51
|
Zhao Z, Kuijvenhoven K, van Gulik WM, Heijnen JJ, van Winden WA, Verheijen PJT. Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol. Appl Microbiol Biotechnol 2011; 89:63-72. [PMID: 20809073 PMCID: PMC3016204 DOI: 10.1007/s00253-010-2851-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 11/02/2022]
Abstract
The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary (13)C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602-618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD(+) dependent. Metabolic modeling shows that changing the NAD(+)-aldehyde dehydrogenase to NADP(+)-aldehyde dehydrogenase can increase the penicillin yield on substrate.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Karel Kuijvenhoven
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | - Peter J. T. Verheijen
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| |
Collapse
|
52
|
Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Appl Microbiol Biotechnol 2010; 89:1193-202. [DOI: 10.1007/s00253-010-2910-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
|
53
|
Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, van Maris AJA. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2010; 12:537-51. [PMID: 20816840 DOI: 10.1016/j.ymben.2010.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/16/2010] [Accepted: 08/26/2010] [Indexed: 11/16/2022]
Abstract
One of the challenges in strain improvement by evolutionary engineering is to subsequently determine the molecular basis of the improved properties that were enriched from the natural genetic variation during the selective conditions. This study focuses on Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose- and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor were subjected to transcriptome analysis, intracellular metabolite measurements and metabolic flux analysis. Increased expression of the GAL-regulon and deletion of GAL2 in IMS0002 confirmed that the galactose transporter is essential for growth on arabinose. Elevated intracellular concentrations of pentose-phosphate-pathway intermediates and upregulation of TKL2 and YGR043c (encoding transketolase and transaldolase isoenzymes) suggested an involvement of these genes in flux-controlling reactions in arabinose fermentation. Indeed, deletion of these genes in IMS0002 caused a 21% reduction of the maximum specific growth rate on arabinose.
Collapse
Affiliation(s)
- H Wouter Wisselink
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
54
|
Li J, Yang Y, Chu J, Huang M, Li L, Zhang X, Wang Y, Zhuang Y, Zhang S. Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil. Bioprocess Biosyst Eng 2010; 33:1119-29. [PMID: 20571830 DOI: 10.1007/s00449-010-0439-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/20/2010] [Indexed: 11/26/2022]
Abstract
A metabolic network was constructed for the Acremonium chrysogenum cultivation fed with soybean oil. Metabolic flux analysis indicated that the shift from exponential growth to rapid cephalosporin C (CPC) formation was accompanied by 1.63- and 5-fold carbon flux enlargement in TCA cycle and glyoxylate by-pass, respectively. The flux via pentose phosphate pathway branch was little affected during the rapid CPC formation period; the contributory explanation was that 35.6% of NADPH was consumed in the dissimilation of fatty acids. Estimation of NADPH, ATP generation, and consumption demonstrated that, with soybean oil as carbon source in rapid CPC formation phase, the NADPH consumed in fatty acid catabolism was fourfold greater than that used in the CPC biosynthesis-relevant part; simultaneously, more than 90% energy spent was not directly related to the CPC formation. Therefore, the improvement of CPC production yield through optimization of the NADPH, ATP generation, and consumption was put forward.
Collapse
Affiliation(s)
- Jianhua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jami MS, Barreiro C, García-Estrada C, Martín JF. Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 2010; 9:1182-98. [PMID: 20154335 PMCID: PMC2877979 DOI: 10.1074/mcp.m900327-mcp200] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/15/2010] [Indexed: 11/06/2022] Open
Abstract
Proteomics is a powerful tool to understand the molecular mechanisms causing the production of high penicillin titers by industrial strains of the filamentous fungus Penicillium chrysogenum as the result of strain improvement programs. Penicillin biosynthesis is an excellent model system for many other bioactive microbial metabolites. The recent publication of the P. chrysogenum genome has established the basis to understand the molecular processes underlying penicillin overproduction. We report here the proteome reference map of P. chrysogenum Wisconsin 54-1255 (the genome project reference strain) together with an in-depth study of the changes produced in three different strains of this filamentous fungus during industrial strain improvement. Two-dimensional gel electrophoresis, peptide mass fingerprinting, and tandem mass spectrometry were used for protein identification. Around 1000 spots were visualized by "blue silver" colloidal Coomassie staining in a non-linear pI range from 3 to 10 with high resolution, which allowed the identification of 950 proteins (549 different proteins and isoforms). Comparison among the cytosolic proteomes of the wild-type NRRL 1951, Wisconsin 54-1255 (an improved, moderate penicillin producer), and AS-P-78 (a penicillin high producer) strains indicated that global metabolic reorganizations occurred during the strain improvement program. The main changes observed in the high producer strains were increases of cysteine biosynthesis (a penicillin precursor), enzymes of the pentose phosphate pathway, and stress response proteins together with a reduction in virulence and in the biosynthesis of other secondary metabolites different from penicillin (pigments and isoflavonoids). In the wild-type strain, we identified enzymes to utilize cellulose, sorbitol, and other carbon sources that have been lost in the high penicillin producer strains. Changes in the levels of a few specific proteins correlated well with the improved penicillin biosynthesis in the high producer strains. These results provide useful information to improve the production of many other bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mohammad-Saeid Jami
- From the ‡Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain and
| | - Carlos Barreiro
- ¶INBIOTEC, Instituto de Biotecnología de León, Avenida Real No. 1, Parque Científico de León, 24006 León, Spain
| | - Carlos García-Estrada
- ¶INBIOTEC, Instituto de Biotecnología de León, Avenida Real No. 1, Parque Científico de León, 24006 León, Spain
| | - Juan-Francisco Martín
- From the ‡Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain and
- ¶INBIOTEC, Instituto de Biotecnología de León, Avenida Real No. 1, Parque Científico de León, 24006 León, Spain
| |
Collapse
|
56
|
Link H, Anselment B, Weuster-Botz D. Rapid media transition: an experimental approach for steady state analysis of metabolic pathways. Biotechnol Prog 2010; 26:1-10. [PMID: 19785030 DOI: 10.1002/btpr.290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed-batch mode under non-stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup-rapid media transition-enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab-scale stirred-tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed-batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short-term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations.
Collapse
Affiliation(s)
- Hannes Link
- Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Garching 85748, Germany
| | | | | |
Collapse
|
57
|
|
58
|
Harris DM, Westerlaken I, Schipper D, van der Krogt ZA, Gombert AK, Sutherland J, Raamsdonk LM, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng 2009; 11:125-37. [PMID: 19271269 DOI: 10.1016/j.ymben.2008.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P.chrysogenum. Growth of the engineered strain in the presence of adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA-producing strain and a strain lacking key genes in beta-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. Transcriptome analysis revealed that adipate catabolism in P.chrysogenum occurs via beta-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|