (EE) tissue. Cell shape changes and morphogenetic behavior are well characterized for DC in Drosophila, but these data represent a single species with a secondarily reduced EE component (the amnioserosa) that is not representative across the insects. Here, we examine DC in the red flour beetle, Tribolium castaneum, providing the first detailed, functional analysis of DC in an insect with complete EE tissues (distinct amnion and serosa). Surprisingly, we find that differences between Drosophila and Tribolium DC are not restricted to the EE tissue, but also encompass the dorsal epidermis, which differs in cellular architecture and method of final closure (zippering). We then experimentally manipulated EE tissue complement via RNAi for Tc-zen1, allowing us to eliminate the serosa and still examine viable DC in a system with a single EE tissue (the amnion). We find that the EE domain is particularly plastic in morphogenetic behavior and tissue structure. In contrast, embryonic features and overall kinetics are robust to Tc-zen1(RNAi) manipulation in Tribolium and conserved with a more distantly related insect, but remain substantially different from Drosophila. Although correct DC is essential, plasticity and regulative, compensatory capacity have permitted DC to evolve within the insects. Thus, DC does not represent a strong developmental constraint on the nature of EE development, a property that may have contributed to the reduction of the EE component in the fly lineage.
Collapse
Affiliation(s)
- Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Georg Oberhofer
- J. F. Blumenbach Institute of Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
77
|
Sharma R, Beermann A, Schröder R. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium. Dev Biol 2013; 381:121-33. [DOI: 10.1016/j.ydbio.2013.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
|
78
|
Buchta T, Özüak O, Stappert D, Roth S, Lynch JA. Patterning the dorsal–ventral axis of the wasp Nasonia vitripennis. Dev Biol 2013; 381:189-202. [DOI: 10.1016/j.ydbio.2013.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
79
|
Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. The extraembryonic serosa protects the insect egg against desiccation. Proc Biol Sci 2013; 280:20131082. [PMID: 23782888 DOI: 10.1098/rspb.2013.1082] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | | | |
Collapse
|
80
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
81
|
Hallgrímsson B, Jamniczky HA, Young NM, Rolian C, Schmidt-Ott U, Marcucio RS. The generation of variation and the developmental basis for evolutionary novelty. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:501-17. [PMID: 22649039 DOI: 10.1002/jez.b.22448] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/07/2023]
Abstract
Organisms exhibit an incredible diversity of form, a fact that makes the evolution of novelty seemingly self-evident. However, despite the "obvious" case for novelty, defining this concept in evolutionary terms is highly problematic, so much so that some have suggested discarding it altogether. Approaches to this problem tend to take either an adaptation- or development-based perspective, but we argue here that an exclusive focus on either of these misses the original intent of the novelty concept and undermines its practical utility. We propose instead that for a feature to be novel, it must have evolved both by a transition between adaptive peaks on the fitness landscape and that this transition must have overcome a previous developmental constraint. This definition focuses novelty on the explanation of apparently difficult or low-probability evolutionary transitions and highlights how the integration of developmental and functional considerations are necessary to evolutionary explanation. It further reinforces that novelty is a central concern not just of evolutionary developmental biology (i.e., "evo-devo") but of evolutionary biology more generally. We explore this definition of novelty in light of four examples that range from the obvious to subtle.
Collapse
Affiliation(s)
- Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
82
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
83
|
Sabri A, Hance T, Leroy PD, Frère I, Haubruge E, Destain J, Compère P, Thonart P. Placenta-like structure of the aphid endoparasitic wasp Aphidius ervi: a strategy of optimal resources acquisition. PLoS One 2011; 6:e18847. [PMID: 21526196 PMCID: PMC3079733 DOI: 10.1371/journal.pone.0018847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aphidius ervi (Hymenoptera: Braconidae) is an entomophagous parasitoid known to be an effective parasitoid of several aphid species of economic importance. A reduction of its production cost during mass rearing for inundative release is needed to improve its use in biological control of pests. In these contexts, a careful analysis of its entire development phases within its host is needed. This paper shows that this parasitoid has some characteristics in its embryological development rather complex and different from most other reported insects, which can be phylogenetically very close. First, its yolkless egg allows a high fecundity of the female but force them to hatch from the egg shell rapidly to the host hemocoel. An early cellularisation allowing a rapid differentiation of a serosa membrane seems to confirm this hypothesis. The serosa wraps the developing embryo until the first instar larva stage and invades the host tissues by microvilli projections and form a placenta like structure able to divert host resources and allowing nutrition and respiration of embryo. Such interspecific invasion, at the cellular level, recalls mammal's trophoblasts that anchors maternal uterine wall and underlines the high adaptation of A. ervi to develop in the host body.
Collapse
Affiliation(s)
- Ahmed Sabri
- Centre Wallon de Biologie Industrielle, University of Liege, Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Nunes da Fonseca R, van der Zee M, Roth S. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010; 345:80-93. [PMID: 20510683 DOI: 10.1016/j.ydbio.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.
Collapse
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Institute of Developmental Biology, University of Cologne, Cologne, Gyrhofstrasse 17, D-50931, Germany
| | | | | |
Collapse
|
85
|
Morphology of the egg shell and the developing embryo of the Red Palm Weevil, Rhynchophorus ferrugineus (Oliver). Saudi J Biol Sci 2010; 17:177-83. [PMID: 23961075 DOI: 10.1016/j.sjbs.2010.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 01/12/2010] [Indexed: 11/21/2022] Open
Abstract
The harvested eggs of Rhynchophorus ferrugineus are ovo-cylindrical shaped, averaged 1.09 mm in length and 0.43 mm in width, with ratio of [Formula: see text] 4.42. The chorionic layer of electron dense material is seen covering the exochorion structure of the eggs. The egg main body chorion exhibits a polygonal pattern and architecture surface of the egg is supported by a system of irregular interconnecting grooves. The micropylar apparatus of the eggs of the Red Palm Weevil, R. ferrugineus is described in the present study for the first time. Two micropylar openings are found closed to the center of the posterior wide pole of the egg. Each micropylar opening presents a single small orifice and its surrounding chorion is porous and densely set with tiny projections allowing the spermatozoa to penetrate the egg. Respiratory aeropyles are distributed on the borders of reticulations in the area chorionic surface of egg capsule. The hatching region is detected on the anterior part at the opposite side of the egg. Changes in the appearance and shape of R. ferrugineus eggs as well as the incidence of embryonic development are observed.
Collapse
|
86
|
Panfilio KA, Roth S. Epithelial reorganization events during late extraembryonic development in a hemimetabolous insect. Dev Biol 2010; 340:100-15. [PMID: 20045678 DOI: 10.1016/j.ydbio.2009.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 01/07/2023]
Abstract
As extra-embryonic tissues, the amnion and serosa are not considered to contribute materially to the insect embryo, yet they must execute an array of morphogenetic movements before they are dispensable. In hemimetabolous insects, these movements have been known for over a century, but they have remained virtually unexamined. This study addresses late extraembryonic morphogenesis in the milkweed bug, Oncopeltus fasciatus. Cell shape changes and apoptosis profiles are used to characterize the membranes as they undergo a large repertoire of final reorganizational events that reposition the embryo (katatrepsis), and eliminate the membranes themselves in an ordered fashion (dorsal closure). A number of key features were identified. First, amnion-serosa "fusion" involves localized apoptosis in the amnion and the formation of a supracellular actin purse string at the amnion-serosa border. During katatrepsis, a 'focus' of serosal cells undergoes precocious columnarization and may serve as an anchor for contraction. Lastly, dorsal closure involves novel modifications of the amnion and embryonic flank that are without counterpart during the well-known process of dorsal closure in the fruit fly Drosophila melanogaster. These data also address the long-standing question of the final fate of the amnion: it undergoes apoptosis during dorsal closure and thus is likely to be solely extraembryonic.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Gyrhofstrabetae 17, 50931 Cologne, Germany.
| | | |
Collapse
|
87
|
Schmidt-Ott U, Rafiqi AM, Lemke S. Hox3/zen and the evolution of extraembryonic epithelia in insects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:133-44. [PMID: 20795328 DOI: 10.1007/978-1-4419-6673-5_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects have undergone dramatic evolutionary changes in extraembryonic development, which correlate with changes in the expression of the class-3 Hox gene zen. Here, we review the evolution of this gene in insects and point out how changes in zen expression may have affected extraembryonic development at the morphological and the genetic level.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Department of Organismal Biology and Anatomy, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
88
|
Nalepa CA. Altricial development in subsocial cockroach ancestors: foundation for the evolution of phenotypic plasticity in termites. Evol Dev 2010; 12:95-105. [DOI: 10.1111/j.1525-142x.2009.00394.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Panfilio KA. Late extraembryonic morphogenesis and its zen(RNAi)-induced failure in the milkweed bug Oncopeltus fasciatus. Dev Biol 2009; 333:297-311. [PMID: 19580800 DOI: 10.1016/j.ydbio.2009.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/23/2009] [Accepted: 06/27/2009] [Indexed: 11/26/2022]
Abstract
Many insects undergo katatrepsis, essential reorganization by the extraembryonic membranes that repositions the embryo. Knockdown of the zen gene by RNA interference (RNAi) prevents katatrepsis in the milkweed bug Oncopeltus fasciatus. However, the precise morphogenetic defect has been uncertain, and katatrepsis itself has not been characterized in detail. The dynamics of wild type and zen(RNAi) eggs were analyzed from time-lapse movies, supplemented by analysis of fixed specimens. These investigations identify three zen(RNAi) defects. First, a reduced degree of tissue contraction implies a role for zen in baseline compression prior to katatrepsis. Subsequently, a characteristic 'bouncing' activity commences, leading to the initiation of katatrepsis in wild type eggs. The second zen(RNAi) defect is a delay in this activity, suggesting that a temporal window of opportunity is missed after zen knockdown. Ultimately, the extraembryonic membranes fail to rupture in zen(RNAi) eggs: the third defect. Nevertheless, the outer serosal membrane manages to contract, albeit in an aberrant fashion with additional phenotypic consequences for the embryo. These data identify a novel epithelial morphogenetic event - rupture of the 'serosal window' structure - as the ultimate site of defect. Overall, Oncopeltus zen seems to have a role in coordinating a number of pre-katatreptic events during mid embryogenesis.
Collapse
Affiliation(s)
- Kristen A Panfilio
- University Museum of Zoology, Department of Zoology, Cambridge CB2 3EJ, UK; Institute for Developmental Biology, University of Cologne, Cologne, Germany.
| |
Collapse
|
90
|
Goltsev Y, Rezende GL, Vranizan K, Lanzaro G, Valle D, Levine M. Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo. Dev Biol 2009; 330:462-70. [PMID: 19298808 DOI: 10.1016/j.ydbio.2009.02.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
During the evolution of the Diptera there is a dramatic modification of the embryonic ectoderm, whereby mosquitoes contain separate amnion and serosa lineages while higher flies such as Drosophila melanogaster contain a single amnioserosa. Whole-genome transcriptome assays were performed with isolated serosa from Anopheles gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle. In D. melanogaster, these genes are activated just once during embryogenesis, during late stages where they are used for the production of the larval cuticle. Evidence is presented that the serosal cells secrete a dedicated serosal cuticle, which protects A. gambiae embryos from desiccation. Detailed temporal microarray assays of mosquito gene expression profiles revealed that the cuticular genes display biphasic expression during A. gambiae embryogenesis, first in the serosa of early embryos and then again during late stages as seen in D. melanogaster. We discuss how evolutionary modifications in the well-defined dorsal-ventral patterning network led to the wholesale deployment of the cuticle biosynthesis pathway in early embryos of A. gambiae.
Collapse
Affiliation(s)
- Yury Goltsev
- Department of Mol. Cell Biology, Division of Genetics Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
91
|
|