51
|
Abstract
Anxiety disorders are characterized by persistent fear in the absence of immediate threat and represent the most common psychiatric diseases, with an estimated 28% lifetime prevalence worldwide (Kessler et al., 2010). While symptoms of anxiety are typically evoked by sensory stimuli, it is unknown whether sensory deficits contribute to the development of anxiety disorders. Here we examine the effect of defined genetic mutations that compromise the function of the olfactory system on the development of anxiety-like behaviors in mice. We show that the functional inactivation of the main olfactory epithelium, but not the vomeronasal organ, causes elevated levels of anxiety. Anxiety-like behaviors are also observed in mice with a monoclonal nose, that are able to detect and discriminate odors but in which the patterns of odor-evoked neural activity are perturbed. In these mice, plasma corticosterone levels are elevated, suggesting that olfactory deficits can lead to chronic stress. These results demonstrate a central role for olfactory sensory cues in modulating anxiety in mice.
Collapse
|
52
|
Mohedano-Moriano A, de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Pro-Sistiaga P, de Moya-Pinilla M, Martinez-Marcos A. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs. Front Neuroanat 2012; 6:19. [PMID: 22661931 PMCID: PMC3362118 DOI: 10.3389/fnana.2012.00019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/12/2012] [Indexed: 12/30/2022] Open
Abstract
Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing.
Collapse
Affiliation(s)
- Alicia Mohedano-Moriano
- Facultad de Medicina de Albacete, Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha Albacete, Spain
| | | | | | | | | | | | | |
Collapse
|
53
|
Martín-López E, Corona R, López-Mascaraque L. Postnatal characterization of cells in the accessory olfactory bulb of wild type and reeler mice. Front Neuroanat 2012; 6:15. [PMID: 22661929 PMCID: PMC3357593 DOI: 10.3389/fnana.2012.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Olfaction is the most relevant chemosensory sense of the rodents. General odors are primarily detected by the main olfactory system while most pheromonal signals are received by the accessory olfactory system. The first relay in the brain occurs in the olfactory bulb, which is subdivided in the main and accessory olfactory bulb (MOB/AOB). Given that the cell generation time is different between AOB and MOB, and the cell characterization of AOB remains limited, the goal of this work was first, the definition of the layering of AOB/MOB and second, the determination of cellular phenotypes in the AOB in a time window corresponding to the early postnatal development. Moreover, since reelin (Reln) deficiency has been related to olfactory learning deficits, we analyzed reeler mice. First, we compared the layering between AOB and MOB at early embryonic stages. Then, cell phenotypes were established using specific neuronal and glial markers as well as the Reln adaptor protein Dab1 to analyse differences in both genetic backgrounds. There was no apparent difference in the cell phenotypes among AOB and MOB or between wild type (wt) and reeler animals. However, a disruption in the granular cell layer of reeler with respect to wt mice was observed. In conclusion, the AOB in Reln-deficient mice showed similar neuronal and glial cell types being only affected the organization of granular neurons.
Collapse
Affiliation(s)
- Eduardo Martín-López
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC) Madrid, Spain
| | | | | |
Collapse
|
54
|
Daev EV, Vyborova AM, Kazarova VE, Dukel’skaya AV. Effect of two pyrazine-containing chemosignals on cells of bone marrow and testes in male house mice (Mus musculus L.). J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Cherng CFG, Chang CP, Su CC, Tzeng WY, Chuang JY, Chen LH, Lin KY, Yu L. Odors from proximal species reverse the stress-decreased neurogenesis via main olfactory processing. Behav Brain Res 2011; 229:106-12. [PMID: 22200498 DOI: 10.1016/j.bbr.2011.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 01/29/2023]
Abstract
Unconditioned foot shock followed by restraint in water was used as a stress regimen to induce decreases in neurogenesis in mouse dentate gyrus (DG). Presence of conspecific odors has been known to reverse the stress-induced decrease in DG neurogenesis. In this study, we found that the conspecific odors did not produce these protective effects in mice whose MOE was impaired by nasal zinc sulfate lavage. Moreover, we observed that the presence of odors from rats, hamsters, and guinea pigs throughout the stress procedure reversed the stress-induced decrease in cell proliferation and neurogenesis in mouse dentate gyrus, while these odors alone did not affect mouse dentate cell proliferation or neurogenesis. In contrast, the presence of rabbit, sugar glider, hedgehog, beetle odors did not affect cell proliferation, neurogenesis, the stress-decreased cell proliferation or neurogenesis in DG. Finally, the presence of fox urine odors decreased mouse dentate cell proliferation and neurogenesis but did not affect the stress-induced decrease in cell proliferation or neurogenesis. Taken together, we conclude that olfactory processing via activation of sensory neurons in MOE is responsible for the conspecific odor-produced protective effect against the stress-decreased cell proliferation and neurogenesis. Phylogenetic distances of the odor-generating species and mice might contribute to the odors' protective effects against the stress-induced decreases in cell proliferation and neurogenesis.
Collapse
Affiliation(s)
- Chian-Fang G Cherng
- Department of Health Psychology, Chang Jung Christian University, Tainan, 71101, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
56
|
From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci Biobehav Rev 2011; 35:1916-28. [DOI: 10.1016/j.neubiorev.2011.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/22/2022]
|
57
|
Disruption of urinary odor preference and lordosis behavior in female mice given lesions of the medial amygdala. Physiol Behav 2011; 105:554-9. [PMID: 21945865 DOI: 10.1016/j.physbeh.2011.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 11/21/2022]
Abstract
Previous research showed that axonal inputs to both anterior and posterior subdivisions of the medial amygdala from the main and accessory olfactory bulbs of female mice, respectively, process volatile and non-volatile pheromonal signals from male conspecifics. In the present study we found that bilateral electrolytic lesions that included posterior portions, but not the anterior subdivision alone of the medial amygdala (Me) blocked the preference of estrous female mice to investigate volatile urinary odors from testes-intact vs. castrated males. Similar results were obtained in separate tests in which nasal contact with urinary stimuli was permitted. In addition, total time investigating volatile urinary stimuli was reduced in subjects with posterior Me lesions. Subjects were able to discriminate volatile urinary odors from testes-intact vs. castrated male mice, suggesting that this disruption of odor preference did not result from the inability of females given amygdaloid lesions to discriminate these male urinary odors. Bilateral lesions of the Me that were either restricted to the anterior or posterior subdivisions, or included areas of both regions, caused significant reductions in the display of lordosis behavior in estrous female mice. Our results suggest that the Me is a critical segment of the olfactory circuit that controls both mate recognition and mating behavior in the female mouse.
Collapse
|
58
|
Park SH, Podlaha O, Grus WE, Zhang J. The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol Evol 2011; 3:401-12. [PMID: 21551350 PMCID: PMC3114644 DOI: 10.1093/gbe/evr039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vomeronasal sensitivity is important for detecting intraspecific pheromonal cues as well as environmental odorants and is involved in mating, social interaction, and other daily activities of many vertebrates. Two large families of seven-transmembrane G-protein-coupled receptors, V1rs and V2rs, bind to various ligands to initiate vomeronasal signal transduction. Although the macroevolution of V1r and V2r genes has been well characterized throughout vertebrates, especially mammals, little is known about their microevolutionary patterns, which hampers a clear understanding of the evolutionary forces behind the rapid evolutionary turnover of V1r and V2r genes and the great diversity in receptor repertoire across species. Furthermore, the role of divergent vomeronasal perception in enhancing premating isolation and maintaining species identity has not been evaluated. Here we sequenced 44 V1r genes and 25 presumably neutral noncoding regions in 14 wild-caught mice belonging to Mus musculus and M. domesticus, two closely related species with strong yet incomplete reproductive isolation. We found that nucleotide changes in V1rs are generally under weak purifying selection and that only ∼5% of V1rs may have been subject to positive selection that promotes nonsynonymous substitutions. Consistent with the low functional constraints on V1rs, 18 of the 44 V1rs have null alleles segregating in one or both species. Together, our results demonstrate that, despite occasional actions of positive selection, the evolution of V1rs is in a large part shaped by purifying selection and random drift. These findings have broad implications for understanding the driving forces of rapid gene turnovers that are often observed in the evolution of large gene families.
Collapse
Affiliation(s)
- Seong Hwan Park
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
59
|
Zibman S, Shpak G, Wagner S. Distinct intrinsic membrane properties determine differential information processing between main and accessory olfactory bulb mitral cells. Neuroscience 2011; 189:51-67. [PMID: 21627980 DOI: 10.1016/j.neuroscience.2011.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
Abstract
Most mammals rely on semiochemicals, such as pheromones, to mediate their social interactions. Recent studies found that semiochemicals are perceived by at least two distinct chemosensory systems: the main and accessory olfactory systems, which share many molecular, cellular, and anatomical features. Nevertheless, the division of labor between these systems remained unclear. Previously we suggested that the two olfactory systems differ in the way they process sensory information. In this study we found that mitral cells of the main and accessory olfactory bulbs, the first brain stations of both systems, display markedly different passive and active intrinsic properties which permit distinct types of information processing. Moreover, we found that accessory olfactory bulb mitral cells are divided into three neuronal sub-populations with distinct firing properties. These neuronal sub-populations can be integrated in a simulated neuronal network that neglects episodic stimuli while amplifying reaction to long-lasting signals.
Collapse
Affiliation(s)
- S Zibman
- Institute for Life Sciences and Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
60
|
Pavesi E, Canteras NS, Carobrez AP. Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacology 2011; 36:926-39. [PMID: 21209611 PMCID: PMC3077262 DOI: 10.1038/npp.2010.231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; β-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of β-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (β-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd β-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning.
Collapse
Affiliation(s)
- Eloisa Pavesi
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Newton S Canteras
- Departamento de Anatomia, ICB, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antônio P Carobrez
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil, Tel: +55 483 721 4845; Fax: +55 483 337 5479; E-mail:
| |
Collapse
|
61
|
Wesson DW, Wilson DA. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 2011; 35:655-68. [PMID: 20800615 PMCID: PMC3005978 DOI: 10.1016/j.neubiorev.2010.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/28/2022]
Abstract
Since its designation in 1896 as a putative olfactory structure, the olfactory tubercle has received little attention in terms of elucidating its role in the processing and perception of odors. Instead, research on the olfactory tubercle has mostly focused on its relationship with the reward system. Here we provide a comprehensive review of research on the olfactory tubercle-with an emphasis on the likely role of this region in olfactory processing and its contributions to perception. Further, we propose several testable hypotheses regarding the likely involvement of the olfactory tubercle in both basic (odor detection, discrimination, parallel processing of olfactory information) and higher-order (social odor processing, hedonics, multi-modal integration) functions. Together, the information within this review highlights an understudied yet potentially critical component in central odor processing.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
62
|
Roth FC, Laberge F. High convergence of olfactory and vomeronasal influence in the telencephalon of the terrestrial salamander Plethodon shermani. Neuroscience 2010; 177:148-58. [PMID: 21182902 DOI: 10.1016/j.neuroscience.2010.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022]
Abstract
Previous work suggested that the telencephalic pathways of the main olfactory and vomeronasal systems of vertebrates are mostly isolated from each other, with the possible exception of convergence of the two systems into a small part of the olfactory amygdala. We tested the hypothesis of convergence between the main olfactory and vomeronasal systems by investigating the physiology of telencephalic olfactory responses in an in vitro brain preparation of the salamander Plethodon shermani. This animal was chosen because its olfactory and vomeronasal nerves can be separated and stimulated independently. The nerves were stimulated by short current pulses delivered through suction electrodes. Evoked field potentials and intracellular responses were systematically recorded in the telencephalon. The results showed an abundant overlap of olfactory and vomeronasal nerve-evoked field potentials in the ipsilateral lateral telencephalon and the amygdala. Single neurons receiving bimodal main olfactory and vomeronasal input were found in the dorsolateral telencephalon and amygdala. A classification of response latencies suggested that a subset of these neurons received direct input from both the main and accessory olfactory bulbs. Unimodal excitatory main olfactory responses were mostly found in neurons of the caudal telencephalic pole, but were also present in the striato-pallial transition area/lateral pallium region and striatum. Unimodal excitatory vomeronasal responses were found in neurons of the striato-pallial transition area, vomeronasal amygdala, and caudal amygdala. We conclude that the main olfactory and vomeronasal systems are extensively integrated within the salamander telencephalon and probably act in concert to modulate behavior.
Collapse
Affiliation(s)
- F C Roth
- Brain Research Institute, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
63
|
Comparative genomic analysis reveals more functional nasal chemoreceptors in nocturnal mammals than in diurnal mammals. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4202-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
64
|
Noack J, Richter K, Laube G, Haghgoo HA, Veh RW, Engelmann M. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory. Neurobiol Learn Mem 2010; 94:568-75. [PMID: 20888419 DOI: 10.1016/j.nlm.2010.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature.
Collapse
Affiliation(s)
- Julia Noack
- Zentrum für zelluläre Bildgebung und Innovative Krankheitsmodelle, Otto-von-Guericke-Universität, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
65
|
Park D, Choi D, Lee J, Lim DS, Park C. Male-like sexual behavior of female mouse lacking fucose mutarotase. BMC Genet 2010; 11:62. [PMID: 20609214 PMCID: PMC2912782 DOI: 10.1186/1471-2156-11-62] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/07/2010] [Indexed: 12/15/2022] Open
Abstract
Background Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM) was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated. Results We generated a mutant mouse specifically lacking the fucose mutarotase (FucM) gene. The FucM knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv) of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP) in a mutant embryo relative to that of a wild-type embryo. Conclusions The observation that FucM-/- female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in FucM-/- mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.
Collapse
Affiliation(s)
- Dongkyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-Gu, Daejon 305-701, Korea
| | | | | | | | | |
Collapse
|
66
|
Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res 2010; 208:178-88. [PMID: 19941908 PMCID: PMC2822076 DOI: 10.1016/j.bbr.2009.11.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 11/22/2022]
Abstract
Mouse lines with behavioral phenotypes relevant to symptoms in neurodevelopmental disorders may provide models to test hypotheses about disease etiology and to evaluate potential treatments. The present studies were designed to confirm and expand earlier work on the intriguing behavioral profile of the C58/J inbred strain, including low social approach and aberrant repetitive movements. Additional tests were selected to reflect aspects of autism, a severe neurodevelopmental disorder characterized by emergence of symptoms early in life, higher prevalence in males, social deficits and abnormal repetitive behavior. Mice from the C57BL/6J inbred strain, which has a similar genetic lineage and physical appearance to C58/J, served as a comparison group. Our results revealed that C58/J mice display elevated activity levels by postnatal day 6, which persist into adulthood. Despite normal olfactory ability, young adult male C58/J mice showed deficits in social approach in the three-chambered choice assay and failed to demonstrate social transmission of food preference. In contrast, female C58/J mice performed similarly to female C57BL/6J mice in both social tests. C58/J mice of both sexes demonstrated abnormal repetitive behaviors, displaying excessive jumping and back flipping in both social and non-social situations. These stereotypies were clearly evident in C58/J pups by postnatal days 20-21, and were also observed in C58/J dams during a test for maternal behavior. Overall, the strain profile for C58/J, including spontaneously developing motor stereotypies emerging early in the developmental trajectory, and social deficits primarily in males, models multiple components of the autism phenotype.
Collapse
Affiliation(s)
- Bryce C Ryan
- Department of Biology, University of Redlands, Redlands, CA 92373, USA.
| | | | | | | | | |
Collapse
|
67
|
Yu L, Jin W, Wang JX, Zhang X, Chen MM, Zhu ZH, Lee H, Lee M, Zhang YP. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 2010; 27:1467-77. [PMID: 20142439 DOI: 10.1093/molbev/msq027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Collapse
Affiliation(s)
- Li Yu
- Laboratory for Conservation and Utilization of Bio-resource and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The vomeronasal organ is the primary olfactory organ that detects sexual pheromones in mammals. We investigated the anatomy of the vomeronasal organ of the tammar wallaby (Macropus eugenii), a small macropodid marsupial. Pheromones may be important for activation of the hypothalamo-pituitary axis of tammar males at the start of the breeding season because plasma testosterone and luteinizing hormone concentration in males rise concurrently with pregnancy and the post-partum ovulation in females. The gross anatomy and the connection to the brain of the vomeronasal organ were examined by light and electron microscopy in adult male and female tammars. The vomeronasal organ was well developed in both sexes. The vomeronasal organ is a tubular organ connected at the rostral end via the nasopalatine duct (incisive duct) to the mouth and nasal cavity. At the rostral end the lumen of the vomeronasal organ was crescent shaped, changing to a narrow oval shape caudally. Glandular tissue associated with the vomeronasal organ increased towards the blind end of the organ. The tammar has the typical pattern of mammalian vomeronasal organs with electron-dense supporting cells and electron-lucent receptor cells. Microvilli were present on the surface of both epithelia while cilia were only found on the surface of the non-receptor epithelium. Some non-receptor epithelial cells appeared to secrete mucus into the vomeronasal organ lumen. The vomeronasal organ shows a high degree of structural conservation compared with eutherian mammals. The degree of vomeronasal organ development makes it likely that, as in other mammals, pheromones are important in the reproduction of the tammar.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Department of Zoology, The University of Melbourne, Victoria, Australia, 3010
| | | | | | | |
Collapse
|
69
|
Ferrero DM, Liberles SD. The secret codes of mammalian scents. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:23-33. [DOI: 10.1002/wsbm.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David M. Ferrero
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
70
|
Gutiérrez-Castellanos N, Martínez-Marcos A, Martínez-García F, Lanuza E. Chemosensory Function of the Amygdala. VITAMINS & HORMONES 2010; 83:165-96. [DOI: 10.1016/s0083-6729(10)83007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
71
|
Chanvallon A, Fabre-Nys C. In sexually naive anestrous ewes, male odour is unable to induce a complete activation of olfactory systems. Behav Brain Res 2009; 205:272-9. [DOI: 10.1016/j.bbr.2009.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
|
72
|
Lesions that functionally disconnect the anterior and posterodorsal sub-regions of the medial amygdala eliminate opposite-sex odor preference in male Syrian hamsters (Mesocricetus auratus). Neuroscience 2009; 165:1052-62. [PMID: 19931356 DOI: 10.1016/j.neuroscience.2009.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala (MA) processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains a dense population of steroid receptors. Importantly, these sub-regions have considerable reciprocal connections, and the goal of this experiment was therefore to determine whether interactions between MeA and MePD are required for male hamsters' preference to investigate female over male odors. To functionally disconnect MeA and MePD, males received unilateral lesions of MeA and MePD within opposite brain hemispheres. Control males received either unilateral lesions of MeA and MePD within the same hemisphere or sham surgery. Odor preferences were measured using a 3-choice apparatus, which simultaneously presented female, male and clean odor stimuli; all tests were done under conditions that either prevented or allowed contact with the odor sources. Under non-contact conditions, males with asymmetrical lesions investigated female and male odors equally, whereas males in both control groups preferred to investigate female odors. Under contact conditions, all groups investigated female odors longer than male odors, although males with asymmetrical lesions displayed decreased investigation of female odors compared to sham males. These data suggest that MeA-MePD interactions are critical for processing primarily the volatile components of social odors and highlight the importance of input from the main olfactory system (MOS) to these nuclei in the regulation of reproductive behavior. More broadly, these results support the role of the MA in integrating chemosensory and hormone information, a process that may underlie social odor processing in a variety of behavioral contexts.
Collapse
|
73
|
Cavalli J, Bertoglio LJ, Carobrez AP. Pentylenetetrazole as an unconditioned stimulus for olfactory and contextual fear conditioning in rats. Neurobiol Learn Mem 2009; 92:512-8. [DOI: 10.1016/j.nlm.2009.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/29/2009] [Accepted: 06/26/2009] [Indexed: 11/26/2022]
|
74
|
Bergman JEH, Bosman EA, van Ravenswaaij-Arts CMA, Steel KP. Study of smell and reproductive organs in a mouse model for CHARGE syndrome. Eur J Hum Genet 2009; 18:171-7. [PMID: 19809474 PMCID: PMC2987182 DOI: 10.1038/ejhg.2009.158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CHARGE syndrome is a multiple congenital anomaly syndrome characterised by Coloboma, Heart defects, Atresia of choanae, Retardation of growth and/or development, Genital hypoplasia, and Ear anomalies often associated with deafness. It is caused by heterozygous mutations in the CHD7 gene and shows a highly variable phenotype. Anosmia and hypogonadotropic hypogonadism occur in the majority of the CHARGE patients, but the underlying pathogenesis is unknown. Therefore, we studied the ability to smell and aspects of the reproductive system (reproductive performance, gonadotropin-releasing hormone (GnRH) neurons and anatomy of testes and uteri) in a mouse model for CHARGE syndrome, the whirligig mouse (Chd7Whi/+). We showed that Chromodomain Helicase DNA-binding protein 7 (Chd7) is expressed in brain areas involved in olfaction and reproduction during embryonic development. We observed poorer performance in the smell test in adult Chd7Whi/+ mice, secondary either to olfactory dysfunction or to balance disturbances. Olfactory bulb and reproductive organ abnormalities were observed in a proportion of Chd7Whi/+ mice. Hypothalamic GnRH neurons were slightly reduced in Chd7Whi/+ females and reproductive performance was slightly less in Chd7Whi/+ mice. This study shows that the penetrance of anosmia and hypogonadotropic hypogonadism is lower in Chd7Whi/+ mice than in CHARGE patients. Interestingly, many phenotypic features of the Chd7 mutation showed incomplete penetrance in our model mice, despite the use of inbred, genetically identical mice. This supports the theory that the extreme variability of the CHARGE phenotype in both humans and mice might be attributed to variations in the fetal microenvironment or to purely stochastic events.
Collapse
Affiliation(s)
- Jorieke E H Bergman
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
75
|
Masini CV, Garcia RJ, Sasse SK, Nyhuis TJ, Day HEW, Campeau S. Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats. Behav Brain Res 2009; 207:70-7. [PMID: 19800371 DOI: 10.1016/j.bbr.2009.09.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 01/29/2023]
Abstract
Exposures to predator odors are very effective methods to evoke a variety of stress responses in rodents. We have previously found that ferret odor exposure leads to changes in endocrine hormones (corticosterone and ACTH) and behavior. To distinguish the contributions of the main and accessory olfactory systems in these responses, studies were designed to interfere with these two systems either independently, or simultaneously. Male Sprague-Dawley rats were treated with 10% zinc sulfate (ZnSO(4)), which renders rodents anosmic (unable to smell) while leaving the accessory olfactory areas intact, or saline, in Experiment 1. In Experiment 2, the vomeronasal organs of rats were surgically removed (VNX) to block accessory olfactory processing, while leaving the main olfactory system intact. And in the third experiment both the main and accessory olfactory areas were disrupted by combining the two procedures in the same rats. Neither ZnSO(4) treatment nor VNX alone reliably reduced the increased corticosterone response to ferret odor compared to strawberry odor, but in combination, they did. This suggests that processing through the main or the accessory olfactory system can elicit the endocrine stress response to ferret odor. VNX alone also did not affect the behavioral responses to the ferret odor. ZnSO(4) treatment, alone and in combination with VNX, led to changes in behavior in response to both ferret and strawberry odor, making the behavioral results less clearly interpretable. Overall these studies suggest that both the main and accessory olfactory systems mediate the neuroendocrine response to predator odor.
Collapse
Affiliation(s)
- Cher V Masini
- Department of Psychology and Neuroscience & Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Choleris E, Clipperton-Allen AE, Phan A, Kavaliers M. Neuroendocrinology of social information processing in rats and mice. Front Neuroendocrinol 2009; 30:442-459. [PMID: 19442683 DOI: 10.1016/j.yfrne.2009.05.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
We reviewed oxytocin (OT), arginine-vasopressin (AVP) and gonadal hormone involvement in various modes of social information processing in mice and rats. Gonadal hormones regulate OT and AVP mediation of social recognition and social learning. Estrogens foster OT-mediated social recognition and the recognition and avoidance of parasitized conspecifics via estrogen receptor (ER) alpha (ERalpha) and ERbeta. Testosterone and its metabolites, including estrogens, regulate social recognition in males predominantly via the AVP V1a receptor. Both OT and AVP are involved in the social transmission of food preferences and ERalpha has inhibitory, while ERbeta has enhancing, roles. OT also enhances mate copying by females. ERalpha mediates the sexual, and ERbeta the recognition, aspects of the risk-taking enhancing effects of females on males. Thus, androgens and estrogens control social information processing by regulating OT and AVP. This control is finely tuned for different forms of social information processing.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | - Anna Phan
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| |
Collapse
|
77
|
Liberles SD. Trace Amine-associated Receptors Are Olfactory Receptors in Vertebrates. Ann N Y Acad Sci 2009; 1170:168-72. [DOI: 10.1111/j.1749-6632.2009.04014.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Abstract
This unit presents two basic protocols that offer rapid assessments of anosmia (the absence of a sense of smell) in mice. The buried food test is used to check for the ability to smell volatile odors. The olfactory habituation/dishabituation test is used to test whether the animal can detect and differentiate different odors, including both nonsocial and social odors. A non-contact method of odor presentation, along with a general method for collecting urine samples, is given as an alternate protocol. The tests described in this unit only require simple equipment and can be adopted readily by most laboratories.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730 USA, Phone 1-301-451-9387, FAX 1-301-480-4630
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730 USA, Phone 1-301-451-9387, FAX 1-301-480-4630
| |
Collapse
|
79
|
Keller M, Baum MJ, Brock O, Brennan PA, Bakker J. The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res 2009; 200:268-76. [PMID: 19374011 DOI: 10.1016/j.bbr.2009.01.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of sensory perception, one noticeable fact regarding olfactory perception is the existence of several olfactory subsystems involved in the detection and processing of olfactory information. Indeed, the vomeronasal or accessory olfactory system is usually conceived as being involved in the processing of pheromones as it is closely connected to the hypothalamus, thereby controlling reproductive function. By contrast, the main olfactory system is considered as a general analyzer of volatile chemosignals, used in the context of social communication, for the identification of the status of conspecifics. The respective roles played by the main and the accessory olfactory systems in the control of mate recognition and sexual behavior are at present still controversial. We summarize in this review recent results showing that both the main and accessory olfactory systems are able to process partially overlapping sets of sexual chemosignals and that both systems support complimentary aspects in mate recognition and in the control of sexual behavior.
Collapse
Affiliation(s)
- Matthieu Keller
- Behavioral & Reproductive Physiology, UMR 6175 INRA/CNRS/University of Tours, Nouzilly, France.
| | | | | | | | | |
Collapse
|
80
|
Abstract
The structural and functional changes occurring into the brain is the hallmark of its tremendous capacity for dealing with the complexity that we are facing throughout life. It is also the hallmark of what neuroscientists refer as neuroplasticity. The continuous generation of cohorts of new neurons in some discrete regions of the adult brain, including the olfactory system, is a newly recognized form of neuroplasticity that has been recently the focus of neuroscience studies. Several lines of evidence indicate that this recruitment of newly-generated neurons is extremely sensitive to the overall neuronal activity of the host circuits. Therefore, adult neurogenesis represents, not only a constitutive replacement mechanism for lost neurons, but also a process supporting a capacity of neural plasticity in response to specific experience throughout life. The remarkable complexity of the social life offers a host of daily challenges that require a diversity of brain mechanism to make sense of the ever-changing social world. This review describes some recent findings which have begun to define reciprocal relationships between the production and integration of newborn neurons in the adult brain and social behavior. These studies demonstrate how this domain of research has the potential to address issues in the functional contribution of adult neurogenesis in the expression of some social traits as well in the role of some social contexts to finely regulate the production, survival and integration of adult newborn neurons.
Collapse
|
81
|
Broad KD, Curley JP, Keverne EB. Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev Neurobiol 2009; 69:314-25. [PMID: 19224563 DOI: 10.1002/dneu.20702] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inactivation of the maternally imprinted, paternally expressed gene 3 (Peg3) induces deficits in olfactory function, sexual and maternal behaviors, oxytocin neuron number, metabolic homeostasis and growth. Peg3 is expressed in a number of developing hypothalamic and basal forebrain structures and is a component of the P53 apoptosis pathway. Peg3 inactivation in neuronal cell culture lines inhibits P53 mediated apoptosis, which is important in the early postnatal development and sexual differentiation of the brain. In this study, we investigated the effect of inactivating the Peg3 gene on the incidence of caspase 3 positive cells (a marker of apoptosis) in 4- and 6-day postpartum mouse brain. Inactivating the Peg3 gene resulted in an increase in the incidence of total forebrain caspase 3 positive cells at 4 and 6 days postpartum. Increases in specific neuroanatomical regions including the bed nucleus of the stria terminalis, nucleus accumbens, caudate putamen, medial pre-optic area, arcuate nucleus, medial amygdala, anterior cortical and posteriodorsal amygdaloid nuclei, were also observed. In wild-type mice, sex differences in the incidence of caspase 3 positive cells in the medial amygdala, bed nucleus of the stria terminalis, nucleus accumbens, arcuate nucleus and the M2 motor cortex, were also observed. This neural sex difference was ameliorated in the Peg-3 mutant. These findings suggest that the neuronal and behavioral deficits seen in mice lacking a functional Peg3 gene are mediated by increases in the incidence of early neonatal apoptosis in neuroanatomical regions important for reproductive behavior, olfactory and pheromonal processing, thermoregulation and reward.
Collapse
Affiliation(s)
- Kevin D Broad
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge, CB3 8AA, United Kingdom.
| | | | | |
Collapse
|
82
|
Clarke PMR, Barrett L, Henzi SP. What role do olfactory cues play in chacma baboon mating? Am J Primatol 2009; 71:493-502. [DOI: 10.1002/ajp.20678] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
83
|
YOUNG JW, POWELL S, RISBROUGH V, MARSTON HM, GEYER MA. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009; 122:150-202. [PMID: 19269307 PMCID: PMC2688712 DOI: 10.1016/j.pharmthera.2009.02.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great 'unmet therapeutic need', the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a "preclinical MATRICS" to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
Collapse
Affiliation(s)
- Jared W YOUNG
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Susan POWELL
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Victoria RISBROUGH
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | | | - Mark A GEYER
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| |
Collapse
|
84
|
Diagnosis | Clitoral gland abscess. Lab Anim (NY) 2009; 38:148-9. [PMID: 19384310 DOI: 10.1038/laban0509-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
85
|
Baum MJ, Kelliher KR. Complementary Roles of the Main and Accessory Olfactory Systems in Mammalian Mate Recognition. Annu Rev Physiol 2009; 71:141-60. [DOI: 10.1146/annurev.physiol.010908.163137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael J. Baum
- Department of Biology, Boston University, Boston, Massachusetts 02215;
| | - Kevin R. Kelliher
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844;
| |
Collapse
|
86
|
Kang N, Baum MJ, Cherry JA. A direct main olfactory bulb projection to the 'vomeronasal' amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 2009; 29:624-34. [PMID: 19187265 PMCID: PMC2669936 DOI: 10.1111/j.1460-9568.2009.06638.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial ('vomeronasal') amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the 'vomeronasal' amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction.
Collapse
Affiliation(s)
- Ningdong Kang
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
87
|
Olfactory fear conditioning paradigm in rats: Effects of midazolam, propranolol or scopolamine. Neurobiol Learn Mem 2009; 91:32-40. [DOI: 10.1016/j.nlm.2008.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/09/2008] [Accepted: 10/25/2008] [Indexed: 01/18/2023]
|
88
|
Ryan BC, Young NB, Moy SS, Crawley JN. Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res 2008; 193:235-42. [PMID: 18586054 PMCID: PMC2630588 DOI: 10.1016/j.bbr.2008.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/26/2023]
Abstract
Mouse models for the study of autistic-like behaviors are increasingly needed to test hypotheses about the causes of autism, and to evaluate potential treatments. Both the automated three-chambered social approach test and social transmission of food preference have been proposed as mouse behavioral assays with face validity to diagnostic symptoms of autism, including aberrant reciprocal social interactions and impaired communication. Both assays measure aspects of normal social behavior in the mouse. However, little is known regarding the salient cues present in each assay that elicit normal social approach and communication. To deconstruct the critical components, we focused on delivering discrete social and non-social olfactory and visual cues within the context of each assay. Results indicate that social olfactory cues were sufficient to elicit normal sociability in the three-chambered social approach test. On social transmission of food preference, isolated social olfactory cues were sufficient to induce social investigation, but not sufficient to induce food preference. These findings indicate that olfactory cues are important in mouse social interaction, but that additional sensory cues are necessary in certain situations. The present evidence that both the three-chambered social approach assay and the social transmission of food preference assay require socially relevant cues to elicit normal behavior supports the use of these two assays to investigate autism-related behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Bryce C Ryan
- Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
89
|
Maras PM, Petrulis A. The posteromedial cortical amygdala regulates copulatory behavior, but not sexual odor preference, in the male Syrian hamster (Mesocricetus auratus). Neuroscience 2008; 156:425-35. [PMID: 18762231 PMCID: PMC3428072 DOI: 10.1016/j.neuroscience.2008.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 11/30/2022]
Abstract
In rodent species, the expression of reproductive behavior relies heavily on the perception of social odors, as well as the presence of circulating steroid hormones. In the Syrian hamster, chemosensory and hormonal cues are processed within an interconnected network of ventral forebrain nuclei that regulates many aspects of social behavior. Within this network, the posteromedial cortical amygdala (PMCo) receives direct projections from the accessory olfactory bulbs and contains a dense population of steroid receptor-containing neurons. Consequently, the PMCo may be important for generating odor-guided aspects of reproductive behavior, yet little is known regarding the role of this nucleus in regulating these behaviors. Thus, the present study tested male hamsters with site-specific electrolytic lesions of the PMCo for their (a) sexual odor preference in a Y-maze apparatus, (b) sexual odor discrimination in a habituation-dishabituation task, and (c) copulatory behavior when paired with a sexually receptive female. PMCo-lesioned males preferred to investigate female odors over male odors and were able to discriminate between these odor sources. However, PMCo lesions were associated with several alterations in the male copulatory pattern. First, PMCo-lesioned males displayed increased investigation of the female's non-anogenital region, suggesting that the PMCo may be involved in directing appropriate chemosensory investigation during mating. Second, PMCo lesions altered the temporal pattern of the mating sequence, as PMCo-lesioned males took longer than Sham-lesioned males to reach sexual satiety, as indicated by the delayed expression of long intromissions. This delayed onset of satiety was associated with an increased number of ejaculations compared with Sham-lesioned males. Importantly, these data provide the first direct evidence for a functional role of the PMCo in regulating male reproductive behavior.
Collapse
Affiliation(s)
- P M Maras
- Georgia State University, Department of Psychology, Center for Behavioral Neuroscience, P.O. Box 3966, Atlanta, GA 30302-3966, USA.
| | | |
Collapse
|
90
|
Shea SD, Katz LC, Mooney R. Noradrenergic induction of odor-specific neural habituation and olfactory memories. J Neurosci 2008; 28:10711-9. [PMID: 18923046 PMCID: PMC2588668 DOI: 10.1523/jneurosci.3853-08.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 01/08/2023] Open
Abstract
For many mammals, individual recognition of conspecifics relies on olfactory cues. Certain individual recognition memories are thought to be stored when conspecific odor cues coincide with surges of noradrenaline (NA) triggered by intensely arousing social events. Such familiar stimuli elicit reduced behavioral responses, a change likely related to NA-dependent plasticity in the olfactory bulb (OB). In addition to its role in these ethological memories, NA signaling in the OB appears to be relevant for the discrimination of more arbitrary odorants as well. Nonetheless, no NA-gated mechanism of long-term plasticity in the OB has ever been directly observed in vivo. Here, we report that NA release from locus ceruleus (LC), when coupled to odor presentation, acts locally in the main OB to cause a specific long-lasting suppression of responses to paired odors. These effects were observed for both food odors and urine, an important social recognition cue. Moreover, in subsequent behavioral tests, mice exhibited habituation to paired urine stimuli, suggesting that this LC-mediated olfactory neural plasticity, induced under anesthesia, can store an individual recognition memory that is observable after recovery.
Collapse
Affiliation(s)
- Stephen D Shea
- Department of Neurobiology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
91
|
Martinez-Marcos A. On the organization of olfactory and vomeronasal cortices. Prog Neurobiol 2008; 87:21-30. [PMID: 18929620 DOI: 10.1016/j.pneurobio.2008.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/31/2008] [Accepted: 09/19/2008] [Indexed: 11/19/2022]
Abstract
Classically, the olfactory and vomeronasal pathways are thought to run in parallel non-overlapping axes in the forebrain subserving different functions. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs (primary projections), which in turn project to different areas of the telencephalon in a non-topographic fashion (secondary projections) and so on (tertiary projections). New data indicate that projections arising from the main and accessory olfactory bulbs converge widely in the rostral basal telencephalon. In contrast, in the vomeronasal system, cloning two classes of vomeronasal receptors (V1R and V2R) has led to the distinction of two anatomically and functionally independent pathways that reach some common, but also some different, targets in the amygdala. Tertiary projections from the olfactory and vomeronasal amygdalae are directed to the ventral striatum, which thus becomes a site for processing and potential convergence of chemosensory stimuli. Functional data indicate that the olfactory and vomeronasal systems are able to detect and process volatiles (presumptive olfactory cues) as well as pheromones in both epithelia and bulbs. Collectively, these data indicate that the anatomical and functional distinction between the olfactory and vomeronasal systems should be re-evaluated. Specifically, the recipient cortex should be reorganized to include olfactory, vomeronasal (convergent and V1R and V2R specific areas) and mixed (olfactory and vomeronasal) chemosensory cortices. This new perspective could help to unravel olfactory and vomeronasal interactions in behavioral paradigms.
Collapse
Affiliation(s)
- Alino Martinez-Marcos
- Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
92
|
Canteras NS, Kroon JA, Do-Monte FH, Pavesi E, Carobrez AP. Sensing danger through the olfactory system: The role of the hypothalamic dorsal premammillary nucleus. Neurosci Biobehav Rev 2008; 32:1228-35. [DOI: 10.1016/j.neubiorev.2008.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/04/2008] [Accepted: 05/02/2008] [Indexed: 11/30/2022]
|
93
|
Arakawa H, Blanchard DC, Arakawa K, Dunlap C, Blanchard RJ. Scent marking behavior as an odorant communication in mice. Neurosci Biobehav Rev 2008; 32:1236-48. [PMID: 18565582 PMCID: PMC2577770 DOI: 10.1016/j.neubiorev.2008.05.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 11/23/2022]
Abstract
In rodents, where chemical signals play a particularly important role in determining intraspecies interactions including social dominance and intersexual relationships, various studies have shown that behavior is sensitive to conspecific odor cues. Mice use urinary scent marks for communication with individual conspecifics in many social contexts. Urinary scent involves genetic information about individuals such as species, sex, and individual identity as well as metabolic information such as social dominance, and reproductive and health status, which are mediated by chemical proteins in scent marks including the major histocompatibility complex and the major urinary proteins. The odor of the predator which can be considered to be a threatening signal for the prey also modulate mouse behavior in which scent marking is suppressed in response to the cat odor exposure in mice. These odorant chemicals are detected and recognized through two olfactory bulbs, the role of which in detection of chemosignals with biological relevant appears to be differential, but partly overlapped. Mice deposit scent marks toward conspecifics to maintain their social relationships, and inhibit scent marking in a context where natural predator, cat odor is contained. This suppression of scent marking is long-lasting (for at least 7 days) and context-dependent, while the odorant signaling to conspecifics tends to appear frequently (over 24h but less than 7 days intervals) depending on the familiarity of each signal-recipient. It has been discussed that scent marking is a communicative behavior associated with territoriality toward conspecifics, indicating that the social signaling within species are sensitive to predator odor cues in terms of vulnerability to predation risk.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Pacific Bioscience Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | |
Collapse
|
94
|
Ramm SA, Cheetham SA, Hurst JL. Encoding choosiness: female attraction requires prior physical contact with individual male scents in mice. Proc Biol Sci 2008; 275:1727-35. [PMID: 18448415 PMCID: PMC2587794 DOI: 10.1098/rspb.2008.0302] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/12/2022] Open
Abstract
Scents, detected through both the main and vomeronasal olfactory systems, play a crucial role in regulating reproductive behaviour in many mammals. In laboratory mice, female preference for airborne urinary scents from males (detected through the main olfactory system) is learnt through association with scents detected through the vomeronasal system during contact with the scent source. This may reflect a more complex assessment of individual males than that implied by laboratory mouse studies in which individual variation has largely been eliminated. To test this, we assessed female preference between male and female urine using wild house mice with natural individual genetic variation in urinary identity signals. We confirm that females exhibit a general preference for male over female urine when able to contact urine scents. However, they are only attracted to airborne urinary volatiles from individual males whose urine they have previously contacted. Even females with a natural exposure to many individuals of both sexes fail to develop generalized attraction to airborne male scents. This implies that information gained through contact with a specific male's scent is essential to stimulate attraction, providing a new perspective on the cues and olfactory pathways involved in sex recognition and mate assessment in rodents.
Collapse
Affiliation(s)
| | | | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Department of Veterinary Preclinical Science, University of LiverpoolLeahurst, Neston CH64 7TE, UK
| |
Collapse
|
95
|
Schubert SN, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK. The effects of sex on chemosensory communication in a terrestrial salamander (Plethodon shermani). Horm Behav 2008; 54:270-7. [PMID: 18460406 DOI: 10.1016/j.yhbeh.2008.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/16/2022]
Abstract
Although much evidence reveals sexually dimorphic processing of chemosensory cues by the brain, potential sex differences at more peripheral levels of chemoreception are understudied. In plethodontid salamanders, the volume of the vomeronasal organ (VNO) is almost twice as large in males as compared to females, both in absolute and relative size. To determine whether the structural sexual dimorphism in VNO volume is associated with sex differences in other peripheral aspects of chemosensation, we measured sex differences in chemo-investigation and in responsiveness of the VNO to chemosensory cues. Males and females differed in traits influencing stimulus access to VNO chemosensory neurons. Males chemo-investigated ("nose tapped") neutral substrates and substrates moistened with female body rinses more than did females. Compared to females, males had larger narial structures (cirri) associated with the transfer of substrate-borne chemical cues to the lumen of the VNO. These sex differences in chemo-investigation and narial morphology likely represent important mechanisms for regulating sex differences in chemical communication. In contrast, males and females did not differ in responsiveness of VNO chemosensory neurons to male mental gland extract or female skin secretions. This important result indicates that although males have a substantially larger VNO compared to females, the male VNO was not more responsive to every chemosensory cue that is detected by the VNO. Future studies will determine whether the male VNO is specialized to detect a subset of chemosensory cues, such as female body rinses or female scent marks.
Collapse
Affiliation(s)
- Stephanie N Schubert
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
96
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
97
|
Grus WE, Zhang J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 2008; 25:1593-601. [PMID: 18460446 DOI: 10.1093/molbev/msn107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most tetrapod vertebrates have 2 olfactory systems, the main olfactory system (MOS) and the vomeronasal system (VNS). According to the dual olfactory hypothesis, the MOS detects environmental odorants, whereas the VNS recognizes intraspecific pheromonal cues. However, this strict functional distinction has been blurred by recent reports that both systems can perceive both types of signals. Studies of a limited number of receptors suggest that MOS receptors are broadly tuned generalists, whereas VNS receptors are narrowly tuned specialists. However, whether this distinction applies to all MOS and VNS receptors remains unknown. The differential tuning hypothesis predicts that generalist MOS receptors detect an overlapping set of ligands and thus are more likely to be conserved over evolutionary time than specialist VNS receptors, which would evolve in a more lineage-specific manner. Here we test this prediction for all olfactory chemoreceptors by examining the evolutionary patterns of MOS-expressed odorant receptors (ORs) and trace amine-associated receptors (TAARs) and VNS-expressed vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs) in 7 tetrapods (mouse, rat, dog, opossum, platypus, chicken, and frog). The phylogenies of V1Rs and V2Rs show abundant lineage-specific gene gains/losses and virtually no one-to-one orthologs between species. Opposite patterns are found for ORs and TAARs. Analysis of functional data and ligand-binding sites of ORs confirms that paralogous chemoreceptors are more likely than orthologs to have different ligands and that functional divergence between paralogous chemoreceptors is established relatively quickly following gene duplication. Together, these results strongly suggest that the functional profile of the VNS chemoreceptor repertoire evolves much faster than that of the MOS chemoreceptor repertoire and that the differential tuning hypothesis applies to the majority, if not all, of MOS and VNS receptors.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
98
|
Gibka J, Majda T, Tichek A, Siwicki AK, Radomska-Leśniewska DM, Gliński M, Wasiutyński A, Skopińska-Różewska E, Sommer E, Bałan BJ. Study of the Effect of 3-Undecanone and 3-Undecanol on Cellular and Humoral Immunity in Mice. JOURNAL OF ESSENTIAL OIL RESEARCH 2008. [DOI: 10.1080/10412905.2008.9700013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
99
|
Pohorecky LA, Blakley GG, Ma EW, Soini HA, Wiesler D, Bruce KE, Novotny MV. Social housing influences the composition of volatile compounds in the preputial glands of male rats. Horm Behav 2008; 53:536-45. [PMID: 18255066 DOI: 10.1016/j.yhbeh.2007.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
In rodents the preputial glands are one of the major sources of pheromones. These volatile chemosignaling compounds are known to elicit specific behavioral and physiological effects in their conspecifics. While social stress can alter both the behavior and hormonal status of rodents, little is known about its influence on the volatile constituents of the preputial glands. We have examined the composition of volatile compounds in the preputial glands of gonadally intact male rats housed for 70 days in either unisex triads (three/cage) or singly. The rank status of triad-housed rats was based on quantitative behavioral assessments taken during the initial 30 min of triad housing. Dominant rats had heavier preputial glands compared to subdominant and subordinate rats. Capillary gas chromatography-mass spectrometry identified 56 volatile preputial compounds, of these 17 did not differ between groups while 26 compounds were significantly higher in the single-housed compared to the triad-housed rats. Six additional volatile compounds were higher in the dominant compared to the other 3 groups, while another six compounds were higher in both the dominant and single-housed rats compared to the subdominant and subordinate rats. It can be concluded that both housing condition and social rank status have significant but different effects on the composition of volatile compounds found in preputial glands of male rats. The physiological and behavioral significance of these changes in preputial gland volatile compound composition in rats remain to be investigated.
Collapse
Affiliation(s)
- L A Pohorecky
- Center of Alcohol Studies, Rutgers University, 607 Allison Road, Piscataway, NJ 08854-1100, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Wang Z, Nudelman A, Storm DR. Are pheromones detected through the main olfactory epithelium? Mol Neurobiol 2008; 35:317-23. [PMID: 17917120 DOI: 10.1007/s12035-007-0014-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/30/1999] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
A major sensory organ for the detection of pheromones by animals is the vomeronasal organ (VNO). Although pheromones control the behaviors of various species, the effect of pheromones on human behavior has been controversial because the VNO is not functional in adults. However, recent genetic, biochemical, and electrophysiological data suggest that some pheromone-based behaviors, including male sexual behavior in mice, are mediated through the main olfactory epithelium (MOE) and are coupled to the type 3 adenylyl cyclase (AC3) and a cyclic nucleotide-gated (CNG) ion channel. These recent discoveries suggest the provocative hypothesis that human pheromones may signal through the MOE.
Collapse
Affiliation(s)
- Zhenshan Wang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|