51
|
Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 2013; 38:2278-90. [PMID: 23706961 DOI: 10.1016/j.psyneuen.2013.04.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 01/31/2023]
Abstract
Physiological changes and pathological alterations in the nervous system of rodents are associated with modifications in the levels of neuroactive steroids in the brain, spinal cord and/or peripheral nerves. Measures of tissue levels of steroids in the nervous system present serious limitations for human studies and for longitudinal studies in animals. In this study we have explored whether levels of neuroactive steroids in plasma and the cerebrospinal fluid reflect their levels in neural tissues. To this aim, we have evaluated by liquid chromatography-tandem mass spectrometry the levels of several neuroactive steroids in plasma, cerebrospinal fluid, cerebral cortex, cerebellum, hippocampus, spinal cord and sciatic nerve of male and female rats. Data indicate that plasma and cerebrospinal fluid levels of steroids do not fully reflect their tissue levels. However, the interindividual variations in the levels of all the steroids assessed, with the exception of dehydroepiandrosterone, showed a positive correlation in plasma and cerebral cortex. Most steroids also showed a positive correlation in plasma and the cerebellum, the spinal cord and the sciatic nerve. In the hippocampus, the levels of tetrahydroprogesterone, testosterone and testosterone metabolites showed a significant positive correlation with their respective levels in plasma. The cerebrospinal fluid levels of some steroids, such as testosterone and dihydrotestosterone, showed a full correlation with tissue levels. In addition, cerebrospinal fluid levels of pregnenolone, progesterone, and 17β-estradiol showed a positive correlation with their corresponding levels in the majority of the neural structures analyzed. These findings suggest that the levels of some neuroactive steroids in cerebrospinal fluid as well as in plasma may be valuable to predict their levels in the nervous system.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
52
|
Olbrich L, Wessel L, Balakrishnan-Renuka A, Böing M, Brand-Saberi B, Theiss C. Rapid impact of progesterone on the neuronal growth cone. Endocrinology 2013; 154:3784-95. [PMID: 23913445 DOI: 10.1210/en.2013-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.
Collapse
Affiliation(s)
- Laura Olbrich
- Faculty of Medicine, Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
53
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
54
|
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 2013. [PMID: 23196064 DOI: 10.1016/j.jsbmb.2012.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
55
|
Subcutaneous interferon β-1a may protect against cognitive impairment in patients with relapsing-remitting multiple sclerosis: 5-year follow-up of the COGIMUS study. PLoS One 2013; 8:e74111. [PMID: 24137499 PMCID: PMC3796707 DOI: 10.1371/journal.pone.0074111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To assess the effects of subcutaneous (sc) interferon (IFN) -1a on cognition over 5 years in mildly disabled patients with relapsing-remitting multiple sclerosis (RRMS). METHODS Patients aged 18-50 years with RRMS (Expanded Disability Status Scale score ≤4.0) who had completed the 3-year COGIMUS study underwent standardized magnetic resonance imaging, neurological examination, and neuropsychological testing at years 4 and 5. Predictors of cognitive impairment at year 5 were identified using multivariate analysis. RESULTS Of 331 patients who completed the 3-year COGIMUS study, 265 participated in the 2-year extension study, 201 of whom (75.8%; sc IFN β-1a three times weekly: 44 µg, n = 108; 22 µg, n = 93) completed 5 years' follow-up. The proportion of patients with cognitive impairment in the study population overall remained stable between baseline (18.0%) and year 5 (22.6%). The proportion of patients with cognitive impairment also remained stable in both treatment groups between baseline and year 5, and between year 3 and year 5. However, a significantly higher proportion of men than women had cognitive impairment at year 5 (26.5% vs 14.4%, p = 0.046). Treatment with the 22 versus 44 µg dose was predictive of cognitive impairment at year 5 (hazard ratio 0.68; 95% confidence interval 0.48-0.97). CONCLUSIONS This study suggests that sc IFN β-1a dose-dependently stabilizes or delays cognitive impairment over a 5-year period in most patients with mild RRMS. Women seem to be more protected against developing cognitive impairment, which may indicate greater response to therapy or the inherently better prognosis associated with female sex in MS.
Collapse
|
56
|
Koenig KA, Lowe MJ, Lin J, Sakaie KE, Stone L, Bermel RA, Beall EB, Rao SM, Trapp BD, Phillips MD. Sex differences in resting-state functional connectivity in multiple sclerosis. AJNR Am J Neuroradiol 2013; 34:2304-11. [PMID: 23811974 DOI: 10.3174/ajnr.a3630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Multiple studies have demonstrated evidence of sex differences in patients with MS, including differences in disease progression, cognitive decline, and biologic markers. This study used functional connectivity MRI to investigate sex differences in the strength of functional connectivity of the default mode network in patients with MS and healthy control subjects. MATERIALS AND METHODS A total of 16 men and 16 women with MS and 32 age- and sex-matched healthy control subjects underwent a whole-brain resting-state functional connectivity MRI scan. A group-based seed in the posterior cingulate was used to create whole-brain correlation maps. A 2 × 2 ANOVA was used to assess whether disease status and sex affected the strength of connectivity to the posterior cingulate. RESULTS Patients with MS showed significantly stronger connectivity from the posterior cingulate to the bilateral medial frontal gyri, the left ventral anterior cingulate, the right putamen, and the left middle temporal gyrus (P < .0005). In the left dorsal lateral prefrontal cortex, female patients showed significantly stronger connectivity to the posterior cingulate cortex compared with female control subjects (P = 3 × 10(4)), and male control subjects showed stronger posterior cingulate cortex-left dorsal lateral prefrontal cortex connectivity in comparison to female control subjects (P = .002). Male patients showed significantly weaker connectivity to the caudate compared with female patients (P = .004). CONCLUSIONS Disease status and sex interact to produce differences in the strength of functional connectivity from the posterior cingulate to the caudate and the left dorsal lateral prefrontal cortex.
Collapse
|
57
|
Dang TNT, Dobson-Stone C, Glaros EN, Kim WS, Hallupp M, Bartley L, Piguet O, Hodges JR, Halliday GM, Double KL, Schofield PR, Crouch PJ, Kwok JBJ. Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model. Dis Model Mech 2013; 6:1198-204. [PMID: 23798570 PMCID: PMC3759339 DOI: 10.1242/dmm.011460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is associated with motor neurone disease (FTD-MND), corticobasal syndrome (CBS) and progressive supranuclear palsy syndrome (PSPS). Together, this group of disorders constitutes a major cause of young-onset dementia. One of the three clinical variants of FTD is progressive nonfluent aphasia (PNFA), which is focused on in this study. The steroid hormone progesterone (PROG) is known to have an important role as a neurosteroid with potent neuroprotective and promyelination properties. In a case-control study of serum samples (39 FTD, 91 controls), low serum PROG was associated with FTD overall. In subgroup analysis, low PROG levels were significantly associated with FTD-MND and CBS, but not with PSPS or PNFA. PROG levels of >195 pg/ml were significantly correlated with lower disease severity (frontotemporal dementia rating scale) for individuals with CBS. In the human neuroblastoma SK-N-MC cell line, exogenous PROG (9300–93,000 pg/ml) had a significant effect on overall Tau and nuclear TDP-43 levels, reducing total Tau levels by ∼1.5-fold and increasing nuclear TDP-43 by 1.7- to 2.0-fold. Finally, elevation of plasma PROG to a mean concentration of 5870 pg/ml in an Ala315Thr (A315T) TARDBP transgenic mouse model significantly reduced the rate of loss of locomotor control in PROG-treated, compared with placebo, mice. The PROG treatment did not significantly increase survival of the mice, which might be due to the limitation of the transgenic mouse to accurately model TDP-43-mediated neurodegeneration. Together, our clinical, cellular and animal data provide strong evidence that PROG could be a valid therapy for specific related disorders of FTD.
Collapse
Affiliation(s)
- Theresa N T Dang
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Bodhankar S, Vandenbark AA, Offner H. Oestrogen treatment of experimental autoimmune encephalomyelitis requires 17β-oestradiol-receptor-positive B cells that up-regulate PD-1 on CD4+ Foxp3+ regulatory T cells. Immunology 2013; 137:282-93. [PMID: 23039230 DOI: 10.1111/imm.12013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 01/08/2023] Open
Abstract
It is now well accepted that sex hormones have immunoregulatory activity and may prevent exacerbations in multiple sclerosis during pregnancy. Our previous studies demonstrated that oestrogen (17β-oestradiol; E(2) ) protection against experimental autoimmune encephalomyelitis (EAE) is mediated mainly through oestrogen receptor-α (ERα) and the membrane receptor G-protein-coupled receptor 30 (GPR30) and is abrogated in the absence of B cells and the co-inhibitory receptor, Programmed Death-1 (PD-1). To critically evaluate the cell source of the E2 and PD-1 co-inhibitory pathways in EAE regulation, we assessed the requirement for ERs on transferred B cells and downstream effects on expression of PD-1/PD-ligand on CD4+ Foxp3+ regulatory T (Treg) cells in B-cell-replenished, E2-treated B-cell-deficient (μMT-/-) mice with EAE. The results clearly demonstrated involvement of ERα and GPR30 on transferred B cells that mediated the protective E2 treatment effect on EAE and further showed an E2-mediated B-cell-dependent up-regulation of PD-1 on CD4+ Foxp3+ Treg cells. These findings identify regulatory B-cell populations as key players in potentiating Treg-cell activity during E2-mediated protection against EAE.
Collapse
Affiliation(s)
- Sheetal Bodhankar
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR 97239, USA
| | | | | |
Collapse
|
59
|
Hirahara Y, Matsuda KI, Liu YF, Yamada H, Kawata M, Boggs JM. 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes. Neuroscience 2013; 235:187-99. [PMID: 23337538 DOI: 10.1016/j.neuroscience.2012.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 12/12/2022]
Abstract
Dramatic changes in the cytoskeleton and the morphology of oligodendrocytes (OLs) occur during various stages of the myelination process. OLs in culture produce large membrane sheets containing cytoskeletal veins of microtubules and actin filaments. We recently showed that estrogen receptors (ER) related to ERα/β were expressed in the membrane sheets of mature OLs in culture. Ligation of these or other membrane ERs in OLs with both 17β- and 17α-estradiol mediated rapid non-genomic signaling. Here, we show that estrogens also mediate rapid non-genomic remodeling of the cytoskeleton in mature OLs in culture. 17β-Estradiol caused a rapid loss of microtubules and the actin cytoskeleton in the OL membrane sheets. It also increased phosphorylation of the actin filament-severing protein cofilin, thus inactivating it. Staining for actin barbed ends with rhodamine-actin showed that it decreased the amount of actin barbed ends. 17α-Estradiol, on the other hand, increased the percentage of cells with abundant staining of actin filaments and actin barbed ends, suggesting that it stabilized and/or increased the dynamics of the actin cytoskeleton. The specific ERα and ERβ agonists, 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) and diarylpropionitrile 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN), respectively, also caused the rapid phosphorylation of cofilin. Estrogen-induced phosphorylation of cofilin was inhibited by Y-27632, a specific inhibitor of the Rho-associated protein serine/threonine kinase (ROCK). The Rho/ROCK/cofilin pathway is therefore implicated in actin rearrangement via estrogen ligation of membrane ERs, which may include forms of ERα and ERβ. These results indicate a role for estrogens in modulation of the cytoskeleton in mature OLs, and thus in various processes required for myelinogenesis.
Collapse
Affiliation(s)
- Y Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi-City, 570-8506 Osaka, Japan
| | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Giatti S, Boraso M, Melcangi RC, Viviani B. Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 2012; 49:R125-34. [PMID: 22966132 DOI: 10.1530/jme-12-0127] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroinflammation represents a common feature of many neurodegenerative diseases implicated both in their onset and progression. Neuroactive steroids act as physiological regulators and protective agents in the nervous system. Therefore, the attention of biomedical research has been recently addressed in evaluating whether neuroactive steroids, such as progestagens, androgens, and estrogens may also affect neuroinflammatory pathways. Observations so far obtained suggest a general anti-inflammatory effect with a beneficial relapse on several neurodegenerative experimental models, thus confirming the potentiality of a neuroprotective strategy based on neuroactive steroids. In this scenario, neuroactive steroid metabolism and the sophisticated machinery involved in their signaling are becoming especially attractive. In particular, because metabolism of neuroactive steroids as well as expression of their receptors is affected during the course of neurodegenerative events, a crucial role of progesterone and testosterone metabolites in modulating neuroinflammation and neurodegeneration may be proposed. In the present review, we will address this issue, providing evidence supporting the hypothesis that the efficacy of neuroactive steroids could be improved through the use of their metabolites.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|