51
|
Huang L, Wei B, Zhao Y, Gong X, Chen L. DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting ubiquitination degradation of VDAC1. Mol Med 2023; 29:72. [PMID: 37280526 DOI: 10.1186/s10020-023-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mitochondrial metabolism has been proposed as an attractive target for breast cancer therapy. The discovery of new mechanisms underlying mitochondrial dysfunction will facilitate the development of new metabolic inhibitors to improve the clinical treatment of breast cancer patients. DYNLT1 (Dynein Light Chain Tctex-Type 1) is a key component of the motor complex that transports cellular cargo along microtubules in the cell, but whether and how DYNLT1 affects mitochondrial metabolism and breast cancer has not been reported. METHODS The expression levels of DYNLT1 were analyzed in clinical samples and a panel of cell lines. The role of DYNLT1 in breast cancer development was investigated using in vivo mouse models and in vitro cell assays, including CCK-8, plate cloning and transwell assay. The role of DYNLT1 in regulating mitochondrial metabolism in breast cancer development is examined by measuring mitochondrial membrane potential and ATP levels. To investigate the underlying molecular mechanism, many methods, including but not limited to Co-IP and ubiquitination assay were used. RESULTS First, we found that DYNLT1 was upregulated in breast tumors, especially in ER + and TNBC subtypes. DYNLT1 promotes the proliferation, migration, invasion and mitochondrial metabolism in breast cancer cells in vitro and breast tumor development in vivo. DYNLT1 colocalizes with voltage-dependent anion channel 1 (VDAC1) on mitochondria to regulate key metabolic and energy functions. Mechanistically, DYNLT1 stabilizes the voltage-dependent anion channel 1 (VDAC1) by hindering E3 ligase Parkin-mediated VDAC1 ubiquitination and degradation. CONCLUSION Our data demonstrate that DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting Parkin-mediated ubiquitination degradation of VDAC1. This study suggests that mitochondrial metabolism can be exploited by targeting the DYNLT1-Parkin-VDAC1 axis to improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Wei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuran Zhao
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xue Gong
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
52
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
53
|
Zhou H, Dai Z, Li J, Wang J, Zhu H, Chang X, Wang Y. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism 2023; 140:155383. [PMID: 36603706 DOI: 10.1016/j.metabol.2022.155383] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The regulatory mechanisms involved in mitochondrial quality control (MQC) dysfunction during septic cardiomyopathy (SCM) remain incompletely characterized. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) is an endoplasmic reticulum protein with Ca2+ leak activity that modulates cellular responses to various cellular stressors. METHODS In this study, we evaluated the role of TMBIM6 in SCM using cardiomyocyte-specific TMBIM6 knockout (TMBIM6CKO) and TMBIM6 transgenic (TMBIM6TG) mice. RESULTS Myocardial TMBIM6 transcription and expression were significantly downregulated in wild-type mice upon LPS exposure, along with characteristic alterations in myocardial systolic/diastolic function, cardiac inflammation, and cardiomyocyte death. Notably, these alterations were further exacerbated in LPS-treated TMBIM6CKO mice, and largely absent in TMBIM6TG mice. In LPS-treated primary cardiomyocytes, TMBIM6 deficiency further impaired mitochondrial respiration and ATP production, while defective MQC was suggested by enhanced mitochondrial fission, impaired mitophagy, and disrupted mitochondrial biogenesis. Structural protein analysis, Co-IP, mutant TMBIM6 plasmid transfection, and molecular docking assays subsequently indicated that TMBIM6 exerts cardioprotection against LPS-induced sepsis by interacting with and preventing the oligomerization of voltage-dependent anion channel-1 (VDAC1), the major route of mitochondrial Ca2+ uptake. CONCLUSION We conclude that the TMBIM6-VDAC1 interaction prevents VDAC1 oligomerization and thus sustains mitochondrial Ca2+ homeostasis as well as MQC, contributing to improved myocardial function in SCM.
Collapse
Affiliation(s)
- Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Zhe Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialei Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Hang Zhu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
54
|
Magrì A, Cubisino SAM, Battiato G, Lipari CLR, Conti Nibali S, Saab MW, Pittalà A, Amorini AM, De Pinto V, Messina A. VDAC1 Knockout Affects Mitochondrial Oxygen Consumption Triggering a Rearrangement of ETC by Impacting on Complex I Activity. Int J Mol Sci 2023; 24:ijms24043687. [PMID: 36835102 PMCID: PMC9963415 DOI: 10.3390/ijms24043687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Voltage-Dependent Anion-selective Channel isoform 1 (VDAC1) is the most abundant isoform of the outer mitochondrial membrane (OMM) porins and the principal gate for ions and metabolites to and from the organelle. VDAC1 is also involved in a number of additional functions, such as the regulation of apoptosis. Although the protein is not directly involved in mitochondrial respiration, its deletion in yeast triggers a complete rewiring of the whole cell metabolism, with the inactivation of the main mitochondrial functions. In this work, we analyzed in detail the impact of VDAC1 knockout on mitochondrial respiration in the near-haploid human cell line HAP1. Results indicate that, despite the presence of other VDAC isoforms in the cell, the inactivation of VDAC1 correlates with a dramatic impairment in oxygen consumption and a re-organization of the relative contributions of the electron transport chain (ETC) enzymes. Precisely, in VDAC1 knockout HAP1 cells, the complex I-linked respiration (N-pathway) is increased by drawing resources from respiratory reserves. Overall, the data reported here strengthen the key role of VDAC1 as a general regulator of mitochondrial metabolism.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
- Correspondence:
| | | | - Giuseppe Battiato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Cristiana Lucia Rita Lipari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Vito De Pinto
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
| |
Collapse
|
55
|
The E3 ubiquitin ligase NEDD4-1 protects against acetaminophen-induced liver injury by targeting VDAC1 for degradation. Acta Pharm Sin B 2023; 13:1616-1630. [PMID: 37139424 PMCID: PMC10150139 DOI: 10.1016/j.apsb.2023.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 12/15/2022] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.
Collapse
|
56
|
Verma A, Shteinfer-Kuzmine A, Kamenetsky N, Pittala S, Paul A, Nahon Crystal E, Ouro A, Chalifa-Caspi V, Pandey SK, Monsengo A, Vardi N, Knafo S, Shoshan-Barmatz V. Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. Transl Neurodegener 2022; 11:58. [PMID: 36578022 PMCID: PMC9795455 DOI: 10.1186/s40035-022-00329-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) exhibits mitochondrial dysfunctions associated with dysregulated metabolism, brain inflammation, synaptic loss, and neuronal cell death. As a key protein serving as the mitochondrial gatekeeper, the voltage-dependent anion channel-1 (VDAC1) that controls metabolism and Ca2+ homeostasis is positioned at a convergence point for various cell survival and death signals. Here, we targeted VDAC1 with VBIT-4, a newly developed inhibitor of VDAC1 that prevents its pro-apoptotic activity, and mitochondria dysfunction. METHODS To address the multiple pathways involved in AD, neuronal cultures and a 5 × FAD mouse model of AD were treated with VBIT-4. We addressed multiple topics related to the disease and its molecular mechanisms using immunoblotting, immunofluorescence, q-RT-PCR, 3-D structural analysis and several behavioral tests. RESULTS In neuronal cultures, amyloid-beta (Aβ)-induced VDAC1 and p53 overexpression and apoptotic cell death were prevented by VBIT-4. Using an AD-like 5 × FAD mouse model, we showed that VDAC1 was overexpressed in neurons surrounding Aβ plaques, but not in astrocytes and microglia, and this was associated with neuronal cell death. VBIT-4 prevented the associated pathophysiological changes including neuronal cell death, neuroinflammation, and neuro-metabolic dysfunctions. VBIT-4 also switched astrocytes and microglia from being pro-inflammatory/neurotoxic to neuroprotective phenotype. Moreover, VBIT-4 prevented cognitive decline in the 5 × FAD mice as evaluated using several behavioral assessments of cognitive function. Interestingly, VBIT-4 protected against AD pathology, with no significant change in phosphorylated Tau and only a slight decrease in Aβ-plaque load. CONCLUSIONS The study suggests that mitochondrial dysfunction with its gatekeeper VDAC1 is a promising target for AD therapeutic intervention, and VBIT-4 is a promising drug candidate for AD treatment.
Collapse
Affiliation(s)
- Ankit Verma
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nikita Kamenetsky
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Srinivas Pittala
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Avijit Paul
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Edna Nahon Crystal
- grid.443007.40000 0004 0604 7694Achva Academic College, 79804 Shikmim, Israel
| | - Alberto Ouro
- grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.488911.d0000 0004 0408 4897Present Address: NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Vered Chalifa-Caspi
- grid.7489.20000 0004 1937 0511Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Swaroop Kumar Pandey
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Alon Monsengo
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Noga Vardi
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Shira Knafo
- grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
57
|
Schäfer W, Stähler T, Pinto Espinoza C, Danquah W, Knop JH, Rissiek B, Haag F, Koch-Nolte F. Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel. Front Pharmacol 2022; 13:1033135. [DOI: 10.3389/fphar.2022.1033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022] Open
Abstract
P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular “head”-domain of P2X7 (155 Y/H), its “lower body” (270 R/H), and its “tail” in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y—R—T (at 155–270–348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as “wildtype,” differs from the ancestral allele at all three positions, i.e. H—H—A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%–59% for Y155, 59%–77% for R270, and 13%–47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H—R—T for a 50.000 year old Neanderthal, H—R—A for a 24.000 year old Siberian, and Y—R—A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.
Collapse
|
58
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|
59
|
Shteinfer-Kuzmine A, Argueti-Ostrovsky S, Leyton-Jaimes MF, Anand U, Abu-Hamad S, Zalk R, Shoshan-Barmatz V, Israelson A. Targeting the Mitochondrial Protein VDAC1 as a Potential Therapeutic Strategy in ALS. Int J Mol Sci 2022; 23:ijms23179946. [PMID: 36077343 PMCID: PMC9456491 DOI: 10.3390/ijms23179946] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/02/2023] Open
Abstract
Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis. Previously, we showed that VDAC1 interacts with SOD1 and that the VDAC1-N-terminal-derived peptide prevented mutant SOD1 cytotoxic effects. In this study, using a peptide array, we identified the SOD1 sequence that interacts with VDAC1. Synthetic peptides generated from the identified VDAC1-binding sequences in SOD1 directly interacted with purified VDAC1. We also show that VDAC1 oligomerization increased in spinal cord mitochondria isolated from mutant SOD1G93A mice and rats. Thus, we used the novel VDAC1-specific small molecules, VBIT-4 and VBIT-12, inhibiting VDAC1 oligomerization and subsequently apoptosis and associated processes such as ROS production, and increased cytosolic Ca2+. VBIT-12 was able to rescue cell death induced by mutant SOD1 in neuronal cultures. Finally, although survival was not affected, VBIT-12 administration significantly improved muscle endurance in mutant SOD1G93A mice. Therefore, VBIT-12 may represent an attractive therapy for maintaining muscle function during the progression of ALS.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marcel F. Leyton-Jaimes
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Stem Cell and Regenerative Biology, Sherman Fairchild, Harvard University, 7 Divinity Ave., Cambridge, MA 02138, USA
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Salah Abu-Hamad
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (V.S.-B.); (A.I.)
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (V.S.-B.); (A.I.)
| |
Collapse
|
60
|
Sergi CM. NLRP-3 Inflammasome: A Key Target, but Mostly Overlooked following SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1307. [PMID: 36016195 PMCID: PMC9413552 DOI: 10.3390/vaccines10081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
The last two years have shown many political and scientific debates during the current Coronavirus Disease 2019 (COVID-19) pandemic [...].
Collapse
Affiliation(s)
- Consolato M. Sergi
- AP Division/Pathology Laboratories, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; ; Tel.: +613-737-7600; Fax: 613-738-4837
- Department of Laboratory Medicine and Pathology, University of Alberta, Stollery Children’s Hospital, University Alberta Hospital, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
61
|
Bayliss G. Mitochondrial DNA in Uremia and New Targets to Treat Myocardial Hypertrophy in the Cardiorenal Syndrome. JACC Basic Transl Sci 2022; 7:841-843. [PMID: 36061339 PMCID: PMC9436808 DOI: 10.1016/j.jacbts.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- George Bayliss
- Address for correspondence: Dr George Bayliss, Division of Kidney Disease and Hypertension, APC 9, Rhode Island Hospital, 593 Eddy Street, Providence, Rhode Island 02903, USA.
| |
Collapse
|
62
|
VDAC1 regulates neuronal cell loss after retinal trauma injury by a mitochondria-independent pathway. Cell Death Dis 2022; 13:393. [PMID: 35449127 PMCID: PMC9023530 DOI: 10.1038/s41419-022-04755-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
The voltage-dependent anion channel 1 (VDAC1) was first described as a mitochondrial porin that mediates the flux of metabolites and ions, thereby integrating both cell survival and death signals. In the nervous system, the functional roles of VDAC1 remain poorly understood. Herein, the rat retina was employed to study VDAC1. First, it was observed that even subtle changes in VDAC1 levels affect neuronal survival, inducing severe alterations in the retinal morphology. We next examined the regulation of VDAC1 after traumatic retinal injury. After mechanical trauma, SOD1 translocates towards the nucleus, which is insufficient to contain the consequences of oxidative stress, as determined by the evaluation of protein carbonylation. Using in vitro models of oxidative stress and mechanical injury in primary retinal cell cultures, it was possible to determine that inhibition of VDAC1 oligomerization by 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) rescues cell viability, impacting microglial cell activation. We next focused on the regulation of VDAC1 after retinal mechanical injury. VDAC1 was promptly upregulated 2 h after lesion in the plasma membrane and endoplasmic reticulum rather than in the mitochondria, and multimers of VDAC1 were assembled after lesion. DIDS intraocular application decreased apoptosis and prevented microglial polarization, which confirmed in vitro observations. Considering the role of microglia in neuroinflammation, multiplex evaluation of cytokines showed that DIDS application disorganized the inflammatory response 2 h after the lesion, matching the fast regulation of VDAC1. Taken together, data disclosed that fine regulation of VDAC1 influences neuronal survival, and pharmacological inhibition after trauma injury has neuroprotective effects. This protection may be attributed to the effects on VDAC1 abnormal accumulation in the plasma membrane, thereby controlling the activation of microglial cells. We concluded that VDAC1 is a putative therapeutic target in neuronal disorders since it integrates both death and survival cellular signaling.
Collapse
|
63
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|