51
|
Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 2001; 34:541-81. [PMID: 11697033 DOI: 10.1080/10715760100300471] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.
Collapse
Affiliation(s)
- S A Greenacre
- Centre for Cardiovascular Biology and Medicine and Wolfson Centre for Age-related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
52
|
Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W, Ali SF. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 2001; 939:366-80. [PMID: 11462792 DOI: 10.1111/j.1749-6632.2001.tb03646.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress, reactive oxygen (ROS), and nitrogen (RNS) species have been known to be involved in a multitude of neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Both ROS and RNS have very short half-lives, thereby making their identification very difficult as a specific cause of neurodegeneration. Recently, we have developed a high performance liquid chromatography/electrochemical detection (HPLC/EC) method to identify 3-nitrotyrosine (3-NT), an in vitro and in vivo biomarker of peroxynitrite production, in cell cultures and brain to evaluate if an agent-driven neurotoxicity is produced by the generation of peroxynitrite. We show that a single or multiple injections of methamphetamine (METH) produced a significant increase in the formation of 3-NT in the striatum. This formation of 3-NT correlated with the striatal dopamine depletion caused by METH administration. We also show that PC12 cells treated with METH has significantly increased formation of 3-NT and dopamine depletion. Furthermore, we report that pretreatment with antioxidants such as selenium and melatonin can completely protect against the formation of 3-NT and depletion of striatal dopamine. We also report that pretreatment with peroxynitrite decomposition catalysts such as 5, 10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and 5, 10, 15, 20-tetrakis (2,4,6-trimethyl-3,5-sulfonatophenyl) porphinato iron III (FETPPS) significantly protect against METH-induced 3-NT formation and striatal dopamine depletion. We used two different approaches, pharmacological manipulation and transgenic animal models, in order to further investigate the role of peroxynitrite. We show that a selective neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI), significantly protect against the formation of 3-NT as well as striatal dopamine depletion. Similar results were observed with nNOS knockout and copper zinc superoxide dismutase (CuZnSOD)-overexpressed transgenic mice models. Finally, using the protein data bank crystal structure of tyrosine hydroxylase, we postulate the possible nitration of specific tyrosine moiety in the enzyme that can be responsible for dopaminergic neurotoxicity. Together, these data clearly support the hypothesis that the reactive nitrogen species, peroxynitrite, plays a major role in METH-induced dopaminergic neurotoxicity and that selective antioxidants and peroxynitrite decomposition catalysts can protect against METH-induced neurotoxicity. These antioxidants and decomposition catalysts may have therapeutic potential in the treatment of psychostimulant addictions.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory Division of Neurotoxicology, HFT-132, National Center for Toxicological Research/FDA, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Abu-Qare AW, Suliman HB, Abou-Donia MB. Induction of urinary excretion of 3-nitrotyrosine, a marker of oxidative stress, following administration of pyridostigmine bromide, DEET (N,N-diethyl-m-toluamide) and permethrin, alone and in combination in rats. Toxicol Lett 2001; 121:127-34. [PMID: 11325563 DOI: 10.1016/s0378-4274(01)00330-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, we determined levels of 3-nitrotyrosine in rat urine following administration of a single oral dose of 13 mg/kg pyridostigmine bromide (PB) (3-dimethylaminocarbonyloxy-N-methylpyridinum bromide), a single dermal dose of 400 mg/kg N,N-diethyl-m-toluamide (DEET) and a single dermal dose of 1.3 mg/kg permethrin, alone and in combination. Urine samples were collected from five treated and five control rats at 4, 8, 16, 24, 48, and 72 h following dosing. Solid-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection at 274 nm was used for the determination of tyrosine and 3-nitrotyrosine. A single oral dose of PB and a single dermal dose of DEET or their combination significantly (P<0.05) increased levels of 3-nitrotyrosine starting 24 h after dosing compared with control urine samples. The maximum increase of 3-nitroytyrosine was detected 48 h after combined administration of PB and DEET. The ratio of 3-nitrotyrosine to tyrosine in urine excreted 48 h after dosing was 0.19+/-0.04, 0.20+/-0.05, 0.28+/-0.03, 0.32+/-0.04, 0.19+/-0.05, 0.42+/-0.04, 0.27+/-0.03, 0.36+/-0.04, and 0.48+/-0.04 following administration of water, ethanol, PB, DEET, permethrin, PB+DEET, PB+permethrin, DEET+permethrin, and PB+DEET+permethrin, respectively. The results indicate that an oral dose of PB and a dermal administration of DEET, alone and in combination, could generate free radical species, and thus increase levels of 3-nitrotyrosine in rat urine. Induction of 3-nitrotyrosine, a marker of oxidative stress, following exposure to these compounds could be significant in understanding the proposed enhanced toxicity following combined exposure to these compounds.
Collapse
Affiliation(s)
- A W Abu-Qare
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
54
|
Imam SZ, Newport GD, Itzhak Y, Cadet JL, Islam F, Slikker W, Ali SF. Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase. J Neurochem 2001; 76:745-9. [PMID: 11158245 DOI: 10.1046/j.1471-4159.2001.00029.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of methamphetamine (METH) leads to neurotoxic effects in mammals. These neurotoxic effects appear to be related to the production of free radicals. To assess the role of peroxynitrite in METH-induced dopaminergic, we investigated the production of 3-nitrotyrosine (3-NT) in the mouse striatum. The levels of 3-NT increased in the striatum of wild-type mice treated with multiple doses of METH (4 x 10 mg/kg, 2 h interval) as compared with the controls. However, no significant production of 3-NT was observed either in the striata of neuronal nitric oxide synthase knockout mice (nNOS -/-) or copper-zinc superoxide dismutase overexpressed transgenic mice (SOD-Tg) treated with similar doses of METH. The dopaminergic damage induced by METH treatment was also attenuated in nNOS-/- or SOD-Tg mice. These data further confirm that METH causes its neurotoxic effects via the production of peroxynitrite.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Itzhak Y, Martin JL, Ali SF. Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization. Ann N Y Acad Sci 2000; 914:104-11. [PMID: 11085313 DOI: 10.1111/j.1749-6632.2000.tb05188.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The involvement of the neuronal and inducible nitric oxide synthase (nNOS and iNOS, respectively) in methamphetamine (METH)-induced dopaminergic neurotoxicity and behavioral sensitization was investigated. To determine METH-induced neurotoxicity, mice deficient in the nNOS and iNOS genes, nNOS(-/-) and iNOS(-/-) mice, and wild-type controls received either saline or METH (5 mg/kg x 3). After 72 h the level of striatal dopaminergic markers were measured. Administration of METH to nNOS(-/-) mice had no significant effect on the level of striatal dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), or dopamine transporter (DAT) binding sites. However, METH caused 25-40% depletion of dopaminergic markers in iNOS(-/-) mice and 63-69% depletion in the wild-type mice. METH-induced locomotor activity was measured following the administration of a low dose (1 mg/kg) on day 1. Subsequently animals received the high dose of METH (5 mg/kg x 3). On day 4, after a 68-72 h drug free period, animals were challenged with 1 mg/kg METH, and locomotor activity was recorded. The intensity of METH-induced locomotion in nNOS(-/-) mice on day 1 and 4 was similar, suggesting that locomotor sensitization did not develop. However, the intensity of METH-induced locomotion in the iNOS(-/-) and wild-type mice on day 4 was doubled compared to day 1, suggesting the development of sensitization. The present findings indicate that nNOS(-/-) mice are more resistant to METH-induced neurotoxicity and behavioral sensitization than iNOS(-/-) mice. These results suggest a major role for nNOS rather than iNOS in the effects of METH.
Collapse
Affiliation(s)
- Y Itzhak
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Florida 33101, USA.
| | | | | |
Collapse
|
56
|
Imam SZ, Islam F, Itzhak Y, Slikker W, Ali SF. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage. Ann N Y Acad Sci 2000; 914:157-71. [PMID: 11085318 DOI: 10.1111/j.1749-6632.2000.tb05193.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | |
Collapse
|
57
|
Ali SF, Haung P, Itzhak Y. Role of peroxynitrite in methamphetamine-induced dopaminergic neurotoxicity and sensitization in mice. Addict Biol 2000; 5:331-41. [PMID: 20575850 DOI: 10.1111/j.1369-1600.2000.tb00200.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract Methamphetamine (METH)-induced dopaminergic neurotoxicity is thought to be associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recently, we have reported that copper/zinc(CuZn)-superoxide dismutase transgenic mice are resistant to METH-induced neurotoxicity. In the present study, we examined the role of the neuronal nitric oxide synthase (nNOS), susceptibility of nNOS knockout (KO) mice and sensitization to psychostimulants after neurotoxic doses of METH. Male SwissWebster mice were treated with or without 7-nitroindazole (7-NI) along with METH (5 mg/kg,ip,q 3h x 3) and were sacrificed 72 h after the last METH injection. Dopamine (DA) and dopamine transporter (DAT) binding sites were determined in striatum from saline and METH-treated animals. 7-NI completely protected against the depletion of DA, and DAT in striatum. In follow-up experiments nNOS KO mice along with appropriate control (C57BL/6N, SV129 and B6JSV129) mice were treated with METH (5 mg/kg,ip, q 3h x 3) and were sacrificed 72 h after dosing. This schedule of METH administrations resulted in only 10-20% decrease in tissue content of DA and no apparent change in the number of DAT binding sites in nNOS KO mice. However, this regime of METH resulted in a significant decrease in the content of DA as well as DAT binding sites in the wild-type animals. Pre-exposure to single or multiple doses of METH resulted in a marked locomotion sensitization in response to METH. However, the nNOS KO mice show no sensitization in response to METH after single or multiple injections of METH. Therefore, these studies strongly suggest the role of peroxynitrite, nNOS and DA system in METH-induced neurotoxicity and behavioral sensitization.
Collapse
Affiliation(s)
- S F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, NCTR/FDA, Jefferson, AR, USA
| | | | | |
Collapse
|
58
|
Imam SZ, Ali SF. Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Res 2000; 855:186-91. [PMID: 10650149 DOI: 10.1016/s0006-8993(99)02249-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Methamphetamine (METH) has been known to produce neurotoxicity via generation of reactive oxygen and nitrogen species. Selenium, an antioxidant, was reported to protect against METH-induced dopaminergic neurotoxicity in mouse caudate nucleus. In the present study, the in vitro and in vivo efficacy of the supplementation of selenium was studied in METH-induced generation of peroxynitrite. PC12 cell cultures were exposed to 200 microM METH either with or without 10 microM and 20 microM selenium (30 min prior to METH exposure). After 24 h, METH exposure resulted in the significant depletion of dopamine, and its metabolites DOPAC and HVA, as well as the significant formation of 3-nitrotyrosine (3-NT), a marker of peroxynitrite generation, in PC12 cell cultures. Selenium supplementation attenuated the depletion of dopamine and its metabolites, DOPAC and HVA and the formation of 3-NT in PC12 cells. For in vivo studies, adult male mice were supplemented with selenium in drinking water, 1 week before and 1 week after the multiple injections of METH (4x10 mg/kg, i.p. at 2-h interval) or an equivalent volume of saline. The supplementation of Se attenuated the formation of 3-NT in the striatum resulting from METH treatment. These data suggest that METH-induced neurotoxicity is mediated by the production of peroxynitrite, and selenium plays a protective role in METH-induced neurotoxicity.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, HFT-132, National Center for Toxicological Research/USFDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | |
Collapse
|
59
|
Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 1999. [PMID: 10575026 DOI: 10.1523/jneurosci.19-23-10289.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of dopamine (DA). TH activity is significantly diminished in Parkinson's disease (PD) and by the neurotoxic amphetamines, thereby accentuating the reductions in DA associated with these conditions. Reactive oxygen and nitrogen species have been implicated in the damage to DA neurons seen in PD and in reaction to amphetamine drugs of abuse, so we investigated the hypothesis that peroxynitrite (ONOO(-)) could interfere with TH catalytic function. ONOO(-) caused a concentration-dependent inactivation of TH. The inactivation was associated with tyrosine nitration (maximum of four tyrosine residues nitrated per TH monomer) and extensive sulfhydryl oxidation. Tetranitromethane, which causes sulfhydryl oxidation at pH 6 and 8 but which nitrates tyrosines only at pH 8, inactivated TH equally at either pH. Bicarbonate protected TH from ONOO(-)-induced inactivation and sulfhydryl oxidation but increased significantly tyrosine nitration. PNU-101033 blocked ONOO(-)-induced tyrosine nitration in TH but could not prevent enzyme inactivation or sulfhydryl oxidation. Together, these results indicate that the inactivation of TH by ONOO(-) is mediated by sulfhydryl oxidation. The coincident nitration of tyrosine residues appears to exert little influence over TH catalytic function.
Collapse
|