51
|
Mizushina Y, Kamisuki S, Kasai N, Shimazaki N, Takemura M, Asahara H, Linn S, Yoshida S, Matsukage A, Koiwai O, Sugawara F, Yoshida H, Sakaguchi K. A plant phytotoxin, solanapyrone A, is an inhibitor of DNA polymerase beta and lambda. J Biol Chem 2002; 277:630-8. [PMID: 11677229 DOI: 10.1074/jbc.m105144200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solanapyrone A, a phytotoxin and enzyme inhibitor isolated from a fungus (SUT 01B1-2) selectively inhibits the activities of mammalian DNA polymerase beta and lambda (pol beta and lambda) in vitro. The IC50 values of the compound were 30 microm for pol beta and 37 microm for pol lambda. Because pol beta and lambda are in a family and their three-dimensional structures are thought to be highly similar to each other, we used pol beta to analyze the biochemical relationship with solanapyrone A. On pol beta, solanapyrone A antagonistically competed with both the DNA template and the nucleotide substrate. BIAcore analysis demonstrated that solanapyrone A bound selectively to the N-terminal 8-kDa domain of pol beta. This domain is known to bind single-stranded DNA, provide 5'-phosphate recognition of gapped DNA, and cleave the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity) including 5'-deoxyribose phosphate lyase activity. Solanapyrone A inhibited the single-stranded DNA-binding activity but did not influence the activities of the 5'-phosphate recognition in gapped DNA structures and the AP lyase. Based on these results, the inhibitory mechanism of solanapyrone A is discussed.
Collapse
Affiliation(s)
- Yoshiyuki Mizushina
- Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ohta K, Mizushina Y, Yamazaki T, Hanashima S, Sugawara F, Sakaguchi K. Specific interaction between an oligosaccharide on the tumor cell surface and the novel antitumor agents, sulfoquinovosylacylglycerols. Biochem Biophys Res Commun 2001; 288:893-900. [PMID: 11688993 DOI: 10.1006/bbrc.2001.5852] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some sulfoquinovosylacylglycerols (SQAG) have been shown to be potent DNA polymerase inhibitors, and to have strong antitumor activity in vivo. In this study, we investigated the mode of action of SQAG with regard to the interaction with the tumor cell surface. Of the SQAG used, the monoacyl forms (SQMG) with C18-, C18:1- or C16-fatty acids (SQMG-alphaC18, -alphaC18:1 or -alphaC16) effectively inhibited cell proliferation of a human adenocarcinoma cell line, DLD-1, but SQMG-alphaC14 and the diacyl forms (SQDG) did not. Analysis of the interaction of SQMG-alphaC18 and -alphaC18:1 on three oligosaccharides of cell surface, sLe(A), Le(X), and SM3, by flow cytometry demonstrated that the most effective interaction was observed on sLe(A). DLD-1 cells bound to SQMG-alphaC18:1-coated plates, and this binding was inhibited by monoclonal antibody against sLe(A) or SM3. However, these cells did not bind to SQMG-alphaC14-coated plates. Moreover the cytotoxic effects of SQMG-alphaC18, -alphaC18:1 on DLD-1 cells was inhibited by monoclonal antibodies against sLe(A) or SM3. Our results suggested that the interaction of SQMGs and sLe(A) plays an important role in suppression of the DLD-1 cell proliferation.
Collapse
Affiliation(s)
- K Ohta
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken, 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Mizushina Y, Sugiyama Y, Yoshida H, Hanashima S, Yamazaki T, Kamisuki S, Ohta K, Takemura M, Yamaguchi T, Matsukage A, Yoshida S, Saneyoshi M, Sugawara F, Sakagauchi K. Galactosyldiacylglycerol, a mammalian DNA polymerase alpha-specific inhibitor from a sea alga, Petalonia bingbamiae. Biol Pharm Bull 2001; 24:982-7. [PMID: 11558581 DOI: 10.1248/bpb.24.982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycolipid galactosyldiacylglycerol (GDG), containing C16:0 and C18:1 fatty acids, was isolated from the sea alga Petalonia bingbamiae as a potent inhibitor of the activities of mammalian DNA polymerase alpha (pol. alpha). GDG, however, had no effect on pol. alpha from a fish or a higher plant. The inhibition of pol. alpha by GDG was dose-dependent with an IC50 value of 54 microM. The compound did not influence the activities of other replicative DNA polymerases such as mammalian pol. delta, or repair-related enzymes such as mammalian pol. beta. GDG also did not influence the activities of prokaryotic DNA polymerases such as the Klenow fragment of DNA polymerase I, T4 DNA polymerase, Taq DNA polymerase, DNA polymerases from the higher plant, cauliflower, or DNA metabolic enzymes such as calf thymus terminal deoxynucleotidyl transferase, human immunodeficiency virus type 1 reverse transcriptase and deoxyribonuclease 1. Kinetic analysis of the compound showed that pol. alpha was non-competitively inhibited with respect to both the DNA template and the nucleotide substrate. In this study, we demonstrated the structure-function relationship in the selective inhibition of pol. alpha by the glycolipid group.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Nutritional Science, and High Technology Research Center, Kobe-Gakuin University, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hanashima S, Mizushina Y, Yamazaki T, Ohta K, Takahashi S, Sahara H, Sakaguchi K, Sugawar F. Synthesis of sulfoquinovosylacylglycerols, inhibitors of eukaryotic DNA polymerase alpha and beta. Bioorg Med Chem 2001; 9:367-76. [PMID: 11249129 DOI: 10.1016/s0968-0896(00)00252-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sulfoquinovosyldiacylglycerols (SQDGs) and sulfoquinovosylmonoacylglycerols (SQMGs), bearing diverse fatty acids, were synthesized from D-glucose, and were examined for enzymatic inhibitions of DNA polymerase alpha and beta. These results indicated that the carbon numbers of the fatty acids were highly related to the activities, at least in vitro, of eukaryotic DNA polymerase inhibition.
Collapse
Affiliation(s)
- S Hanashima
- Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
As described previously, we found that new triterpenoid compounds, designated fomitellic acids A and B, which selectively inhibit the activities of mammalian DNA polymerases alpha and beta [Mizushina, Tanaka, Kitamura, Tamai, Ikeda, Takemura, Sugawara, Arai, Matsukage, Yoshida and Sakaguchi (1998) Biochem. J. 330, 1325-1332; Tanaka, Kitamura, Mizushina, Sugawara and Sakaguchi (1998) J. Nat. Prod. 61, 193-197] and that a known triterpenoid, ursolic acid, is an inhibitor of human DNA topoisomerases I and II (A. Iida, Y. Mizushina and K. Sakaguchi, unpublished work). Here we report that all of these triterpenoids are potent inhibitors of calf DNA polymerase alpha, rat DNA polymerase beta and human DNA topoisomerases I and II, and show moderate inhibitory effects on plant DNA polymerase II and human immunodeficiency virus reverse transcriptase. However, these compounds did not influence the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I or other DNA metabolic enzymes such as human telomerase, T7 RNA polymerase and bovine deoxyribonuclease I. These triterpenoids were not only mammalian DNA polymerase inhibitors but also inhibitors of DNA topoisomerases I and II even though the enzymic characteristics of DNA polymerases and DNA topoisomerases, including their modes of action, amino acid sequences and three-dimensional structures, differed markedly. These triterpenoids did not bind to DNA, suggesting that they act directly on these enzymes. Because the three-dimensional structures of fomitellic acids were shown by computer simulation to be very similar to that of ursolic acid, the DNA-binding sites of both enzymes, which compete for the inhibitors, might be very similar. Fomitellic acid A and ursolic acid prevented the growth of NUGC cancer cells, with LD(50) values of 38 and 30 microM respectively.
Collapse
|
56
|
Matsumoto Y, Sahara H, Fujita T, Hanashima S, Yamazaki T, Takahashi S, Sugawara F, Mizushina Y, Ohta K, Takahashi N, Jimbow K, Sakaguchi K, Sato N. A novel immunosuppressive agent, SQDG, derived from sea urchin. Transplant Proc 2000; 32:2051-3. [PMID: 11120062 DOI: 10.1016/s0041-1345(00)01554-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Y Matsumoto
- Division of Plastic Surgery, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Mizushina Y, Ueno T, Oda M, Yamaguchi T, Saneyoshi M, Sakaguchi K. The biochemical mode of inhibition of DNA polymerase beta by alpha-rubromycin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:172-81. [PMID: 11042381 DOI: 10.1016/s0304-4165(00)00119-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quinone antibiotics, alpha- and beta-rubromycin, were originally found as inhibitors of retroviral reverse transcriptase. We investigated the effects of these agents on DNA metabolic enzymes including DNA and RNA polymerases as retroviral reverse transcriptase is a kind of the polymerase. As expected, we found that alpha- and beta-rubromycin strongly inhibited not only the retroviral reverse transcriptase activity, but the activities of the mammalian DNA polymerases, telomerase and terminal deoxynucleotidyl transferase in vitro. These agents should therefore be classified as DNA polymerase inhibitors. The Ki values of alpha-rubromycin against nucleotide substrate were 0.66 and 0.17 microM for DNA polymerase alpha and beta (pol. alpha and beta), respectively, and those of beta-rubromycin was 2.40 and 10.5 microM, respectively. Alpha-rubromycin strongly inhibited the pol. beta activity, and showed the strongest pol. beta inhibitory effect reported to date. At least on pol. beta, alpha-rubromycin was suggested to bind to the active region competing with the nucleotide substrate, and subsequently inhibit the catalytic activity. alpha-Rubromycin directly competed with the nucleotide substrate, and indirectly but simultaneously and non-competitively disturbed the template-DNA interaction with pol. beta.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Hanashima S, Mizushina Y, Ohta K, Yamazaki T, Sugawara F, Sakaguchi K. Structure-activity relationship of a novel group of mammalian DNA polymerase inhibitors, synthetic sulfoquinovosylacylglycerols. Jpn J Cancer Res 2000; 91:1073-83. [PMID: 11050480 PMCID: PMC5926251 DOI: 10.1111/j.1349-7006.2000.tb00887.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We reported previously that sulfolipids in the sulfoquinovosylacylglycerol class from a fern and an alga are potent inhibitors of DNA polymerase alpha and beta and potent anti-neoplastic agents. In developing a procedure for chemical synthesis of sulfolipids, we synthesized many derivatives and stereoisomers of sulfoquinovosylmonoacylglycerol (SQMG) / sulfoquinovosyldiacylglycerol (SQDG). Some of these molecules were stronger inhibitors than the SQMG / SQDG originally reported as natural compounds. In this study, we examined the structure-inhibitory function relationship of synthetic SQMG / SQDG and its relationship to cytotoxic activity. The inhibitory effect is probably mainly dependent on the fatty acid effect, which we reported previously, although each of the SQMG / SQDG was a much stronger inhibitor than the fatty acid alone that was present in the SQMG / SQDG. The inhibitory effect could be influenced by the chain size of fatty acids in the SQMG / SQDG. The sulfate moiety in the quinovose was also important for the inhibition. Lineweaver-Burk plots of SQMG / SQDG indicated that DNA polymerase alpha was non-competitively inhibited, but the SQMG / SQDG were effective as antagonists of both template-primer DNA-binding and nucleotide substrate-binding of DNA polymerase beta. The SQMG had an cytotoxic effect, but the SQDG tested did not. The SQDG might not be able to penetrate into cells. Based on these results, we discuss the molecular action of SQMG / SQDG and propose drug design strategies for developing new anti-neoplastic agents.
Collapse
Affiliation(s)
- S Hanashima
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Mizushina Y, Sagisaka M, Sakaib H, Abeb M, Sakaguchi K. Mode analysis of binding of fatty acids to mammalian DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:211-8. [PMID: 10903472 DOI: 10.1016/s1388-1981(00)00065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously reported that unsaturated long-chain fatty acids were potent DNA polymerase inhibitors (Y. Mizushina et al., J. Biol. Chem. 274 (1999) 25599-25607). In those experiments, the question remained of whether metastable oil droplets (liposomal vesicles) of the unsaturated long-chain fatty acids can non-specifically inhibit the polymerase activity. We report here that only the soluble fatty acid monomers of linoleic acid or nervonic acid could affect the activities of mammalian DNA polymerases, and the metastable oil droplets could not. When we consider the facts that nuclear membranes are a kind of liposomal vesicles, that free fatty acids occur only at the moment the lipids are digested, and that the DNA polymerization possibly occurs on the nuclear membranes, the data shown here are suggestive regarding the mechanism of regulation of DNA polymerization in vivo.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Chiba, Japan
| | | | | | | | | |
Collapse
|
60
|
Hanashima S, Mizushina Y, Yamazaki T, Ohta K, Takahashi S, Koshino H, Sahara H, Sakaguchi K, Sugawara F. Structural determination of sulfoquinovosyldiacylglycerol by chiral syntheses. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)00638-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Ohta K, Hanashima S, Mizushina Y, Yamazaki T, Saneyoshi M, Sugawara F, Sakaguchi K. Studies on a novel DNA polymerase inhibitor group, synthetic sulfoquinovosylacylglycerols: inhibitory action on cell proliferation. Mutat Res 2000; 467:139-52. [PMID: 10838201 DOI: 10.1016/s1383-5718(00)00028-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Some chemically synthesized sulfoquinovosylmonoacylglycerols (SQMG)-sulfoquinovosyldiacylglycerols (SQDG) have been reported to selectively and strongly inhibit the activities of mammalian DNA polymerases alpha and beta in vitro. In this study, using human cancer cell lines, we investigated the effects of SQMG-SQDG on the DNA polymerase in the cells. In the presence of n-decane, the IC(50) values on cell growth were approximately 1-5 microM for SQMG and about 0.3-1 microM for SQDG. The values were almost the same as the in vitro enzyme inhibitory levels. The cell lines were arrested in early S-phase by SQMG-SQDG at the concentrations of 0.1-4.7 microM in a manner dependent on incubation time, suggesting that SQMG-SQDG blocked the primary step of DNA replication by inhibiting DNA polymerase, possibly alpha-type. We also demonstrated the localization of SQMG in the cell using the fluorescent SQMG analog, SQMGalpha-NBDD, which was synthesized in our laboratory. SQMGalpha-NBDD was localized in the nucleus and on the nuclear surface, but the binding site seemed not to be the DNA/chromatin, suggesting that the SQMG-SQDG might interact with molecules located close to the DNA/chromatin and on the nuclear surface. These results suggested a correlation between the in vitro biochemical action of the SQMG-SQDGs and their intracellular mode of action.
Collapse
Affiliation(s)
- K Ohta
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Chiba-ken 278-8510, Noda, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Mizushina Y, Ohkubo T, Date T, Yamaguchi T, Saneyoshi M, Sugawara F, Sakaguchi K. Mode analysis of a fatty acid molecule binding to the N-terminal 8-kDa domain of DNA polymerase beta. A 1:1 complex and binding surface. J Biol Chem 1999; 274:25599-607. [PMID: 10464295 DOI: 10.1074/jbc.274.36.25599] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that long-chain fatty acids are potent inhibitors of mammalian DNA polymerase beta. At present, based on information available from the NMR structure of the N-terminal 8-kDa domain, we examined the structural interaction with the 8-kDa domain using two species, C(18)-linoleic acid (LA) or C(24)-nervonic acid (NA). In the 8-kDa domain with LA or NA, the structure that forms the interaction interface included helix-1, helix-2, helix-4, the three turns (residues 1-13, 48-51, and 79-87) and residues adjacent to an Omega-type loop connecting helix-1 and helix-2 of the same face. No significant shifts were observed for any of the residues on the opposite side of the 8-kDa domain. The NA interaction interface on the amino acid residues of the 8-kDa domain fragment was mostly the same as that of LA, except that the shifted cross-peaks of Leu-11 and Thr-79 were significantly changed between LA and NA. The 8-kDa domain bound to LA or NA as a 1:1 complex with a dissociation constant (K(D)) of 1.02 or 2.64 mM, respectively.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Applied Biological Science, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
Mizushina Y, Takahashi N, Hanashima L, Koshino H, Esumi Y, Uzawa J, Sugawara F, Sakaguchi K. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorg Med Chem 1999; 7:2047-52. [PMID: 10530954 DOI: 10.1016/s0968-0896(99)00121-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terpenoids, 1, 2 and 3, which selectively inhibit eukaryotic DNA polymerase activities, were isolated from the fruiting body of a basidiomycete, Ganoderma lucidum, and their structures were determined by spectroscopic analyses. New terpenes, lucidenic acid O (1) and lucidenic lactone (2), prevented not only the activities of calf DNA polymerase alpha and rat DNA polymerase beta, but also these of human immunodeficiency virus type 1 reverse transcriptase. Cerevisterol (3), which was reported to be a cytotoxic steroid, inhibited only the activity of DNA polymerase alpha. Although these compounds did not influence the activities of prokaryotic DNA polymerases and other DNA metabolic enzymes such as T7 RNA polymerase and deoxyribonuclease I.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Applied Biological Science, Science University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Essigmann B, Hespenheide BM, Kuhn LA, Benning C. Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 1999; 369:30-41. [PMID: 10462438 DOI: 10.1006/abbi.1999.1344] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfolipids of photosynthetic bacteria and plants are characterized by their unique sulfoquinovose headgroup, a derivative of glucose in which the 6-hydroxyl group is replaced by a sulfonate group. These sulfolipids have been discussed as promising anti-tumor and anti-HIV therapeutics based on their inhibition of DNA polymerase and reverse transcriptase. To study sulfolipid biosynthesis, in particular the formation of UDP-sulfoquinovose, we have combined computational modeling with biochemical methods. A database search was performed employing the derived amino acid sequence from SQD1, a gene involved in sulfolipid biosynthesis of Arabidopsis thaliana. This sequence shows high similarity to other sulfolipid biosynthetic proteins of different organisms and also to sugar nucleotide modifying enzymes, including UDP-glucose epimerase and dTDP-glucose dehydratase. Additional biochemical data on the purified SQD1 protein suggest that it is involved in the formation of UDP-sulfoquinovose, the first step of sulfolipid biosynthesis. To understand which aspects of epimerase catalysis may be shared by SQD1, we built a three-dimensional model of SQD1 using the 1.8 A crystallographic structure of UDP-glucose 4-epimerase as a template. This model predicted an NAD(+) binding site, and the binding of NAD(+) was subsequently confirmed by enzymatic assay and mass spectrometry. The active-site interactions together with biochemical data provide the basis for proposing a reaction mechanism for UDP-sulfoquinovose formation.
Collapse
Affiliation(s)
- B Essigmann
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824-1319, USA
| | | | | | | |
Collapse
|
65
|
Togashi H, Mizushina Y, Takemura M, Sugawara F, Koshino H, Esumi Y, Uzawa J, Kumagai H, Matsukage A, Yoshida S, Sakaguchi K. 4-Hydroxy-17-methylincisterol, an inhibitor of DNA polymerase-alpha activity and the growth of human cancer cells in vitro. Biochem Pharmacol 1998; 56:583-90. [PMID: 9783727 DOI: 10.1016/s0006-2952(98)00197-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An ergosterol derivative, 4-hydroxy-17-methylincisterol (HMI), was found to be an inhibitor of mammalian DNA polymerases in vitro. HMI inhibited the activity of calf thymus DNA polymerase alpha (pol. alpha). Among the polymerases tested, pol. alpha was the most sensitive to inhibition by HMI, and the inhibition was concentration dependent. The inhibitory effect of HMI on pol. alpha was almost the same as that shown by aphidicolin, a well-known potent pol. alpha inhibitor. HMI had relatively less effect on rat DNA pol. beta, human immunodeficiency virus type 1 reverse transcriptase (HIV-RT), and calf thymus terminal deoxynucleotidyl transferase (TdT) in vitro, and did not influence the activities of prokaryotic DNA polymerases such as Klenow Fragment of DNA polymerase I, or the DNA-metabolic enzyme DNase I. HMI was found to be able to prevent the growth of human cancer cell lines originating from patients with leukemia or various solid tumors; its IC50 values ranged from 7.5 to 12 microM. We also synthesized other ergosterol derivatives and tested them, and found that two compounds, 17-methylincisterol and 4-acetyl-17-methylincisterol, have similar inhibitory effects.
Collapse
Affiliation(s)
- H Togashi
- Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Mizushina Y, Matsukage A, Sakaguchi K. The biochemical inhibition mode of bredinin-5'-monophosphate on DNA polymerase beta. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:5-11. [PMID: 9622583 DOI: 10.1016/s0167-4889(98)00027-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported previously [T. Horie, Y. Mizushina, M. Takemura, F. Sugawara, A. Matsukage, S. Yoshida, K. Sakaguchi, Int. J. Mol. Med., 1 (1998) 83-90.] that a 5'-monophosphate form (breMP) of bredinin, which has been used clinically as an immunosuppressive drug, selectively suppressed the activities of mammalian DNA polymerase alpha (pol. alpha) and beta (pol. beta). In a preliminary study of the action mode, for pol. beta, breMP acted by competing with, unexpectedly, not only the substrate but also with the template-primer. The mode might be attributable to the structure and function of pol. beta itself. We therefore investigated the biochemical inhibition mode of pol. beta in more detail by using two pol. beta fragments which were proteolytically separated into the template-primer-binding domain and the catalytic domain. BreMP inhibited only the catalytic activity of the catalytic domain fragment, and could not bind to the template-primer-binding domain fragment, suggesting that it directly competes with the substrate at its binding site of the catalytic domain, and indirectly, but simultaneously and competitively disturbs the template-primer incorporation into the template-primer-binding domain.
Collapse
Affiliation(s)
- Y Mizushina
- Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|